
On the unconventional Hug integrator

Christophe Andrieu *and J.M. Sanz-Serna†

February 17, 2025

Abstract

Hug is a recently proposed iterative mapping used to design efficient updates
in Markov chain Monte Carlo (MCMC) methods when sampling along manifolds
is of interest. In this paper we show that Hug may be interpreted as a consistent
discretization of a system of differential equations with a rather complicated struc-
ture. The proof of convergence of this discretization includes a number of unusual
features we explore fully. We uncover an unexpected and, yet, undocumented
property of the solutions of the underlying dynamical system that manifest itself
by the existence of Hug trajectories that fail to cover the manifold of interest. This
suggests caution when using the Hug update.

1 Introduction
Dynamical systems, and their integrators, play an important rôle in the design of mod-
ern and efficient Markov chain Monte Carlo (MCMC) algorithms that aim to sample
from complex probability distributions [5]. Their ability to turn local information about
the target density of interest, available in the form of gradients or higher-order deriva-
tives, into efficient mappings adapted to the geometry of the problem at hand is the
reason for this importance. HMC (Hybrid Monte Carlo) [3] is the best known illus-
tration of this idea: here Hamilton’s equations are used to follow the contours of an
extended probability density of which the density of interest is a marginal. Together
with volume preservation, this property explains the interest of HMC. Recently an
alternative to HMC was proposed in [11] with the attractive feature that an update in-
volves moving along contours of the probability density of interest itself, which should
be contrasted with the corresponding, sometimes unintuitive, trajectories arising from
solutions of Hamilton’s equations.

The Hug update of [11] is based on the repeated composition of a “bounce” map-
ping (proposed by [12] and later developed in [2]). The bouncing mechanism makes it
possible for the proposals generated by Hug to remain very close (hug) to the manifold
of interest, which is remarkable since the algorithm is fully explicit, i.e. it does not re-
sort to the numerical solution of the algebraic equations that define the manifold. In this

*School of Mathematics, University of Bristol, U.K.
†Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-

28911 Leganés (Madrid), Spain. E-mail: jmsanzserna@gmail.com

1

ar
X

iv
:2

50
2.

10
19

9v
1

 [
m

at
h.

N
A

]
 1

4
Fe

b
20

25

manuscript we show that Hug may be viewed as a consistent discretization of an un-
derpinning dynamical system that we identify. Such dynamical systems provide an im-
portant step towards performance analysis of MCMC algorithms in high-dimensions,
see [1] for example. By analysing the dynamical system, we have uncovered a phe-
nomenon whereby Hug trajectories may oscillate in small neighbourhoods around the
initial state of the system, depending on properties of the initial velocity. We investigate
this phenomenon in detail on a simple model target distribution and provide a small nu-
merical study indicating that conclusions of our precise analysis extend to more general
scenarios. This suggests caution when using the Hug update.

The contents of this manuscript is as follows. Section 2 focuses on discrete-time
algorithms. In Subsection 2.1 we present the Hug update in its original MCMC con-
text where the aim is to maintain a single constraint while updating the state of the
Markov chain. In Subsection 2.2 we present a generalisation of Hug’s discrete dynam-
ics [4] suitable for the exploration of manifolds resulting from multiple constraints. A
number of properties of the algorithm are presented in Subsection 2.3. In Section 3
we identify the underpinning continuous-time dynamical system and explain the way
in which Hug provides a convergent discretization of that system. In Subsection 3.1
we review results on linear projector differentials. Then, in Subsection 3.2 we present
the continuous-time dynamical system and establish a number of properties that mirror
those of the discrete time algorithm studied previously in Subsection 2.3. The conver-
gence of Hug as a discretization of the continuous-time dynamical system is elucidated
in Subsection 3.3. The analysis presents a number of nonstandard features; of par-
ticular interest from the numerical analysis point of view is that a supraconvergence
phenomenon [6] takes place, whereby second-order convergence is obtained with first
order consistency. In Subsection 3.4 we fully analyse a model system, showing that,
unexpectedly, the trajectories generated by both the differential equations and Hug may
fold back on themselves, thus precluding a good exploration of the manifold of inter-
est. This unwelcome phenomenon depends on the initial condition and we obtain a full
characterisation of the initial states for which the phenomenon occurs. In Section 4 we
present simple numerical experiments suggesting that the phenomenon analysed in the
model problem extends to more complex scenarios. Technical proofs are given in Sec-
tion 5; these make extensive use the results by Golub and Pereyra [7] on differentiation
of projections.

2 Hug algorithm

2.1 The algorithm
In this subsection we describe the Hug algorithm suggested in [11]. In the description
we will make use of some properties that will be proved in Proposition 1 below.

Hug is a Markov Chain Monte Carlo method to obtain samples from a target un-
normalized probability distribution π in Rn, assumed to have a density exp(ℓ(x)) with
respect to the Lebesgue measure. Hug introduces an auxiliary variable v ∈ Rn with a
density q(v|x) such that

q(v|x) = q(−v|x) (1)

2

Algorithm 1 Hug

Require: Number of timesteps K; stepsize δ > 0; current state x of the Markov chain;
v-marginal density q(·|x).

Initialize k = 0, x0 ← x, draw velocity v0 ∼ q(·|, x0).
Timestepping:

for k = 0, . . . ,K − 1, do
Move to xk+1/2 = xk + (δ/2)vk.
Reflect: vk+1 = R(xk+1/2)vk.
Move to xk+1 = xk+1/2 + (δ/2)vk+1.

end for
Compute log(r) = ℓ(xK)− ℓ(x0) + log q(vK |xK)− log q(v0|x0).
With a probability α = 1 ∧ r, x← xK ; else x← x.

and generates a Markov Chain with invariant distribution π(x)q(v|x). The marginal on
x of this Markov chain has therefore π(x) as an invariant distribution; one step of this
marginal chain is described in Algorithm 1.

A salient feature of the algorithm is the use of velocity reflections. For x ∈ Rn

with∇ℓ(x) ̸= 0, the n× n matrix R(x) used in the reflections is

R(x) = I − 2

∥∇ℓ(x)∥2
∇ℓ(x)∇ℓ(x)T , (2)

so that, if w is a vector, R(x)w is the result of reflecting w on the vector subspace of
Rn tangent at x to the level hypersurface {y : ℓ(y) = ℓ(x)}. Here and elsewhere ∥ · ∥
denotes the standard Euclidean norm.

Figure 1 illustrates the computation of the iterate x2 when δ = 0.1, x0 = [1, 0]T ,
v0 = [1, 2]T and the target is a bivariate Gaussian distribution with ℓ = −x2

(1) − 4x2
(2)

(x(1) and x(2) denote the scalar components of x). The figure suggests that the iterates
xk may be expected to be close to (or “hug”) the level set {y : ℓ(y) = ℓ(x0)}; this
explains the name of the algorithm. The halfway points xk+1/2 will not be too close
to {y : ℓ(y) = ℓ(x0)}, but this does not matter as they are just intermediate auxiliary
values (like the internal stages of a Runge-Kutta integrator).

The typical choice of q(v|x) satisfying (1) is given by an x-independent isotropic
normal v ∼ N (0, σ2I). Since the reflection matrix (2) is orthogonal, all iterates v0,
. . . , vK share a common Euclidean length, and therefore, for this simple choice of q, in
the expression for the acceptance probability r the term

log q(vK |xK)− log q(v0|x0) = −σ−2
(
∥vK∥2 − ∥v0∥2

)
vanishes. Furthermore, due to the “hugging” property, ℓ(xK)− ℓ(x0) will typically be
small so that the value of the acceptance probability r will be close to 1. At the same
time, it could be expected that, once δ has been chosen, by taking the number K of
timesteps sufficiently high, xK will be far away from x0. In conclusion, Hug may offer
the possibility of generating proposals that are away from the current state of the chain
and, at the same time, have high probability of being accepted.

3

0.4 0.6 0.8 1 1.2

x
(1)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
(2

)
x

0

x
1/2

x
1

x
3/2

x
2

Figure 1: Computation of the iterate x2 for a bivariate Gaussian. The plot depicts
the plane of the variable x = (x(1), x(2)) ∈ R2. The solid curve is the contour {y :
ℓ(y) = ℓ(x0)}. The dashed curve is (part of) the contour {y : ℓ(y) = ℓ(x1/2)}. The
segments [x0, x1/2], [x1/2, x1], [x1, x3/2], [x3/2, x2] share a common Euclidean length
(δ/2)∥v0∥.

The x-moves in Hug will not change much the value of ℓ and in order to efficiently
explore the whole state space, the reference [11] suggested to interleave steps of Hug
with steps of a second Markov kernel, called Hop, that causes the state of the Markov
chain to jump between different level sets of ℓ.

2.2 A generalization of the Hug timestepping mechanism
In what remains of the paper, we will consider that in the Hug time-stepping formulas
(x0 ∈ Rn, v0 ∈ Rn)

xk+1/2 = xk + (δ/2)vk (3)
vk+1 = R(xk+1/2)vk, (4)
xk+1 = xk+1/2 + (δ/2)vk+1, (5)

the reflection in (4) is taken with respect to the vector subspace of Rn tangent at xk+1/2

to the level manifold {y : f(y) = f(xk+1/2)} of a smooth function f : Rn → Rm,
0 < m < n. It is expected that now the iterates xk will hug the level set {y : f(y) =
f(x0)}. To shorten the notation we shall hereafter set M(η) = {y : f(y) = η}
(η ∈ Rm). In the particular case of Algorithm 1, m = 1 and f = ℓ. The present
generalization has been considered in the thesis [4], where it is used to build algo-
rithms to sample from filamentary distributions, i.e. distributions in Rn supported in
the neighbourhood of a setM(η) for some fixed η ∈ Rm.

We now present the expression for R(x) that replaces (2) in the generalized sce-
nario. For each x ∈ Rn, J(x) will denote the m × n Jacobian matrix of f evaluated
at x. In order not to clutter the exposition with unwelcome details, we will assume

4

throughout that, for each x, J(x) has full rank. (However this hypothesis may easily
be weakened: for instance one might demand that J(x) be full rank except at some
isolated points or, more generally, that J(x) be full rank for x in an open subdomain
of Rn.) The implicit function theorem shows that, for each x, M(f(x)) is a smooth
n−m submanifold of Rn. The vector space tangent at x to this manifold is given by

T (x) = {v ∈ Rn : J(x)v = 0}. (6)

We shall denote by N (x) ⊂ Rn the corresponding normal space, i.e. the m-dimen-
sional vector subspace of Rn orthogonal to T . For each x, J(x)J(x)T is invertible
and

J(x)+ = J(x)T (J(x)J(x)T)−1 (7)

is the Moore-Penrose inverse of J(x) (size n×m). The n× n symmetric matrix

N(x) = J(x)+J(x) = J(x)T (J(x)J(x)T)−1J(x) (8)

represents the orthogonal projection of Rn onto N (x) and then

T (x) = I −N(x) (9)

is the complementary projection onto T (x). In what follows we will use repeatedly the
fact that, for any given x, each vector w may be decomposed as T (x)w +N(x)w into
a tangential component and a normal component.

After these preparations, we see that the expression for R(x) to be used in (4) is
R(x) = I−2N(x). For given x and w, there are different ways of computing N(x)w.
One that suggests itself uses the decomposition J(x)T = QR, where Q is n×m with
orthonormal columns and R is m×m upper triangular with positive diagonal entries.
The columns of Q are an orthonormal basis of N (x) and therefore N(x)w = QQTw.
In the particular case m = 1, f = ℓ, this amounts to finding the normalized gradient
(1/∥∇ℓ(x)∥)∇ℓ(x) as in (2).

2.3 Properties of the timestepping mechanism
Proposition 1 below summarizes some properties of (3)–(5). It requires some notation.

We denote by Ψδ : Rn × Rn → Rn × Rn the map that carries out a single step of
(3)–(5), i.e. Ψδ(x, v) = (x′, v′) if v′ = R(x+ (δ/2)v)v, x′ = x+ (δ/2)v + (δ/2)v′.

The symbol H(x) will denote the second derivative of f evaluated at x; this is the
symmetric bilinear map Rn × Rn → Rm such that

f(x+ w) = f(x) + J(x)w +
1

2
H(x)[w,w] + o(∥w∥2), w → 0.

For a symmetric bilinear map S : Rn × Rn → Rm, the operator norm is defined as

∥S∥ = sup{∥S[w1, w2]∥ : ∥w1∥ ≤ 1, ∥w2∥ ≤ 1}.

With this notation in place we have:

Proposition 1. The following properties hold:

5

1. The map Ψδ is volume preserving.

2. The map Ψδ is time-reversible, i.e. for each x and v, Ψδ(x, v) = (x′, v′) if and
only if Ψδ(x

′,−v′) = (x,−v).

Furthemore, let (3)–(5) hold for k = 0, . . . ,K − 1. Then:

3. For each k = 0, . . . ,K − 1,

T (xk+1/2)vk+1 = T (xk+1/2)vk, N(xk+1/2)vk+1 = −N(xk+1/2)vk

and
vk + vk+1 = 2T (xk+1/2)vk.

4. The vectors v0,. . . , vK share a common Euclidean length ∥v0∥.

5. The vectors xk+1/2−xk, k = 0, . . . ,K−1, and xk+1−xk+1/2, k = 0, . . . ,K−
1, share a common Euclidean length (δ/2)∥v0∥. The vectors xk+3/2 − xk+1/2,
k = 0, . . . ,K − 2 share a common Euclidean length δ∥v0∥.

6. If, as x ranges in Rn,∥H(x)∥ is upper bounded by β and H(x) is γ-Lipschitz
continuous, i.e. for each x, y ∈ Rn,

∥H(x)−H(y)∥ ≤ γ∥x− y∥,

we have ∥∥f(xK)− f(x0)
∥∥ ≤ δ2

12
∥v0∥2

(
3β + γ(K − 1)δ∥v0∥

)
.

7. If H(x) is of the form H(x)[w,w] = ∥w∥2ν, ν ∈ Rm, then f(xk) = f(x0),
k = 0, . . . ,K.

For the particular case f = ℓ, Properties 1. and 2. in tandem with standard results on
Markov Chain Monte Carlo methods ensure that Algorithm 1 preserves the distribution
with density ∝ exp(ℓ(x)).

Property 6. appears, in a slightly different form, in [11] (for the case f = ℓ) and
in [4] (for the general case). It shows that indeed (3)–(5) produces points xk that,
for δ small, remain close to the manifold M(f(x0)). It is remarkable that for an
explicit timestepping algorithm where no implicit equations are solved, the deviation
f(xK) − f(x0) grows at most linearly with Kδ, the accumulated time after taking K
steps of length δ. It would be possible to formulate a localized version of Property 6.,
where rather than demanding that H is globally bounded and globally Lipschitz, those
properties are only demanded in a domain that contains the iterates xk.

Property 7. holds in particular if in the context of Algorithm 1 the target is an
isotropic Gaussian. In that situation, if q(v|x) is also an isotropic Gaussian, Algo-
rithm 1 accepts all the proposals.

6

3 The ODE
Formulas (3)–(5) are clearly reminiscent of a discretization of a system of ODEs. In
this section we shall prove that, in fact, (3)–(5) provide an integrator for a system that
we will identify. The original reference [11] did not discuss the connection between
Hug and differential equations.

3.1 The derivative N ′(x)

The expression for the system of ODEs approximated by (3)–(5) includes the derivative
N ′(x) of the projector N(x) defined in (8). This derivative is studied next.

For fixed x ∈ Rn, N ′(x) maps linearly each vector w ∈ Rn into an n× n matrix,
that we will denote by N ′(x)[w], in such a way that N(x+w) = N(x) +N ′(x)[w] +
o(∥w∥) as w → 0. If z ∈ Rn, the notation N ′(x)[w]z will be used, as expected, to
refer to the n-vector obtained by multiplying the matrix N ′(x)[w] and z. It is important
to note that for each fixed x, N ′(x)[w]z depends bilinearly on w and z.

According to [7], for fixed x and w,

N ′(x)[w] = N ′
⊥(x)[w] +N ′

∥(x)[w], (10)

where, the n× n matrices N ′
⊥(x)[w], N

′
∥(x)[w] are given by

N ′
⊥(x)[w] = J(x)+H(x)[w, ·]T (x), (11)

N ′
∥(x)[w] =

(
N ′

⊥(x)[w]
)T

= T (x)
(
H(x)[w, ·]

)T (
J(x)+

)T
. (12)

Here, J(x)+ and T (x) were defined in (7) and (9) respectively and H(x)[w, ·] is the
m × n matrix that corresponds to the linear operator z ∈ Rn 7→ H(x)[w, z] ∈ Rm

resulting from freezing at w the first argument of the bilinear operator H(x)[·, ·]. In
this way, the right hand-side of (11) is the product of an n×m matrix, an m×n matrix
and n× n matrix.

The following result, that explains the subscripts ⊥ and ∥, gives properties of the
matrices N ′

⊥(x)[w], N
′
∥(x)[w] that we will use repeatedly in the proofs of the results.

Lemma 2. For each x and w:

1. The image subspace of N ′
⊥(x)[w] is contained in N (x).

2. The kernel of N ′
⊥(x)[w] contains N (x).

3. The image subspace of N ′
∥(x)[w] is contained in T (x).

4. The kernel of N ′
∥(x)[w] contains T (x).

It is useful to present an illustration:

Example 3. For the case n = 2, m = 1, f(x) = −ax2
(1) − bx2

(2), a, b > 0 (corre-
sponding to a bivariate Gaussian in Algorithm 1), if w = [w(1), w(2)]

T , one finds

N ′
⊥(x)[w] = ab

w(2)x(1) − w(1)x(2)

(a2x2
(1) + b2x2

(2))
2

[
ax(1)

bx(2)

] [
−bx(2) ax(1)

]
.

7

This is a rank one, 2 × 2 matrix with image spanned by the vector [ax(1), bx(2)]
T ,

whose direction coincides with that of∇f(x) (normal to the contour of f that contains
x). The kernel is also spanned by ∇f . Note that the dependence on w is linear.

The matrix N ′
∥(x)[w] is obtained by transposition. Its image and kernel are orthog-

onal to ∇f(x).

3.2 The ODE being approximated
Algorithm (3)–(5) will be shown to approximate, in a sense to be specified later, the
following system of ODEs in Rn × Rn:1

d

dt
x = T (x)v, (13)

d

dt
v =

(
N ′

∥(x)
[
(T (x)−N(x))v

]
−N ′

⊥(x)
[
(T (x)−N(x))v

])
v. (14)

In order to shorten the notation, we will introduce the symbols

v∥ = T (x)v, v⊥ = N(x)v

for the tangential and normal components of the velocity v. With this notation and
taking into account the properties of the kernels of the matrices N ′

∥[v∥ − v⊥] and
N ′

⊥[v∥ − v⊥] in Lemma 2, (14) may be written as

d

dt
v = N ′

∥(x)[v∥ − v⊥]v⊥ −N ′
⊥(x)[v∥ − v⊥]v∥. (15)

Some properties of (13)–(14) are contained in the following result. Clearly 1., 2.
and 3. here are exact counterparts of Items 1., 2. and 4. in Proposition 1. In addition
Item 6. in that proposition is an approximate version of Item 4. below.

Theorem 4. The system (13)–(14) has the following properties:

1. It preserves volume in Rn × Rn.

2. It is time-reversible, i.e. it remains invariant after changing t into −t and v into
−v.

3. It conserves the Euclidean length of v(t): (d/dt)∥v(t)∥2 = 0.

4. x(t) remains onM(f(x(0)): (d/dt)f(x(t)) = 0

The next result gives expressions for (d/d)v∥ and (d/dt)v⊥. Note that Lemma 2
implies that in (16) the terms −N ′

∥(x)[v⊥]v⊥ and −N ′
⊥(x)[v∥]v∥ are respectively the

tangential and normal components of (d/dt)v∥. Similarly the tangential and normal
components of (d/dt)v⊥ are N ′

∥(x)[v∥]v⊥ and N ′
⊥(x)[v⊥]v∥.

1The —rather unexpected— expression for this system was derived by assuming the ansatz (18), where
x and v = v∥ + v⊥ are solutions of a system of ODEs to be determined, substituting the ansatz in (21)–(22)
and imposing σk = O(δ2) and τk = O(δ2) (cf. the proof of Theorem 6).

8

Proposition 5. If (x(t), v(t)) is a solution of (13)–(14), then:

d

dt
v∥ = −N ′

∥(x)[v⊥]v⊥ −N ′
⊥(x)[v∥]v∥, (16)

d

dt
v⊥ = N ′

∥(x)[v∥]v⊥ +N ′
⊥(x)[v⊥]v∥. (17)

3.3 Relating the Algorithm and the ODE
Let us now study the relation between the Algorithm (3)–(5) and the system (13)–
(14). The situation is much complicated by the way the algorithm treats the normal
component of the velocities vk. According to (20), in the limit δ → 0 with fixed x0,
N(x0)v1 = −N(x0)v0; therefore the vk’s cannot be seen as approximations to the
values of a differentiable function at the steppoints kδ. We will show presently that the
values xk, vk generated by the algorithm approximate the values, k = 0, . . . ,K

Xk = x(kδ), Vk = v∥(kδ) + (−1)kv⊥(kδ), (18)

where (x(t), v(t)) is a suitable solution of (13)–(14). The factor (−1)k makes it possi-
ble for the Vk’s to mimic the reflections in the normal components of the vk’s.

It is convenient to rewrite the algorithm after elimination of the auxiliary halfway
points xk+1/2:

xk+1 = xk + δT (xk + (δ/2)vk)vk, (19)
vk+1 =

(
I − 2N(xk + (δ/2)vk)

)
vk. (20)

The first step in the analysis is to show consistency, i.e. that when Xk, Vk are substituted
into the equations (19)–(20), they originate small residuals

σk+1 := Xk+1 −Xk − δT (Xk + (δ/2)Vk)Vk, (21)

τk+1 := Vk+1 −
(
I − 2N(Xk + (δ/2)Vk)

)
Vk. (22)

As with any other explicit timestepping algorithm, these residuals may be seen as
truncation errors (also referred to as local errors), i.e. as the error of the algorithm at
t = (k + 1)δ if started from the exact values at t = kδ. More precisely, if for some k,
xk and vk happened to coincide with x(kδ) and v∥(kδ) + (−1)kv⊥(kδ) respectively,
then the algorithm would deliver, after one step, values

xk+1 = Xk+1 − σk+1, vk+1 = Vk+1 − τk+1.

The following result shows consistency of order one:

Theorem 6. (First-order consistency.) As δ → 0 and k → ∞ with kδ → t, the
truncation errors σk,τk are O(δ2).

Consistency is the key step to proving the next convergence result. It is remark-
able that, with first order consistency, the algorithm is convergent of the second order.
This phenomenon, known as supraconvergence is discussed in e.g. [6], where addi-
tional references are also supplied. Supraconvergence happens here because there is

9

δ ∥x1 − x(δ)∥ ∥x2 − x(2δ)∥
1/16 4.23(-4) 4.87(-5)
1/32 1.15(-4) 6.56(-6)
1/64 3.00(-4) 8.50(-7)
1/128 7.62(-6) 1.08(-7)
1/256 1.93(-6) 1.36(-8)

Table 1: Errors in the x variable vs. δ after one or two timesteps.

substantial cancellation between the truncation errors at consecutive steps. A numer-
ical illutration of this cancellation is provided in Table 1, where f is as in Figure 1,
x0 = [cos(1), (1/2) sin(1)]T , v0 = [0, 1]T . We see that the errors after a single step
(i.e. the truncation errors) decrease as O(δ2) in agreement with Theorem 6. However
when a second step is taken with the same value of δ, the error decreases substantially.
Errors after two steps exhibit aO(δ3) behaviour. These issues are discussed in detail in
Section 5. For the time being we emphasize that this cancellation of the local error in
consecutive steps is not the zigzagging of the midway approximation xk+1/2 that may
be seen in Figure 1.

Theorem 7. (Second-order convergence.) Fix x0, v0 and a time interval [0, T] and
consider the solution (x(t), v(t)) of (13)–(14) with x(0) = x0, v(0) = v0 and the
iterates (xk, vk) generated by (3)–(5). Then, as δ → 0,

max
kδ≤T

∥xk − x(kδ)∥ = O(δ2),

and
max
kδ≤T

∥vk −
(
v∥(kδ) + (−1)kv⊥(kδ)

)
∥ = O(δ2).

The constants implicit in the O notation in the theorem vary with f , x0, v0 and T
only.

Since the ODE preserves the value of f (Theorem 4, Property 4.), the O(δ2) devi-
ations in the value of f for the xk, proved in Property 6. of Proposition 1, match the
second order convergence stated in Theorem 7.

3.4 Dynamics
The appearence of the system (13)–(14) is certainly unfriendly and it is not easy to
guess the behaviour of its solutions. To get some insight, we illustrate its dynamics in
the case of two examples.

Assume first that initially v(0) is tangent, i.e. v⊥(0) = 0. Then (17) shows that, for
all t, v⊥(t) = 0 and therefore v(t) = v∥(t). According to (16), the system reduces to:

d

dt
x = v∥,

d

dt
v∥ = −N ′

⊥(x)[v∥]v∥.

10

These are the equations of motion for a particle that is constrained to remain on the
manifoldM(f(x(0))) when there are no external forces (other than the normal force
−N ′

⊥(x)[v∥]v∥ exerted by the constraint). The preservation of ∥v∥(t)∥2 is just the
preservation of kinetic energy that takes place due to the absence of working forces.

As a second example we look at the case where n = 2, m = 1 and f(x) =
−ax2

(1) − bx2
(2), a, b > 0, as in Example 3. As pointed out there this would arise

when sampling from a bivariate, anisotropic Gaussian target distribution. (Recall that
for isotopic Gaussians all proposals are accepted.) There are four scalar equations in
(13)–(14) and, using the first integrals f(x) and ∥v∥2, the system is reducible to a two-
dimensional one. For simplicity we restrict the attention to solutions where f(x(0)) =
−1 (the general case may be retrieved from this by rescaling a and b). We may then
parameterize the level set (ellipse) M(f(x(0))) in terms of an angular variable ϕ as
follows:

x(1) = a−1/2 cosϕ, x(2) = b−1/2 sinϕ.

Then the unit vector tangent to the ellipse is

t(ϕ) = µ−1/2[−b1/2 sinϕ, a1/2 cosϕ]T ,

where
µ = a cos2 ϕ+ b sin2 ϕ, (23)

and the corresponding unit normal vector is

n(ϕ) = µ−1/2[a1/2 cosϕ,−b1/2 sinϕ]T .

We may parameterize v∥ and v⊥ in terms of scalars p and n:

v∥ = pt, v⊥ = nn.

In addition p and n are linked by the first integral p2 + n2 = p(0)2 + n(0)2 estab-
lished in Theorem 4. Substitution of these expressions into (13), (15), leads, using the
expressions for N ′

∥ and N ′
⊥ given in Example 3 and after considerable algebra, to the

system

d

dt
ϕ = (ab)1/2µ−1/2p, (24)

d

dt
p =

1

2
(ab)1/2(a− b)µ−3/2 sin(2ϕ)(c2 − p2), (25)

where µ is the function of ϕ in (23) and c2 = p(0)2 + n(0)2 is ∥v(0)∥2, c ≥ 0. The
system has to be considered only in the strip |p| ≤ c because n(0) is real. The lines
p = ±c that bound the strip are invariant.

In the isotropic case a = b, where the ellipses are circles, µ does not vary with ϕ,
p(t) remains constant and ϕ(t) varies linearly with t. In the anisotropic case a ̸= b,
it may be assumed that b > a, as the other case is reduced to this by interchanging
the roles of the components x(1) and x(2) of x. The system has equilibria at p = 0,
ϕ = jπ/2, j integer. One may easily prove that for j even the equilibria are centers
and otherwise they are saddles. A sketch of the phase portrait may be seen in Figure 2,

11

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

p

Figure 2: Phase plane of the system (24)–(25), when a = 1, b = 4, c =
√
2. The

portrait is 2π-periodic in ϕ. The thicker lines correspond to the heteroclinic connections
between saddle points. Outside the heteroclinic connections trajectories rotate; inside
they librate.

where we note the similarity with the phase portrait of the standard pendulum equation.
The saddle at ϕ = jπ/2, p = 0 (j odd) is connected to the neighbouring saddles at
ϕ = (j ± 2)π/2, p = 0 via heteroclinic trajectories; these are the image in the (ϕ, p)-
plane of solutions (ϕ(t), p(t)) with

lim
t→−∞

(ϕ(t), p(t)) = (jπ/2, 0), lim
t→∞

(ϕ(t), p(t)) = ((j + 2)π/2, 0)

or

lim
t→−∞

(ϕ(t), p(t)) = (jπ/2, 0), lim
t→∞

(ϕ(t), p(t)) = ((j − 2)π/2, 0).

In the terminology of classical mechanics, trajectories at the top or the bottom
of the figure (i.e. ‘outside’ the heteroclinic connections) rotate: in them p does not
change sign as t varies and the angle ϕ increases monotonically (if p > 0) or decreases
monotonically (if p < 0). The centers ϕ = jπ/2, p = 0 (j even) are surrounded
by trajectories that librate: in them ϕ varies periodically around jπ/2 between two
values, say ϕmax, ϕmin, and p varies periodically around 0. In terms of the original
system (13)–(14), in rotating trajectories, as t → ∞, the point x(t) describes again
and again the ellipse M(f(x(0))) either clockwise (if p(t) < 0) or anticlockwise
(if p(t) > 0). For librating trajectories, the solution x(t) describes the arc of the
ellipse parameterized by ϕ ∈ [ϕmax, ϕmin]; when ϕ(t) has increased to ϕmax it starts
decreasing and the trajectory in the x plane folds back on itself, see Figure 3. When
ϕ(t) has decreased to ϕmin it starts increasing, causing the trajectory in the x plane
to fold back on itself again. The process is repeated periodically. In the figure, the
solution provided by the algorithm is seen to mimic the behaviour of the ODE (this
has to be the case, if δ is sufficiently small, due to the convergence of the algorithm).
Needless to say, this folding back phenomenon is completely unwelcome in the context

12

Figure 3: The continuous arc is the solution of the system (13)–(14) when f(x) =
−x2

(1) − 4x2
(2), x(0) = [1, 0], and v(0) = [

√
7/4, 1/2]T depicted in the x plane for

0 ≤ t ≤ 1.4. (This corresponds to system (24)–(25) with ϕ(0) = 0, p(0) = 1/2,
c =
√
2.) The solution x(t) first moves anticlockwise starting from x(0) but then folds

back on itself, moves clockwise and folds back once more. At the final time, x(14)
happens to be close to the initial location x(0). Also depicted is the approximation
provided by Algorithm (3)–(5), when δ = 0.1 and K = 14. The numerical solution
mimics the behaviour of the ODE; the numbers 0−14 identify the stepnumber k of the
iterates xk.

of Algorithm 1, where one had the hope that, for suitable choices of K, the xk would
wholly exploreM(f(x0)).

Note from Figure 2 that, generally speaking, the (desirable) rotating trajectories
correspond to cases where |p(0)| is large or, equivalently, |n(0)| =

√
c2 − p(0)2 is

small relative to c = ∥v(0)∥. This could have been expected because for n(0) = 0 the
system just describes the inertial motion of a particle on the ellipse. In the scenario of
Algorithm 1, v(0) is a random variable with distribution q(·|x(0)). For the standard
choice where q is an x(0)-independent isotropic normal, |n(0)| will not, on average,
be small relative to ∥v(0)∥ with the result that many trajectories will fold back on
themselves. This suggests using distributions q(v|x) where at each x vectors with
larger tangential components are given more weight.

4 Numerical experiments and future work
As discussed in the introduction, this work was initially motivated by recent develop-
ments in the context of MCMC methods where the dynamics studied in the present
paper underpins the design of updates of Markov chains aiming to explore, approxi-
mately, the contours of a probability density, or more generally a manifold. Analysis
and observations in earlier sections point to potentially negative features of this dynam-
ics. In the simple scenario of a two-dimensional ellipse we have provided a precise
analysis of the dynamic, in particular characterising initial velocities leading to either

13

(a) ∥v⊥(0)∥ = 0.2023 (b) ∥v⊥(0)∥ = 0.5673

(c) ∥v⊥(0)∥ = 0.6647 (d) ∥v⊥(0)∥ = 0.7357

Figure 4: K = 10, 000 integration steps of the dynamics constrained to a 3D ellipsoid
(n = 3), for four initial unit length velocities.

rotation or libration. However the two dimensional scenario is particular in that trajec-
tories that fail to describe the full ellipse turn back on themselves exactly, resulting in a
periodic behaviour. Natural questions are therefore what form this phenomenon takes
in higher dimensions and whether it is even noticeable when used in the (random) pro-
posal mechanism of an MCMC algorithm. Indeed, it is for example known that for a
random vector v ∼ U(Sn) (where Sn is the unit hypersphere) and any fixed unit vector
u ∈ Rn then u⊤v tends to be statistically small in the sense that for h ∈ [0, 1]

P(|u⊤v| ≥ h) =

∫ 1

h
[1− w2](n−2)/2dw∫ 1

0
[1− w2](n−2)/2dw

,

confirming concentration on smaller values as n increases. This suggests that the neg-
ative phenomenon outlined earlier may perhaps naturally vanish in high dimensional
scenarios. A full, and relevant, analytical investigation of these issues is beyond of the
scope of the present manuscript and instead we present here a simple numerical study
providing some insight into this phenomenon in the multivariate scenario.

We first explore the behaviour of the Hug integrator in the scenario where n = 3
and the constraint of interest is an ellipsoid defined by f(x) = xTAx with A :=
diag(1, 4, 3). In Fig. 4 we display K = 10, 000 steps of the integrator for δ = 0.01

14

and initial position x(0) = [1, 0, 0]T (therefore defining the level set of f) for four
initial velocities v(0) such that ∥v(0)∥ = 1. These are representative of what we have
observed for numerous draws v(0) ∼ U(Sn): a large orthogonal component ∥v⊥(0)∥
results in trajectories that fail to explore a large area of the ellipsoid, due to a near
oscillatory phenomenon. In fact we have found the size of the region visited to shrink
for even larger values ∥v⊥(0)∥, but do not report the results here. For smaller values
of K, more likely to be relevant in the context of Monte Carlo algorithms, we have
similarly observed the influence of ∥v⊥(0)∥ on the size of the region explored by the
dynamics.

In order to gain more insights into this phenomenon, we have run the following
experiments. In the setup above we now consider 10, 000 realisations of the initial
velocity v(i)(0)

iid∼ U(Sn) for i = 1, . . . , 10, 000 and report the scatter plot i 7→(
∥v(i)⊥ (0)∥,max0≤k≤K ∥x(i)(k) − x(0)∥

)
, that is explore dependence of the largest

Euclidean distance reached by the dynamic on ∥v⊥(0)∥. The results are reported in
Fig. 5 for K = 10, 100, 1000 integration steps. This confirms our earlier observa-
tions, including the concentration of the whole dynamics around the initial position as
∥v⊥(0)∥ increases. We repeated this experiment for n = 6, A = diag(1, 4, 3, 5, 1, 10)
and x(0) = (1, 0, 0, 0, 0, 0)T and the results are reported in Fig. 6 with similar conclu-
sions.

Our work suggests that MCMC based on Hug trajectories may benefit from the use
of state-dependent and non-isotropic distributions for the velocity, limiting the like-
lihood of using velocities with dominant v⊥ component; this however introduces a
necessary tradeoff since the dynamics now does not leave the velocity distribution in-
variant, resulting in a higher rejection rate in the MH update [4]. More work is needed
to understand this tradeoff.

5 Proofs
This section contains the proofs of the results.

5.1 Proof of Proposition 1
To prove 1., note that (x, v) 7→ Ψδ(x, v) = (x′, v′) is the composition of three volume
preserving maps, (x, v) 7→ (x + (δ/2)v, v), (x, v) 7→ (x,R(x)v), (x, v) 7→ (x +
(δ/2)v, v). Checking Property 2. is a trivial computation. Property 3. just restates
(4). Property 4. follows from Property 3. Property 5. is a consequence of (3), (5) and
Property 4.

With an obvious simplified notation, Taylor expansion around xk+1/2 leads to

fk = fk+1/2 −
δ

2
Jk+1/2vk +

δ2

4
H+

k [vk, vk],

fk+1 = fk+1/2 +
δ

2
Jk+1/2vk+1 +

δ2

4
H−

k+1[vk+1, vk+1],

15

(a) K = 1000

(b) K = 100

(c) K = 10

Figure 5: Scatter plots i 7→
(
∥v(i)⊥ (0)∥,max0≤k≤K ∥x(i)(k)− x(0)∥

)
(n = 3)

16

(a) K = 1000

(b) K = 100

(c) K = 10

Figure 6: Scatter plots i 7→
(
∥v(i)⊥ (0)∥,max0≤k≤K ∥x(i)(k)− x(0)∥

)
(n = 3)

17

with

H+
k =

∫ 1

0

H
(
xk+1/2 + λ(xk − xk+1/2)

)
(1− λ)dλ,

H−
k+1 =

∫ 1

0

H
(
xk+1/2 + λ(xk+1 − xk+1/2)

)
(1− λ)dλ.

Subtracting, taking into account that vk + vk+1 is tangential by Property 3. and (6),

fk+1 − fk =
δ2

4

(
H−

k+1[vk+1, vk+1]−H+
k [vk, vk]

)
(26)

and, summing by parts,

f(xK)− f(x0) =
δ2

4

(
H−

K [vK , vK]−H+
0 [v0, v0] +

K−1∑
k=1

(
H−

k −H+
k

)
[vk, vk]

)
.

By definition of the operator norm and Property 4., the norm of each of the terms
H−

K [vK , vK] and H+
0 [v0, v0] is bounded by

β

∫ 1

0

(1− λ)dλ ∥v0∥2 =
β

2
∥v0∥2.

On the other hand, H−
k −H+

k equals∫ 1

0

(
H
(
xk−1/2 + λ(xk − xk−1/2)

)
−H

(
xk+1/2 + λ(xk − xk+1/2)

))
(1− λ)dλ,

and, therefore, by the assumed Lispchitz continuity, and Property 5.

∥H−
k −H+

k ∥ ≤
∫ 1

0

γ(1− λ)2∥xk−1/2 − xk+1/2∥ dλ =
γ

3
δ∥v0∥.

After putting everything together, we get the bound in 6.
With the hypothesis in 7., Property 4. shows that the right hand-side of (26) van-

ishes, which concludes the proof. When m = 1 the manifolds M(η) are concentric
hyperspheres, and the property f(xk+1)−f(xk) = 0 is apparent from the the geometry
of the construction of xk+1 from xk.

5.2 Proof of Lemma 2
1. From (11), the image of N ′

⊥(x)[w] is contained in the image of J(x)+, which,
according to (7) is contained in the image of J(x)T , i.e. in the orthogonal of the kernel
T (x) of J(x) (see (6)), i.e. in N (x).

2. From (11), the kernel of N ′
⊥(x)[w] is contained in the kernel of T (x), i.e. in

N (x).
The other two claims are proved similarly.

18

5.3 Proof of Theorem 4
For Item 1. we have to prove that the vector field in (13)–(14) is divergence free. We
first present some facts related to the computation of divergences. If z ∈ Rd 7→ g(z) ∈
Rd is a vector field, its divergence is of course the trace of the Jacobian

divz(g(z)) =
∑
j

⟨ej , g′(z)ej⟩, (27)

here the ej are the unit coordinate vectors and ⟨·, ·⟩ refers to the standard inner product.
In the particular case of a linear vector field z 7→ Az, this reduces to the trace of the
matrix A:

divz(Az) =
∑
j

⟨ej , Aej⟩.

Since the trace is invariant by similarity, if Ω is an arbitrary invertible matrix,

divz(Az) =
∑
j

⟨ej , Aej⟩ =
∑
j

⟨ej ,Ω−1AΩej⟩. (28)

For a bilinear vector field z 7→ B(z, z), we observe that the Jacobian is formed adding
the Jacobian with respect to the first argument of B (with the second frozen) to the
Jacobian with respect to the second argument (with the first frozen). Therefore the
divergence may be written as

divz(B(z, z)) =
∑
j

⟨ej , B(ej , z)⟩+
∑
j

⟨ej , B(z, ej)⟩. (29)

We are now ready to compute the divergence of the system (13)–(14). From (27)
and (9),

divx(T (x)v) =

n∑
j=1

⟨ej , T ′(x)[ej]v⟩ = −
n∑

j=1

⟨ej , N ′(x)[ej]v⟩, (30)

and, from (29), with a shortened notation,

divv

((
N ′

∥(x)
[
(T (x)−N(x))v

]
−N ′

⊥(x)
[
(T (x)−N(x))v

])
v
)
=

n∑
j=1

⟨ej ,
(
N ′

∥
[
(T −N)ej

]
−N ′

⊥
[
(T −N)ej

])
v⟩+

n∑
j=1

⟨ej ,
(
N ′

∥
[
(T −N)v

]
−N ′

⊥
[
(T −N)v

])
ej⟩. (31)

The last summation vanishes because it is the trace of the matrix N ′
∥
[
(T − N)v

]
−

N ′
⊥
[
(T −N)v

]
, which is skewsymmetric due to (12).2 The properties of the images in

2In actual fact the traces of N ′
∥
[
(T − N)v

]
and N ′

⊥
[
(T − N)v

]
are both 0. According to Lemma 2,

these matrices are nilpotent with N ′
∥
[
(T − N)v

]2
= 0 and N ′

⊥
[
(T − N)v

]2
= 0 which implies that all

eigenvalues of N ′
∥
[
(T −N)v

]
and N ′

⊥
[
(T −N)v

]
vanish.

19

Lemma 2 show that the first summation in the right hand-side of (31) may be rewritten
as

n∑
j=1

⟨ej ,
(
(T −N)N ′

∥
[
(T −N)ej

]
+ (T −N)N ′

⊥
[
(T −N)ej

])
v⟩

or, resorting to (10),
n∑

j=1

⟨ej , (T −N)N ′[(T −N)ej
]
v⟩.

Since (T −N)−1 = T −N , the formula (28) implies that this equals
n∑

j=1

⟨ej , N ′[ej]v⟩,

which cancels (30). In this way volumen conservation has been established.
The time reversibility in Item 2. is clear: changing t into −t and v into −v reverses

the sign of the left and right hand-sides of (13) and does not change the left and right
hand-sides of (14) as the right hand-side is quadratic in v.

For Item 3., from (15)

1

2

d

dt
⟨v, v⟩ = ⟨v,N ′

∥(x)[v∥ − v⊥]v⊥⟩ − ⟨v,N ′
⊥(x)[v∥ − v⊥]v∥⟩,

or, taking into account the properties of the images of N ′
∥(x)[v∥−v⊥] and N ′

⊥(x)[v∥−
v⊥] in Lemma 2,

1

2

d

dt
⟨v, v⟩ = ⟨v∥, N ′

∥(x)[v∥ − v⊥]v⊥⟩ − ⟨v⊥, N ′
⊥(x)[v∥ − v⊥]v∥⟩.

The right hand-side vanishes because the matrices involved are transposed of one an-
other (see (12)).

Finally, for Item 4., (13) leads to

d

dt
f(x) = J(x)v∥;

the right hand-side vanishes according to (6).

5.4 Proof of of Proposition 5
By using (9), (15), (13) and (10) successively, we may write

d

dt
(Tv) =

(d

dt
T
)
v + T

d

dt
v

−
(d

dt
N
)
v + TN ′

∥[v∥ − v⊥]v⊥ − TN ′
⊥[v∥ − v⊥]v∥

= −
(
N ′

∥[v∥] +N ′
⊥[v∥]

)
(v∥ + v⊥)

+TN ′
∥[v∥ − v⊥]v⊥ − TN ′

⊥[v∥ − v⊥]v∥.

Simplification with the help of Lemma 2 leads to (16)
Equation (17) is derived in a similar fashion.

20

5.5 Proof of Theorem 6
For σ:

σk+1 = Xk+1 −Xk − δT (Xk)Vk − δ
(
T (Xk + (δ/2)Vk)− T (Xk)

)
Vk

Now, note that
T (Xk + (δ/2)Vk)− T (Xk) = O(δ),

and that, in view of (13),

Xk+1 −Xk − δT (Xk)Vk = x((k + 1)δ)− x(kδ)− δv∥(kδ) = O(δ2).

We turn to τ . We write:

τk+1 = Vk+1 −
(
I − 2N(Xk)

)
Vk + 2

(
N(Xk + (δ/2)Vk)−N(Xk)

)
Vk

= Vk+1 − T (Xk)Vk +N(Xk)Vk + 2
(
N(Xk + (δ/2)Vk)−N(Xk)

)
Vk,

and Taylor expanding

τk+1 = Vk+1 − T (Xk)Vk +N(Xk)Vk + δN ′(Xk)[Vk]Vk +O(δ2),

or, from (18) (assuming k even) and (10), simplifying slightly the notation:

τk+1 = v∥((k + 1)δ)− v⊥((k + 1)δ)− v∥(kδ) + v⊥(kδ)

+δN ′
∥v∥(kδ) + v⊥(kδ)

+δN ′
⊥v∥(kδ) + v⊥(kδ) +O(δ2).

We next recall (16) and (17) and Lemma 2 to get, simplifying further the notation:

τk+1 = −δN ′
∥[v⊥]v⊥ − δN ′

⊥[v∥]v∥ − δN ′
∥[v∥]v⊥ − δN ′

⊥[v⊥]v∥

+δN ′
∥[v∥ + v⊥]v⊥ + δN ′

⊥[v∥ + v⊥]v∥ +O(δ2)

= O(δ2).

For k odd the technique of proof is the same.

5.6 Proof of Theorem 7
Standard textbook proofs (see e.g. [9, Chapter 2.3]), going all the way back to Henrici
[10], of the convergence of consistent one-step integrators assume that the map that
advances the numerical solution over a single time-step is of the form Id+ δ∆, where
the so-called increment function ∆ is assumed to be Lipschitz in the neighbourhood of
the ODE solution being approximated. Due to the flipping of the normal component
of the velocity, that assumption does not hold for (3)–(5). There is a second difficulty.
The truncation errors (21)–(22) are O(δ2) (first-order consistency) and the usual con-
sistency+stability argument would lead toO(δ) global error bounds (first order conver-
gence), while Theorem 7 claims O(δ2) error bounds (second-order convergence).

21

In order to circumvent these difficulties, we consider the numerical integrator Î
such that one timestep of length 2δ with Î is the result of taking successively two steps
of length δ with (3)–(5). In symbols, the one step map Ψ̂ associated with I satisfies
Ψ̂2δ = Ψδ ◦ Ψδ . Clearly Ψ̂2δ has the required Id + (2δ)∆̂ structure, where ∆̂ is
differentiable, due to smoothness of f , and therefore locally Lispchitz. The consistency
of (3)–(5) implies that the new integrator is also consistent (see [8, Theorem II.4.1]). In
addition, the time-reversibility in Proposition 1 implies that its order of consistency has
to be even (see e.g. [8, Section II.3, Section V.1]); simple examples (say f(x) = ∥x∥2)
show that the order is exactly two. (An aside: Ψδ is consistent and time-reversible and
yet is not consistent of even order. There is no contradiction, because the argument that
shows even order for reversible integrators in [8, Section II.3, Section V.1] requires
Ψδ = Id+O(δ) something that does not hold for (3)–(5).)

For Î, consistency of order two entails convergence of order two following the
standard argument. The even numbered points (x2k, v2k) generated by (3)– (5) may be
seen as coming from Î and this proves

max
2kδ≤T

(
∥x2k − x(2kδ)∥+ ∥v2k − v(2kδ)∥

)
= O(δ2), δ → 0.

For an odd-numbered steppoint (2k+ 1)δ, one may see the timestepping with (3)–
(5) as being performed into two parts. First, one timesteps from t = 0 to t = 2kδ and
then one performs a single timestep from t = 2kδ to t = (2k + 1)δ. The first part, as
shown in the last display, introduces O(δ2) errors. The second part just introduces a
single local error, which we know from Theorem 6 is of size O(δ2). This concludes
the proof.

It may be of some interest to emphasize that since (3)–(5) is consistent of order
one and Î is consistent of order two, when timestepping with (3)–(5), the truncation
error at the present step will almost be cancelled by the truncation error at the next step.
(This is not the zigzagging of the midway points xk+1/2 in Figure 1—that zigzagging
cancels deviations of xk+1/2 and xk+3/2 normal to the level set of f .) The cancellation
of truncation errors leading to supraconvergence is borne out in Table 1, where the
columns give the truncation errors in x at the initial point (x0, v0) for (3)–(5) and for
Î.

A similar phenomenon takes place implicitly in Property 6. of Proposition 1. In
(26) we saw that the change in f over a single timestep is O(δ2) (which matches the
first-order consistency of (3)–(5)). This may wrongly suggest that after K = O(1/δ)
steps the change in f would be O(δ), rather than O(δ2) as proved in Proposition 1.
Note that in (26), while H−

k+1 and H+
k differ by a O(δ) amount, the same is not true

of vk and vk+1, which differ by a O(1) amount, so that fk+1 − fk = O(δ2) but

22

fk+1 − fk ̸= O(δ3). However, over two consecutive steps

fk+2 − fk =
δ2

4

(
H−

k+2[vk+2, vk+2]−H+
[k+1[vk+1, vk+1]

)
+
δ2

4

(
H−

k+1[vk+1, vk+1]−H+
k [vk, vk]

)
=

δ2

4

(
H−

k+2[vk+2, vk+2]−H+
k [vk, vk]

)
+
δ2

4
(H−

k+1 −H+
k+1)[vk+1, vk+1].

Here vk+2 and vk differ an by a O(δ) amount, and the same is true for H−
k+2 and H+

k

and for H−
k+1 and H+

k+1. Therefore fk+2 − fk = O(δ3) (which of course matches the
fact that Î is consistent of order two).

Acknowledgements. CA was supported in part by a Simons Fellowship while
visiting the Newton Institute programme “Stochastic systems for anomalous diffusion”.
JMS has been funded by Ministerio de Ciencia e Innovación (Spain), project PID2022-
136585NB-C21, MCIN/AEI/10.13039/501100011033/FEDER, UE. The authors are
very thankful to the Heilbronn Institute for its support.

References
[1] A. Beskos, N. Pillai, G. Roberts, J.-M. Sanz-Serna, and A. Stuart. Optimal tuning

of the hybrid Monte Carlo algorithm. Bernoulli, 19(5A):1501 – 1534, 2013.

[2] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet. The bouncy particle sampler: A
nonreversible rejection-free Markov chain Monte Carlo method. Journal of the
American Statistical Association, 113(522):855–867, 2018.

[3] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222, 1987.

[4] M. C. Escudero. Approximate Manifold Sampling. PhD thesis, School of Mathe-
matics, University of Bristol, February 2024.

[5] Y. Fang, J. M. Sanz-Serna, and R. D. Skeel. Compressible generalized hybrid
Monte Carlo. The Journal of Chemical Physics, 140(17):174108, 05 2014.

[6] B. Garcia-Archilla and J. Sanz-Serna. A finite difference formula for the dis-
cretization of d3/dx3 on nonuniform grids. Mathematics of Computation,
57(195):239–257, 1991.

[7] G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and nonlinear
least squares problems whose variables separate. SIAM Journal on Numerical
Analysis, (2):413–432.

23

[8] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration. Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition,
2006.

[9] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations
I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer
Berlin Heidelberg, 1993.

[10] P. Henrici. Discrete variable methods in ordinary differential equations. New
York: Wiley, 1962.

[11] M. Ludkin and C. Sherlock. Hug and hop: a discrete-time, nonreversible markov
chain monte carlo algorithm. Biometrika, 110(2):301–318, 2023.

[12] E. A. Peters and G. de With. Rejection-free monte carlo sampling for general
potentials. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,
85(2):026703, 2012.

24

	Introduction
	Hug algorithm
	The algorithm
	A generalization of the Hug timestepping mechanism
	Properties of the timestepping mechanism

	The ODE
	The derivative N(x)
	The ODE being approximated
	Relating the Algorithm and the ODE
	Dynamics

	Numerical experiments and future work
	Proofs
	Proof of Proposition 1
	Proof of Lemma 2
	Proof of Theorem 4
	Proof of of Proposition 5
	Proof of Theorem 6
	Proof of Theorem 7

