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Abstract
We study the connections between ordinary differential equations and optimization algorithms in a
non-Euclidean setting. We propose a novel accelerated algorithm for minimising convex functions
over a convex constrained set. This algorithm is a natural generalization of Nesterov’s accelerated
gradient descent method to the non-Euclidean setting and can be interpreted as an additive Runge-
Kutta algorithm. The algorithm can also be derived as a numerical discretization of the ODE
appearing in Krichene et al. (2015a). We use Lyapunov functions to establish convergence rates
for the ODE and show that the discretizations considered achieve acceleration beyond the setting
studied in Krichene et al. (2015a). Finally, we discuss how the proposed algorithm connects to
various equations and algorithms in the literature.
Keywords: Lyapunov function, probability simplex, convex optimization, mirror map, gradient
descent, accelerated methods

1 Introduction

Optimization lies at the heart of many problems in statistics and machine learning. We are interested
in solving the following problem

min
x∈X

f(x) (1)

where X ⊆ Rd is closed and convex and the objective function f is convex and continuously
differentiable in an open set that contains X . Numerous different algorithms (Polyak, 1987; Boyd
and Vandenberghe, 2004; Nocedal and Wright, 2006; Beck, 2017) have been proposed for this
problem both in the case where X = Rd as well as when X is a proper convex subset of Rd. These
different algorithms can be classified depending on the type of information they use. For example,
first-order methods make use only of the gradient of f ,∇f . Second-order methods use additionally
second derivatives utilising in some shape or form the Hessian of f , ∇2f and this enables faster
convergence.
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In the last few years, first-order methods have gained in popularity despite their slower con-
vergence rate since data sets and problems have become larger (Wright and Recht, 2022). In the
unconstrained case, the simplest first-order method is gradient descent which however does not give
optimal convergence rates within the class of (strongly) convex and gradient Lipschitz functions
(Nesterov, 2014). On the other hand, Nesterov proposed a family of accelerated first-order methods
with optimal convergence rates. In the constrained case, one popular algorithm for its simplicity is
projected gradient descent (Bubeck, 2015), which is the composition of a gradient descent step and
a projection toX . On the other hand mirror gradient descent (Beck, 2017), which is an adaptation of
gradient descent with the Euclidean distance replaced by a Bregman divergence, avoids calculating
such projection. Nevertheless, both methods fail to yield optimal convergence rates for convex and
gradient Lipschitz functions. Two examples of accelerated methods in this constrained setting are
the methods proposed in Krichene et al. (2015a) and Tseng (2008).

In a different direction in the last few years, there has been a renewed interest in connecting
optimization algorithms with ordinary differential equations (ODEs). This has been partially driven
by the desire to understand better the acceleration phenomenon starting with the seminal paper of
Su et al. (2016) that showed in the convex case Nesterov’s accelerated method corresponds to a
discretization of a particular second-order ODE. This result sparked a lot of subsequent research on
the links between optimization and numerical solutions of ODEs (Scieur et al., 2016; Wilson et al.,
2021) as well as borrowing ideas from dynamical systems and control theory to prove convergence
of optimization algorithms (Wilson et al., 2021; Lessard et al., 2016; Fazlyab et al., 2018).

An important question is why certain discretizations of second-order ODEs like the one that
appeared in Su et al. (2016) may or may not accelerate. The papers (Shi et al., 2022, 2019) explain
the behaviour of different algorithms using the high-resolution ODEs framework. Following a dif-
ferent direction Sanz Serna and Zygalakis (2021) uses Lyapunov functions combined with integral
quadratic constraints (Lessard et al., 2016; Fazlyab et al., 2018) to provide sufficient conditions that
a numerical discretization should satisfy to yield acceleration. Furthermore, these ideas are extended
in Dobson et al. (2023) to obtain sharper convergence rates for the Nesterov’s accelerated method in
the strongly convex case as well as giving an interpretation of it as an additive Runge-Kutta method
(Cooper and Sayfy, 1980, 1983).

The majority of the literature proposes and studies these second-order ODEs in the Euclidean
setting. One exception is Krichene et al. (2015a) which generalises the ODE from Su et al. (2016)
in a non-Euclidean setting using appropriate Bregman divergences. In addition, it proposes a dis-
cretization of this ODE that uses a suitable regularising function and inherits the favourable proper-
ties of the ODE leading to an accelerated optimization algorithm. An alternative way to generalise
the ODE from Su et al. (2016) is given in Wilson et al. (2021), which is analysed using Langrangians
that contain appropriate Bregman divergences.

In this work, we provide a novel discretization of the ODE appearing in Krichene et al. (2015a)
leading to an accelerated optimization method for the problem (1) without requiring the use of a
regularisation function. The proposed method is the natural extension of Nesterov’s method in the
non-Euclidean setting and corresponds to an additive Runge Kutta discretization of the underlying
non-Euclidean ODE. Furthermore, we extend the analysis from Krichene et al. (2015a) both for
the ODE dynamics as well as their discretizations to be able to deal with scenarios not previously
covered, for example in the case of simplex when the minimizer is on the boundary. Finally, we
make explicit connections between the various non-Euclidean ODEs (Krichene et al., 2015a; Wilson
et al., 2021) and optimization algorithms (Tseng, 2008).
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The rest of the paper is organised as follows. In Section 2 we revisit the problem when X = Rd
and discuss the connection between ODEs and optimization algorithms. We then in Section 3 dis-
cuss in detail a natural generalization of gradient flow and gradient descent in the non-Euclidean
setting. Section 4 contains our main results. In particular, after summarising the results in Krichene
et al. (2015a), we propose our novel algorithm and explain why it generalises Nesterov’s method
in the non-Euclidean setting as well as its connection with additive Runge-Kutta methods. Further-
more, we establish convergence for our algorithm in the setting proposed in Krichene et al. (2015a)
and extend these results in a more general setting. This section concludes by discussing trans-
formations of our algorithm for the different ODEs discussed previously in the literature. Several
numerical experiments are presented in 5 that illustrate the behaviour of our proposed method as
well as compare it with the method in Krichene et al. (2015a). Finally, Section 6 gathers the proofs
of theorems from earlier sections.

.

2 ODEs and optimization in the Euclidean setting

In this preparatory section we consider the particular case where in (1) X = Rd and Rd is endowed
with the standard Euclidean norm.

2.1 Gradient flow and gradient descent

The simplest ODE associated with the problem (1) is given by the gradient flow

ẋ(t) = −∇f(x(t)). (2)

When (1) has a minimizer x⋆, f(x(t)) − f(x⋆) approaches 0 at a rate O(1/t), as it may be proved
e.g. by means of the Lyapunov function

V (x, t) = t(f(x)− f(x⋆)) + 1

2
∥x− x⋆∥2 . (3)

In fact, since V is nonincreasing along solutions of (2), one has

f(x(t))− f(x⋆) ≤ 1

t
V
(
x(0), 0

)
=

1

2t
∥x(0)− x⋆∥2 , t > 0.

The simplest method to discretize (2) is the explicit Euler rule, that leads to the standard gradient
descent algorithm

xk+1 = xk − h∇f(xk), (4)

where h is the timestep/learning rate. Since xk ≈ x(kh) one would expect that f(xk) − f(x⋆)
would decay like 1/k. In fact, when f is Lf -smooth, i.e.

∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ Lf ∥x− y∥ ,

and h ≤ 1/Lf , the O(1/k) decay may be proved by using the discrete Lyapunov function

Vk(x) = kh(f(x)− f(x⋆)) + 1

2
∥x− x⋆∥2 ,
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which is the obvious counterpart of (3). A more sophisticated Lyapunov function valid for 1/Lf ≤
h < 2/Lf may be seen in Fazlyab et al. (2018).

There is no need to derive (4) by seeing it as an integrator for an ODE. The algorithm may be
written as

xk+1 = arg min
x∈Rd

{
f(xk) + ⟨∇f(xk), x− xk⟩+

1

2h
∥x− xk∥2

}
, (5)

with a clear optimization interpretation: f(xk) + ⟨∇f(xk), x− xk⟩ is the linear approximation to
the objective function and (1/(2h)) ∥x− xk∥2 represents a penalty term.

2.2 Acceleration

Algorithms with acceleration for convex objective functions, including the celebrated Nesterov
method (Nesterov, 2014), raise to O(1/k2) the O(1/k) rate of convergence of gradient descent.
Even though no system of ODEs was originally used to derive Nesterov’s algorithm, the well-
known reference Su et al. (2016) showed the relation between the algorithm and the second-order
ODE

ẍ(t) +
r + 1

t
ẋ(t) +∇f(x(t)) = 0,

where r ≥ 2. For our purposes, it is useful to rewrite the equation as a first order system

ż(t) = − t
r
∇f(x(t)), (6a)

ẋ(t) =
r

t
(z(t)− x(t)) , (6b)

with Lyapunov function

V (x, z, t) =
t2

r2
(f(x)− f(x⋆)) + 1

2
∥z − x⋆∥2 ,

which implies the following O(1/t2) decay estimate of f(x(t)) towards the optimal value f(x⋆)

f(x(t))− f(x⋆) ≤ r2

t2
V
(
x(0), z(0), 0

)
=

r2

2t2
∥z(0)− x⋆∥2 , t > 0.

Following the line of thought in the preceding subsection, one would expect that integrators
(zk, xk) 7→ (zk+1, xk+1) for (6), where (zk, xk) approximate (z(kδ), x(kδ)) (δ is the time-step),
may offer the potential of yielding optimization algorithms for which f(xk) − f(x⋆) decays like
1/k2, i.e. algorithms that show acceleration. Unlike the case of the gradient flow, this is not a simple
task since standard discretizations such a Runge-Kutta algorithms do not lead to acceleration, see
the discussion in Sanz Serna and Zygalakis (2021) and Dobson et al. (2023). In addition, even for
discretizations with acceleration, a Lyapunov function of the ODE, may not work for the discrete
algorithm.

As proved in a more general setting in Section 4.2, if {γk}∞k=0 is a sequence with γ0 = 1,
γk ≥ 1, k = 1, 2, . . ., the algorithm

yk = xk +
1

γk
(zk − xk), (7a)

zk+1 = zk − γkh∇f(yk), (7b)

xk+1 = yk +
1

γk
(zk+1 − zk), (7c)

4
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xk−1 xk zkyk

zk+1

xk+1

−h∇f(yk)

−γkh∇f(yk)

Figure 1: An illustration of one step of the Nesterov algorithm in a Euclidean setting

provides, for suitable choices of the learning rate h and the coefficients γk, a consistent, albeit
nonstandard, discretization of (6) that leads to acceleration. Figure 1 illustrates one step of (7). The
point yk is determined as a convex combination of xk and zk, then zk+1 is obtained by moving from
zk in the direction of the gradient and finally xk+1 is obtained as a convex combination of xk and
zk+1.

The algorithm may be reformulated by eliminating the variable z. Using (7b) and (7c), we
obtain

xk+1 = yk − h∇f(yk) (8)

and, after setting zk = xk + (γk−1 − 1)(xk − xk−1), (7a) becomes, for k ≥ 1,

yk = xk + βk−1(xk − xk−1), βk−1 = (γk−1 − 1)/γk, (9)

(y0 = x0). In the formulation (8)–(9), one first computes yk by extrapolation from xk−1 and xk
and then moves from yk to xk+1 by a gradient descent substep. The relations (8)–(9) are the well-
known formulas for the accelerated Nesterov method (Nesterov, 2014) when written as a three-term
recursion linking xk−1, xk and xk+1 as in e.g. Fazlyab et al. (2018), with

γk =
1

2

(
1 +

√
1 + 4γ2k−1

)
, k = 1, 2, . . . , γ0 = 1. (10)

3 Non-Euclidean optimization

It is well known that, in many instances (see e.g. the discussion in (Beck, 2017, Example 9.19)),
it is useful to consider the problem (1) when the norm in Rd is not Euclidean. In what follows, E
denotes Rd endowed with an arbitrary norm ∥ · ∥ and E⋆ is the dual space with dual norm ∥ · ∥⋆.
The map ⟨·, ·⟩ : E⋆ × E → R denotes the standard pairing between E⋆ and E, i.e. the real number
⟨ζ, x⟩ = ∑

j ζjxj is the value of the linear form ζ ∈ E⋆ acting on the vector x ∈ E.

5
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3.1 Mirror gradient ODE and mirror descent

In the non Euclidean setting, the gradient flow equation (2) is meaningless because ẋ(t) ∈ E is a
primal vector and∇f(x(t)) ∈ E⋆ is a dual vector. Nemerovsky and Yudin (Nemirovsky and Yudin,
1983) suggested alternative ODEs of the form

ζ̇(t) = −∇f(χ(ζ(t))), x(t) = χ(ζ(t)), (11)

where ζ takes values in E⋆ and χ maps E⋆ into E. The dynamics take place in the dual space and
the primal variable x just mirrors the behaviour of ζ; for this reason, χ is referred to as the mirror
map. In Nemirovsky and Yudin (1983), it is assumed that χ = ∇ψ⋆, where ψ⋆ : E⋆ → R is
a differentiable function which is used to construct Lyapunov functions for (11). There is much
freedom in the choice of ψ⋆ (Nemirovsky and Yudin, 1983); throughout this paper the attention is
restricted to cases where the following standing requirement is met.

Assumption 1 The mirror map satisfies χ = ∇ψ⋆ for some convex and differentiable function
ψ⋆ : E⋆ → R and takes values in X . In addition, it is Lχ-smooth i.e. for each ξ, ζ ∈ E⋆:

∥χ(ξ)− χ(ζ)∥ ≤ Lχ∥ξ − ζ∥⋆.

If Dψ⋆ denotes the corresponding Bregman divergence, so that for ξ, ζ ∈ E⋆,

Dψ⋆(ξ, ζ) = ψ⋆(ξ)− ψ⋆(ζ)− ⟨ξ − ζ,∇ψ⋆(ζ)⟩,

and ζ⋆ is such that x⋆ = χ(ζ⋆) is a minimizer of (1), it is easy to prove (see e.g. Krichene et al.
(2015a)) that

d

dt
Dψ⋆(ζ(t), ζ⋆) ≤ −

(
f(x(t))− f(x⋆)

)
≤ 0, (12)

a fact that may be used to establish convergence (Nemirovsky and Yudin, 1983).
Some examples follow.

• Unconstrained Euclidean case. Here X = E, the norms ∥ · ∥ and ∥ · ∥⋆ are Euclidean, and
ψ⋆(·) = (1/2)∥ · ∥2. In this case, the spaces E and E⋆ may be identified with one another,
χ is the identity, Dψ⋆(ξ, ζ) = (1/2)∥ξ − ζ∥2 for each ξ and ζ, and the pairing ⟨·, ·⟩ may
be identified with the Euclidean inner product. The ODE (11) reduces to the gradient flow
equation (2)

• The simplex. Here X is the probability simplex

∆ =
{
x = (x1, . . . , xd) ∈ Rd :

d∑
j=1

xj = 1, xj ≥ 0, j = 1, . . . , d
}
.

Choosing ψ⋆(ζ) = log
∑

j e
ζj , the i-component of χ(ζ) equals eζi/

∑
j e

ζj ; clearly χ maps
E⋆ onto the relative interior of X (Beck, 2017)., i.e. the subset ∆+ of ∆ consisting of points
with positive components. The mirror map is 1-smooth (Beck, 2017, Example 5.15) when
∥ · ∥⋆ is either the ℓ∞ or the ℓ2 norm (in which case ∥ · ∥ is respectively the ℓ1 or the ℓ2 norm).

• The hypercube. X = [0, 1]d. One may choose ψ⋆(ζ) =
∑

j log(e
ζj + 1), so that the i-th

component of χ(ζ) is eζi/(eζi + 1). Now χ is a diffeomorphism of E⋆ onto the interior
(0, 1)d of X . If ∥ · ∥ is any of the ℓp norms, p ∈ [1,∞], it is easy to check that Lχ = 1/4.

6
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The Euler discretization of (11) yields the following mirror descent algorithm

ζk+1 = ζk − h∇f(χ(ζk)), xk+1 = χ(ζk+1). (13)

As in the ODE, the primal variable x just mirrors the evolution of the dual variable ζ.

3.2 Writing the mirror flow ODE and mirror descent in the primal space

We now write the ODE (11) in terms of the primal variable x. If χ is differentiable with Jacobian
χ′, (11) implies:

ẋ(t) = −χ′(ζ(t))∇f(x(t)). (14)

This equation still contains ζ; in order to eliminate ζ, we have to demand that the mirror map, that
we recall it is assumed throughout to satisfy Assumption 1, has additional properties.

Assumption 2 The mirror map χ = ∇ψ⋆ is differentiable and its image is the relative interior
ri(X ). In addition, ψ⋆ is the convex conjugate of a function ψ = ϕ+ δX , where ϕ : E→ (−∞,∞]
is proper, convex, differentiable over ri(X ) and satisfies X ⊆ dom(ϕ).

This additional assumption holds in the three examples just considered. In the Euclidean setting,
ϕ(·) = (1/2)∥ · ∥2. For the simplex, ϕ is given by

ϕ(x) =
n∑
j=1

xi log xi (15)

(negative entropy) if x is in the nonnegative orthant, with ϕ(x) =∞ else. For the hypercube,

ϕ(x) =
n∑
j=1

(
xi log xi + (1− xi) log(1− xi)

)
,

(negative bit entropy) if x ∈ [0, 1]d, with ϕ(x) =∞ else.
We next present a lemma that we shall use repeatedly. Some notation is required. The symbols

A, V will denote respectively the affine hull of X and the corresponding linear subspace:

V = span{x− z : x, z ∈ X},
A = X + V.

For instance, for the simplex, A has the equation
∑

j xj = 1 and V consists of all vectors with∑
j xj = 0. The notation N refers to the vector subspace of E⋆ orthogonal to V ⊆ E; thus ζ ∈ N

if and only if ⟨ζ, x⟩ = 0 for each x ∈ V , or, equivalently, if and only if ⟨ζ, x1 − x2⟩ = 0 for all x1,
x2 in A. For the simplex, N is spanned by the vector 1 whose entries are all equal to 1 (see the left
panel in Figure 2). For the Euclidean case and the hypercube, V = E and therefore N = {0}.

Lemma 1 If Assumptions 1 and 2 hold, then:

1. As z varies in ri(X ), the inverse images by the mirror map χ−1(z)= {ζ : χ(ζ) = z} provide
a partition of E⋆ into pairwise disjoint sets.

7
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x1

x2

∆d

AV

z = χ(ζ)

M = ∇ϕ(∆+)

ζ1

ζ2 N

∇ϕ(z)

ζ

Figure 2: Lemma 1 for the case of the simplex. The left and right panels correspond to the primal
and dual spaces. Each point ζ ∈ E⋆ is mapped by χ into a point z = χ(ζ) ∈ ri(X ) = ∆+; the
image ∇ϕ(z) does not in general coincide with ζ, but ζ and ∇ϕ(z) differ in an element in N . The
straight lines of slope 1 partition the dual space; each line is mapped into a single point by χ.

2. For each z ∈ ri(X ), its inverse image χ−1(z) is the affine set ∇ϕ(z) + N . In particular,
∇ϕ(z) ∈ χ−1(z), i.e. χ(∇ϕ(z)) = z.

3. If ζ ∈ E⋆, then∇ϕ(χ(ζ))− ζ ∈ N . Therefore for each x1, x2 in the affine hull A of X ,

⟨∇ϕ(χ(ζ))− ζ, x1 − x2⟩ = 0.

4. If ζ ∈ E⋆ and η ∈ N , then

χ(ζ) = χ(ζ + η), χ′(ζ) = χ′(ζ + η).

Proof The proof can be found in Section 6.

The lemma shows that there is a bijection between points z ∈ ri(X ) and sets χ−1(z) = ∇ϕ(z)+
N ⊆ E⋆. There are two essentially different scenarios:

1. N = {0}. Each set ∇ϕ(z) + N consists of the single point ∇ϕ(z). In other words, the
mapping ∇ϕ restricted to ri(X ) is the inverse of χ and there is a one-to-one correspondence
z = χ(ζ), ζ = ∇ϕ(z), between points z ∈ ri(X ) and points ζ ∈ E⋆.

2. N ̸= {0}. In this case, for each z ∈ ri(X ), the affine set ∇ϕ(z) + N has dimension
dim(N ) > 0. The point ∇ϕ(z) is in the set ∇ϕ(z) + N but it does not belong to any
set ∇ϕ(z′) + N if z′ ̸= z. The mapping z ∈ ri(X ) → ∇ϕ(z) provides a one-to-one
parameterization of a manifoldM of dimension dim(E⋆) − dim(N ). See Figure 2 for the
simplex with d = 2, whereM is a curve.

8
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We may now rewrite (11) in the primal space when the additional Assumption 2 holds. We
consider two situations.

• The case N = {0}. The one-to-one correspondence between x = χ(ζ) and ζ = ∇ϕ(x) may
be used to express (11) as

d

dt
∇ϕ(x) = −∇f(x). (16)

WhenN is not reduced to {0}, this differential equation is meaningless because the left hand-
side is constrained to be a vector tangent to the manifoldM and ∇f(x) is not constrained in
that way (refer to the right panel in Figure 2).

• General N . By Part 3 in the Lemma, η := ∇ϕ(z) − ζ ∈ N . Then by Part 4, χ′(ζ) =
χ′(∇ϕ(z)) and from (14)

ẋ = −χ′(∇ϕ(x))∇f(x). (17)

In the particular case with N = {0}, this reduces to (16), because χ′(∇ϕ(x)) is the inverse of
(∇ϕ(x))′, as it is seen by differentiating χ(∇ϕ(x)) = x.

Example 1 In the case of the simplex, straightforward differentiation of the expression for χ shows
that (17) reads:

ẋ = D(x)
(
−∇f(x) + ⟨−∇f(x), x⟩1

)
, (18)

where D(x) is the diagonal matrix with entries xi. For x in the relative interior, this matrix is the
inverse Jacobian of the map∇ϕ, whose components are 1+ log xi (i.e. the inverse of the Hessian of
ϕ). The right-hand side of (18) is of the form D(x)v, where the vector v = ∇f(x) + ⟨∇f(x), x⟩1
is a linear combination of∇f(x) and 1, with a coefficient ⟨∇f(x), x⟩ that ensures that v is tangent
at ∇ϕ(x) to the manifoldM. Multiplying v by the inverse Jacobian results in a vector D(x)v that
is tangent to the relative interior of the simplex, the inverse image ofM by ∇ϕ. Analytically this
corresponds to the fact that, in (18), (d/dt)

∑
j xj = 0 so that this differential equation preserves

the constraint
∑

j xj = 1. Furthermore, due to the presence of D(x), the i-th component of the
right hand-side of (18) vanishes if xi = 0. Therefore the points on the hyperplanes xi = 0 in E are
equilibria of the differential equation, so that, as t varies, the xi(t) will remain positive if x(0) is in
the relative interior.

Similarly, when Assumption 2 holds, it is possible to rewrite the discretization (13) purely in
terms of primal variables. For the case N = {0}, we have

∇ϕ(xk+1) = ∇ϕ(xk)− h∇f(xk), (19)

that coincides with the Euler discretization of (16). Once ∇ϕ(xk+1) has been computed by this
formula, xk+1 is retrieved as χ(∇ϕ(xk+1)).

For general, N we note that

xk+1 = χ
(
ζk − h∇f(xk)

)
;

Part 3 in the Lemma implies η = ∇ϕ(xk) − ζk ∈ N , and then, by Part 4, we have the following
well-known formulation (see (Beck, 2017, Remark 9.6)) of the mirror descent algorithm:

xk+1 = χ
(
∇ϕ(xk)− h∇f(xk)

)
. (20)

9
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As it may have been expected, this is a consistent discretization of the differential equation (17), as
it may be seen by Taylor expansion of the right hand-side. When N = {0}, the application of ∇ϕ
to (20) yields (19).

The algorithm (20) may be formulated from an optimization point of view, without using ODEs
as stepping stones. Such a formulation is based on the the (primal) Bregman divergence Dϕ associ-
ated with ϕ:

Dϕ(x, z) = ϕ(x)− ϕ(z)− ⟨∇ϕ(z), x− z⟩.
For example in the case of the simplex, Dϕ is the Kullback-Leiber divergence. Since ϕ is finite in
X and differentiable over ri(X ), Dϕ(x, z) is defined at least for x ∈ X and z ∈ ri(X ). It is well
known (see (Beck, 2017, Remark 9.6)) that (20) is equivalent to

xk+1 = argmin
x∈X

{
f(xk) + ⟨∇f(xk), x− xk⟩+

1

h
Dϕ(x, xk)

}
.

which is the direct non Euclidean counterpart of the gradient descent formula (5).

4 Non-Euclidean accelerated ODEs and numerical schemes

Mirror descent may only achieve a O(1/k) rate of convergence (Beck, 2017), something to be
expected from the fact that in the Euclidean setting reduces to gradient descent. We now consider
ODEs and algorithms that may provide rates O(1/t2) or O(1/k2) in non Euclidean scenarios.

4.1 A Primal/Dual ODE and a discretization

In order to construct optimization algorithms, Krichene et al. (2015a) considered the system

ζ̇(t) = − t
r
∇f(x(t)), (21a)

ẋ(t) =
r

t

(
χ(ζ(t))− x(t)

)
, (21b)

where r > 0 is a parameter. The variable x takes values in E and ζ takes values in E⋆; the paper
(Krichene et al., 2015a) proves that if the initial data (ζ0, x0) ∈ E⋆ × X satisfy1 χ(ζ0) = x0, then
the system has a unique continuously differentiable solution

(
ζ(t), x(t)

)
for 0 ≤ t <∞. Note that

(21) is a natural generalization of (6) as in fact coincides with it in the Euclidean case χ(ζ) = ζ.
If, r ≥ 2, x⋆ is a minimizer, χ(ζ⋆) = x⋆, and Assumption 1 is satisfied, then

V
(
x, ζ, t

)
=
t2

r2
(
f(x)− f(x⋆)

)
+Dψ⋆

(
ζ, ζ⋆

)
≥ 0 (22)

is a Lyapunov function for the system, i.e. (d/dt)V (x(t), ζ(t), t) ≤ 0 along solutions of (21). This
immediately implies the following decay estimate of f(x(t)) towards the optimal value f(x⋆)

f(x(t))− f(x⋆) ≤ r2

t2
V
(
x(0), ζ(0), 0

)
=
r2

t2
Dψ⋆

(
ζ(0), ζ⋆

)
, t > 0.

Note for future reference that V includes the dual variable ζ through Dψ⋆ as in (12).

1. The requirement χ(ζ0) = x0 is imposed in view of the singularity of (21a) at t = 0.

10
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As in the situation we discussed in the Euclidean case, discretizations
(
ζk, xk

)
7→

(
ζk+1, xk+1

)
of (21), where

(
ζk, xk

)
approximate

(
ζ(kδ), x(kδ)

)
(δ > 0 is the time-step), may offer the potential

of providing optimization algorithms for which f(xk)−f(x⋆) decays like 1/k2, i.e. algorithms that
show acceleration. An algorithm with acceleration was suggested in Krichene et al. (2015a). It uses
a learning rate h > 0, parameters r > 0 and γ > 0 and a regularization function R such that for x,
y ∈ X ,

ℓR
2
∥x− y∥2 ≤ R(x, y) ≤ LR

2
∥x− y∥2.

We will refer to it as accelerated mirror descent with regularization (AMDR) and it is given in
Algorithm 1. If δ =

√
h, then the algorithm may be seen as a numerical method to integrate the

Algorithm 1 Accelerated Mirror Descent with Regularization (AMDR) (Krichene et al., 2015a)

Require: N ∈ N, h > 0, r ≥ 0, γ > 0 and regularizer R
0. Initialize: x0 ∈ X , ζ0 ∈ E⋆

(
χ(ζ0) = x0

)
for k = 0, . . . , N − 1 do

1. yk ← xk +
r

r+k

(
χ(ζk)− xk)

2. ζk+1 ← ζk − kh
r ∇f(yk)

3. xk+1 ← argminx∈X
(
γh⟨∇f(yk), x⟩+R(x, yk)

)
end for
return xN

system (21), with ζk and xk approximations to ζ(kδ) and x(kδ) respectively. This is easily proved
after taking into consideration that xk+1 and yk differ by anO(δ2) amount (Krichene et al., 2015a).

The discretization in AMDR was constructed so as to inherit the Lyapunov function (22). This
is a nontrivial task, because, typically, numerical integrators, even if very accurate, fail to reproduce
the large t properties of the system being integrated; see the discussion in Sanz Serna and Zygalakis
(2021). For this algorithm, it is proved in (Krichene et al., 2015a, Lemma 2) that, if γ ≥ LRLχ and
h ≤ ℓR/(2Lfγ), then

V (xk+1, ζk+1, (k + 1)δ)− V (xk, ζk, kδ) ≤
(2k + 1− kr)

r2
(
f(xk+1)− f(x⋆)

)
.

For r ≥ 3, k ≥ 1, the right hand-side is ≤ 0 and thus the bound establishes an O(1/k2) decay of
f(xk)− f(x⋆) (acceleration).

4.2 An alternative primal/dual discretization

The need for the regularisation functionR in AMDR could be problematic. For example, in the case
of the simplex, one possible choice of R is an ϵ-smooth entropy function (Krichene et al., 2015a,b).
In that case, there is an efficient algorithm to implement Step 3 of AMDR, but unfortunately the
value of γ to be used depends on ϵ and the learning rate h can become prohibitively small. Fur-
thermore, beyond the simplex setting, it might not be obvious how to set R and implement Step 3.
Motivated by this, we propose Algorithm 2 (AMD) that is a natural generalization of Nesterov’s
method in the non-Euclidean setting and makes no use of a regularization step. A learning rate
h > 0 and a sequence {γk}∞k=0 with γ0 = 1, γk ≥ 1, k = 1, 2, . . ., are required. Note that Step 3 is

11
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Algorithm 2 Accelerated Mirror Descent (AMD)

Require: N ∈ N, {γk}N−1
k=0 , h > 0

0. Initialize x0 ∈ X , ζ0 ∈ E⋆,
for k = 0, . . . , N − 1 do

1. yk ← xk +
1
γk

(
χ(ζk)− xk

)
2. ζk+1 ← ζk − γkh∇f(yk)
3. xk+1 ← yk +

1
γk

(
χ(ζk+1)− χ(ζk)

)
end for
return xN

equivalent to

xk+1 = xk +
1

γk

(
χ(ζk+1)− xk

)
. (23)

In Step 1, yk is a convex combination of xk and χ(zk) and in (23) xk+1 is a convex combination of
xk and χ(zk+1). By induction, all the yk are in X (so that ∇f(yk) makes sense) and all the xk are
also in X .

In the Euclidean case this algorithm reduces to (7), i.e. to the Nesterov algorithm implemented
as a one-step recursion with the help of the variable z. The standard implementation (8)–(9) of
Nesterov’s algorithm cannot be directly applied to the non Euclidean scenario since (8) mixes primal
and dual variables. In AMD such a mixing is avoided; in Step 2, the gradients are accumulated in a
dual variable (as in mirror descent (13)) and the primal mirror images of the dual variable are used
to perform the convex combinations in Steps 1 and 3.

After defining δ =
√
h and t̃k = rδγk, Steps 1 and 2 in Algorithm 2 and (23) imply

1

δ
(yk − xk) =

r

t̃k
(χ(zk)− xk),

1

δ
(ζk+1 − ζk) = − t̃k

r
∇f(yk),

1

δ
(xk+1 − xk) =

r

t̃k
(χ(zk+1)− xk).

If we now assume that

γk =
k

r
+ o(k), k →∞, (24)

then t̃k → kδ as k →∞, δ → 0 with kδ constant. We therefore have the following result:

Theorem 2 Suppose that Assumption 1 and (24) hold, then AMD provides a consistent one-step
numerical integrator (ζk, xk) 7→ (ζk+1, xk+1) for the system of ODEs (21).

The following result (proved in Section 6) implies that, for suitable choices of the learning rate
h and the constants γk, AMD is indeed an accelerated optimization method.

Theorem 3 Suppose that Assumption 1 holds and that the coefficients γk satisfy

γ2k − γ2k−1 − γk ≤ 0, k = 1, 2, . . . (25)

12
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Assume that f is Lf -smooth, i.e. for each x, y in the domain of f :

∥∇f(x)−∇f(y)∥⋆ ≤ Lf∥x− y∥ (26)

and that

h ≤ 1

LfLχ
. (27)

Let x⋆ be a minimizer of (1) and ζ⋆ ∈ E⋆ satisfy χ(ζ⋆), and define for k = 0, 1, . . .

Vk(xk, ζk) = (γ2k − γk)h
(
f(xk)− f(x⋆)

)
+Dψ⋆(ζk, ζ

⋆). (28)

Then, along trajectories generated by AMD

Vk+1(xk+1, ζk+1) ≤ Vk(xk, ζk), k = 0, 1, . . .

and therefore

(γ2k − γk)h
(
f(xk)− f(x⋆)

)
≤ Dψ⋆(ζ0, ζ

⋆), k = 0, 1, . . .

Under the consistency condition (24), the right hand-side of (28) converges, in the limit δ → 0,
kδ → t, to the Lyapunov function (22) of the differential equations. The choice

γk =
k + r

r
, k = 0, 1, . . . (29)

fulfills the consistency requirement (24) and, if r ≥ 2, also the condition (25). Recall that the same
condition on r is required for (22) to be a Lyapunov function for the differential equations unlike
the case of AMDR. When the coefficients γk are chosen as in (29), the theorem shows a decay
f(xk)− f(x⋆) like 1/((γ2k − γh)h) ∼ r2/(k2h) as k →∞.

The best decay of f(xk) − f(x⋆) that may be proved with the theorem occurs when the γk are
chosen as large as possible subject to (25), i.e. when the inequality in (25) becomes an equality. In
this case, we have the well-known recurrence (10). These coefficients are slightly larger than (29)
with r = 2 and, accordingly, guarantee a slightly better convergence. One may prove that with
this recurrence, as k → ∞, γk = k/2 + (1/4) log k + o(log k), to be compared with the estimate
γk = k/2 +O(1) valid for (29) with r = 2.

4.2.1 CONNECTION WITH ADDITIVE RUNGE KUTTA METHODS

As pointed out in Dobson et al. (2023), when run with parameters adapted to strongly convex ob-
jective functions in Euclidean space, Nesterov algorithms may be interpreted as an Additive Runge-
Kutta method (Cooper and Sayfy, 1980, 1983) for integrating ordinary differential equations. A
similar interpretation exists here. We set ξ = (ζ, x) and write (21) by additively decomposing the
right hand-side as

ξ̇ = g[1](ξ, t) + g[2](ξ, t) + g[3](ξ, t),

with

g[1](ξ, t) =

[
0
− r
tx

]
, g[2](ξ, t) =

[
0

r
tχ(ζ)

]
, g[1](ξ, t) =

[
− t
r∇f(x)
0

]
.

13
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Then the step (ζk, xk) 7→ (ζk+1, xk+1) may be written in a Runge-Kutta fashion as

ξk+1 = ξk + δg[1](Ξk,1, t̃k) + δg[2](Ξk,3, t̃k) + δg[3](Ξk,3, t̃k)

with the so-called stage vectors defined by

Ξk,1 = ξk,

Ξk,2 = ξk + δg[1](Ξk,1, t̃k) + δg[2](Ξk,1, t̃k),

Ξk,3 = ξk + δg[1](Ξk,1, t̃k) + δg[2](Ξk,1, t̃k) + δg[3](Ξk,2, t̃k).

Note that Ξk,1 = (ζk, xk), Ξk,2 = (ζk, yk), Ξk,3 = (ζk+1, yk). Thus the successive computations of
Ξk,2, Ξk,3, and ξk+1 in the Additive Runge-Kutta scheme represent the computations of yk, ζk+1,
xk+1.

4.3 Convergence when x⋆ is not in the image of the mirror map

The Lyapunov functions (22) (28), used for establishing convergence for the ODE (21) and its
discretizations AMDR and AMD, contain a term Dψ⋆(ζ, ζ⋆), where χ(ζ⋆) = x⋆. Therefore they
cannot be used to establish convergence when the minimizer x⋆ is not in the image of the mirror
map. In the case of the simplex, this implies that one cannot treat minimizers x⋆ having one or
more zero components. Similarly, for the hypercube, minimizers having some of their components
equal to 0 or 1 cannot be dealt with. In this subsection we remove this limitation by using Lyapunov
functions that, as distinct from those considered above or in Krichene et al. (2015a), are formulated
purely in terms of primal variables. Accordingly we will operate with Bregman divergences defined
in E rather than in E⋆ and this will require that Assumption 2 holds.

4.3.1 THE DIFFERENTIAL SYSTEM

Using the primal Bregman divergence Dϕ, for the system of differential equations (21), in lieu of
the Lyapunov function (22), we may alternatively consider

V̂
(
x, ζ, t

)
=
t2

r2
(
f(x)− f(x⋆)

)
+Dϕ

(
x⋆, χ(ζ)), (30)

where we note thatDϕ

(
x⋆, χ(ζ)) is well defined because χ takes values in ri(X ). Now the existence

of ζ⋆ with χ(ζ⋆) = x⋆ is not required. If such a ζ⋆ exists, then the numerical values of (22)
and (30) coincide, according to well-known properties of the Bregman divergence. The following
theorem, proved in Section 6, shows that, for r ≥ 2, V̂ is indeed a Lyapunov function and therefore
f(x(t))− f(x⋆) decays like 1/t2.

Theorem 4 Suppose that Assumptions 1 and 2 hold. If r ≥ 2, then along solutions of (21),
(d/dt)V̂ ≤ 0.

4.3.2 ALGORITHM 1 (AMDR)

For AMDR, Lemma 2 in Krichene et al. (2015a) may be replaced by the following new result whose
proof is given in Section 6. It implies that for r ≥ 3 we shall have acceleration even if x⋆ is not in
the image of χ.

14
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Theorem 5 Suppose that Assumptions 1 and 2 hold. If f is Lf -smooth,γ ≥ LRLχ and h ≤
ℓR/(2Lfγ), then for AMDR

V̂ (xk+1, ζk+1, (k + 1)δ)− V̂ (xk, ζk, kδ) ≤
(2k + 1− kr)h

r2
(
f(xk+1)− f(x⋆)

)
.

4.3.3 ALGORITHM 2 (AMD)

In the context of the AMD instead of using the discrete Lyapunov function (28), we will alternatively
consider for k = 0, 1, . . .

V̂k(xk, ζk) = (γ2k − γk)h
(
f(xk)− f(x⋆)

)
+Dϕ

(
x⋆, χ(ζk)

)
. (31)

By using V̂ , Theorem 3 may be strengthened as follows (see Section 6 for the proof):

Theorem 6 Suppose that Assumptions 1 and 2 hold and that the coefficients γk satisfy (25). Assume
that f is Lf -smooth and that

h ≤ 1

LfLχ
.

Let x⋆ be a minimizer of (1). Then, for (xk+1, ζk+1) given by AMD

V̂k+1(xk+1, ζk+1) ≤ V̂k(xk, ζk), k = 0, 1, . . .

and therefore

(γ2k − γk)h
(
f(xk)− f(x⋆)

)
≤ Dϕ(x

⋆, χ(ζ0)), k = 0, 1, . . .

Thus the decay of f(xk)− f(x⋆) takes place whether x⋆ is in the image of χ or otherwise.

4.4 A primal accelerated ODE and its discretizations

In the literature several ODEs and algorithms have appeared that have similarities to those in Krich-
ene et al. (2015a). We now investigate this further in the case of ODEs appearing in (Wibisono et al.,
2016; Wilson et al., 2021) and one of the algorithms given in Tseng (2008). One notable difference
is that, contrary to the setting in Krichene et al. (2015a), only primal variables are used in those
references. Motivated by this, we will now give formulations of the ODE (21) and Algorithms 1
and 2 that only make use of primal variables. The developments parallel those in Section 3.2. In
this subsection it is assumed that Assumption 2 holds.

4.4.1 PRIMAL WRITING IN THE CASE N = {0}
The differential system In the case where N is trivial, the one-to-one correspondence between
z = χ(ζ) and ζ = ∇ϕ(z) may be used to rewrite the system (21) in terms of the primal variable z
as follows:

d

dt
∇ϕ(z(t)) = − t

r
∇f(x(t)), (32a)

ẋ(t) =
r

t

(
z(t)− x(t)

)
. (32b)

For the value r = 2, this system is a particular instance of the systems derived in Wilson et al. (2021)
through Lagrangian functions. Note that when N is not reduced to {0}, the differential equation
(32a) is meaningless because the left hand-side is constrained to be a vector tangent to the manifold
M and ∇f(x) is not constrained in that way (see the right panel in Figure 2).
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The algorithms As is the case for the differential system, whenN = {0}, AMDR and AMD may
be expressed avoiding dual variables. Restricting the attention to AMD (AMDR may be dealt with
analogously), we have

yk = xk +
1

γk

(
zk − xk),

∇ϕ(zk+1) = ∇ϕ(zk)− γkh∇f(yk), (33)

xk+1 = yk +
1

γk

(
zk+1 − zk

)
.

Formulas similar to (33) appear in (Wibisono et al., 2016; Wilson et al., 2021). Once∇ϕ(zk+1) has
been found via (33), zk+1 is recovered as χ(∇ϕ(zk+1)). Note that when N is not reduced to {0},
(33) is meaningless because nothing guarantees that its right hand-side lies inM, the set where∇ϕ
takes values.

4.4.2 PRIMAL WRITING IN THE GENERAL CASE

The differential system It is possible to obtain a system of differential equations satisfied by the
primal variables z(t) = χ(ζ(t)) and x(t) without the hypothesisN = {0}, where ζ(t) and x(t) are
solutions of (21). In fact, by arguing as in Section 3.2 and denoting by z the mirror of the variable
ζ, one may write:

ż = χ′(∇ϕ(z(t)))
(
− t
r
∇f(x(t))

)
, (34a)

ẋ =
r

t

(
z(t)− x(t)

)
; (34b)

in the particular where N = {0}, this reduces to (32). The system (34) has to be initialized with
x(0) = z(0) in the relative interior of X , and from (30), it has the Lyapunov function:

t2

r2
(
f(x)− f(x⋆)

)
+Dϕ

(
x⋆, z). (35)

Example 2 (Example 1 continued) In the case of the simplex, (34a) reads

ż = D(z)
(
− t

r
∇f(x) + ⟨− t

r
∇f(x), z⟩1

)
, (36)

where D(z) is the diagonal matrix with entries zi;

The algorithms It is also possible, without any assumption on the dimension of N , to express
AMDR and AMD in terms of the primal points zk = χ(ζk). For brevity we only give details for
AMD, which, by arguing as in Section 3.2, may be reformulated as

yk = xk +
1

γk

(
zk − xk), (37a)

zk+1 = χ
(
∇ϕ(zk)− γkh∇f(yk)

)
, (37b)

xk+1 = yk +
1

γk

(
zk+1 − zk

)
. (37c)
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This is a particular case of the algorithms studied in Tseng (2008). Note that in Tseng (2008) there
is no discussion of the continuous time limit; however it is not difficult to show that, when (24) is
fulfilled, the algorithm (37) is a consistent discretization of the system (34). Furthermore, in terms
of primal variables, the discrete-time Lyapunov function in (31) is given by

(γ2k − γk)h
(
f(xk)− f(x⋆)

)
+Dϕ

(
x⋆, zk

)
.

Under the consistency requirement (24), this is an approximation to the continuous-time Lyapunov
function (35).

5 Numerical experiments

We now illustrate the performance of AMDR and AMD. The standard mirror descent algorithm
(20) will be used as a benchmark. All experiments reported correspond to the simplex. Recall that
in this case it is possible to run AMDR with an efficient regularizer, something that may or may not
be the situation for other instances of X .

In the experiments that follow, we set r = 3 for AMDR and, as in Krichene et al. (2015a), use
γ = 1 and perform Step 3 by means of the efficient procedure in (Krichene et al., 2015a, Algorithm
4) with ϵ = 0.3. It turns out that with this setting, the computational costs per step of AMDR and
AMD are virtually identical and also coincide with those of mirror descent. For AMD we use γk
given by (10).

5.1 Non strongly convex objective function

In order to check that AMDR and AMD provide acceleration, we first consider an extremely simple
toy example with d = 2, f(x) = (1/p)

(
(x1 − 1/2)p + (x2 − 1/2)p

)
, p = 10. The initial condition

is chosen as [0.999, 0.001]T and the three algorithms were run with different choices of the learning
rate. Results for the representative value h = 1 may be seen in Figure 3. While for mirror descent,
the decay is slightly better than 1/k, for AMDR and AMD the decay is slightly better than 1/k2.
Increasing the value of the parameter p results in rates that become closer to 1/k for mirror descent
and to 1/k2 for the other two algorithms.

5.2 Quadratic objective function

Now the objective function is f(x) = (1/2)xTBTBx, with B a d× d matrix with entries given by
independent standard normal random variables. The initial x0 is chosen randomly by generating a
vector with independent, uniformly random components in [0, 1] and then rescaling to ensure that∑

j xj = 1. The smoothness constant Lf for the gradient ∇f(x) = BTBx is the norm of BTB

as an operator from (Rd, ℓ1) to (Rd, ℓ∞), which is given by the maximum m(BTB) of the absolute
value of the entries. In Assumption 1, Lχ = 1 and, in view of condition (27) in Theorem 3, we run
AMD with a learning rate h = 1/m(BTB); the same value is used for mirror descent. For AMDR
we follow the prescription in Krichene et al. (2015a) and set

h =
√
ϵ/
(
2(1 + dϵ)m(BTB)γ

)
.

The experiment in Figure 4 has d = 1000 and 50,000 steps. The minimizer is not in the relative
interior (in fact has 323 vanishing components) and the results in Section 4.3 are necessary to
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Figure 3: Non strongly convex objective function, f(xk)−f(x⋆) vs. k. The dotted lines have slopes
corresponding to decays 1/k and 1/k2.
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Figure 4: Quadratic objective function, f(xk) − f(x⋆) vs. k. The dotted line has a slope corre-
sponding to a decay 1/k2.
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Figure 5: Quadratic objective function, larger learning rates, f(xk) − f(x⋆) vs. k. The dotted line
has the same equation as the reference line in Figure 4 so as to make it easy to compare both figures.

establish the convergence of AMDR and AMD. In addition, in the experiment, m(BTB) ≈ 1.2 ×
103 which leads to learning rates h ≈ 8.5× 10−4 for mirror descent and AMD and h ≈ 6.5× 10−4

for AMDR. The figure clearly bears out the 1/k2 acceleration proved in Theorem 6 for AMD. Mirror
descent and AMDR lead initially to very little decay in f but they decay faster than 1/k2 once they
are near the minimizer. In this particular experiment they are both outperformed by AMD.

5.3 Quadratic objective function, larger learning rates

Numerical experimentation reveals that the recipes we have just used to determine the learning rates
are too pessimistic; the three algorithms tested may operate with substantially larger values of h,
thus providing a larger decay in f for a given number of iterations. In fact, the values of h were
based on the size of m(BTB) (an operator norm for the matrix in ∇f(x) = BTBx). However, in
(36) or (18) we see that in the differential equations being approximated by the algorithms, ∇f(x)
is premultiplied by D(z) = diag(z) or D(x) = diag(x) respectively. Once the solution is close to
the minimizer, those matrices are close to D(x⋆) and it is reasonable to think that the learning rates
should really be determined by the size of the matrixD(x⋆)BTB rather than by the size ofBTB. If
D(x⋆)BTB is much smaller than BTB learning rates based on the size of BTB may be expected
to be unduly pessimistic.

These considerations may be related to the notion of relative smoothness introduced in Lu et al.
(2018) (see also Bauschke et al. (2017)), an alternative to the notion of (absolute) smoothness in
(26). For the sake of brevity, we only present the concept of relative smoothness as it applies to
the simplex. A real function g, twice continuously differentiable, is said to be Lr-relatively smooth
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with respect to the negative entropy ϕ in (15), if for z in the relative interior of the simplex

∇2g(z) ⪯ Lr∇2ϕ(z).

Recalling that D(z) is the inverse of∇2ϕ(z), we may equivalently write

D(z)1/2∇2g(z)D(z)1/2 ⪯ LrI,

and therefore the best possible Lr is given by the maximum of the spectral radius of the symmetric
matrixD(z)1/2∇2g(z)D(z)1/2 as z ranges in the relative interior. Note that this symmetric matrix is
similar to the matrix D(z)∇2g(z) and therefore shares its eigenvalues. For f(z) = (1/2)zTBTBz,
D(z)∇2f(z) = D(z)BTB and therefore Lr is the maximum eigenvalue of D(z)BTB (while as
pointed out above Lf is the maximum of the entries of BTB). It may then be conjectured that
the assumption of relative smoothness of f as in (26) could be replaced by the assumption that the
objective function be Lr-relatively smooth and that the algorithms may be operated with learning
rates based on using the value of Lr rather than on the value of Lf .

To investigate this conjecture, we revisit the experiment in Figure 4. There, as mentioned before,
x⋆ has 323 vanishing entries. In addition the maximum entry of x⋆ happens to be 5.9× 10−3 (since
the entries add up to 1 they might be expected to be small). Thus, the entries of D(x⋆)BTB are
more than two orders of magnitude smaller than those BTB. We introduced the symmetric matrix

M = D(x⋆)1/2BTBD(x⋆)1/2

and estimated Lr by the spectral radius ρ(M).2 Then we used the learning rate h = 1/(LχLr)
(rather than 1/(LχLf )) for mirror descent and AMD and

h =
√
ϵ/
(
2(1 + dϵ)ρ(M)

)
γ

for AMDR. Figure 5 has the same realizations of the random elements BTB and x0 as Figure 4, the
only difference being that we now use the Lr-based values of the learning rates just described; these
turn out to be h ≈ 1.3 × 10−1 for mirror descent and AMD and h ≈ 8.1 × 10−3 for AMDR. In
Figure 5 each optimization method qualitatively behaves very much as it did in Figure 4; however
for each method the size of f(xk)− f(x⋆) for given k is now clearly smaller than it was.

This experiment shows the interest of future analyses of AMDR and AMD replacing the notion
of absolute smoothness by the notion of relative smoothness, similarly to what it is done in (Lu
et al., 2018, Theorem 3.1).

6 Proofs

This section contains the proofs of the results in the paper.

6.1 Proof of Lemma 1

Part 1. This is a trivial consequence of the fact that χ maps E⋆ onto ri(X ).

2. Of course, this would not make sense in a real application, as M requires the knowledge of x⋆. In practice Lr could
be estimated as the spectral radius of D(xk)

1/2BTBD(xk)
1/2 for a suitable k.
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Part 2. Fix z ∈ ri(X ). Since χ = ∇ψ⋆, by a well-known result on conjugate functions, see
e.g. (Beck, 2017, Theorem 4.20), the relation χ(ζ) = z is equivalent to ζ ∈ ∂ψ(z). It is then
sufficient to prove that ∂ψ(z) = ∇ϕ(z) + N . By definition, g ∈ ∂ψ(z) means that, for each
x ∈ E, ψ(x) ≥ ψ(z) + ⟨g, x − z⟩. This inequality trivially holds if x /∈ X , because then ψ(x) =
ϕ(x)+δX (x) =∞. Therefore g ∈ ∂ψ(z) if and only if, for x ∈ X , ψ(x) ≥ ψ(z)+⟨g, x−z⟩, that is
ϕ(x) ≥ ϕ(z)+ ⟨g, x− z⟩. On the other hand, since ϕ is differentiable at z, the linear approximation
at z based on the use of∇ϕ(z) given by ℓ(x) = ϕ(z)+⟨g, x−z⟩ is unique in satisfying ϕ(x) ≥ ℓ(x)
for each x ∈ E. In this way g ∈ ∂ψ(z) if and only if ⟨g, x− z⟩ = ⟨∇ϕ(z), x− z⟩ for each x ∈ X ,
which in turn is clearly equivalent to g −∇ϕ(z) ∈ N .
Part 3. We have ζ ∈ χ−1(χ(ζ)), so that, by Part 2, ζ ∈ ∇ϕ(χ(ζ)) +N or∇ϕ(χ(ζ))− ζ ∈ N .
Part 4. By Part 2, χ−1(χ(ζ)) is an affine set associated to the vector spaceN . Therefore the relations
ζ ∈ χ−1(χ(ζ)) and η ∈ N imply ζ + η ∈ χ−1(χ(ζ)), so that χ(ζ) = χ(ζ + η). Differentiation
leads to χ′(ζ) = χ′(ζ + η) .

6.2 Proof of Theorem 3

We first deal with the part of the Lyapunov function that involves the variable x. By the convexity
and smoothness of f ,

f(xk+1) ≤ f(yk) + ⟨∇f(yk), xk+1 − y⟩+
Lf
2
∥xk+1 − yk∥2,

and, from the definition of xk+1 in Step 3 of Algorithm 2, after shortening slightly the notation,

f(xk+1) ≤ f(yk) + ⟨∇k, xk+1 − yk⟩+
Lf
2γ2k
∥χk+1 − χk∥2.

Here∇k = ∇f(yk) and χk = χ(ζk). We now use (23) to get

f(xk+1) ≤ f(yk) + ⟨∇k,
(
1− 1

γk

)
xk +

1

γk
χk+1 − yk⟩+

Lf
2γ2k
∥χk+1 − χk∥2

=

(
1− 1

γk

)(
f(yk) + ⟨∇k, xk − yk⟩

)
+

1

γk

(
f(yk) + ⟨∇k, χk+1 − yk⟩

)
+
Lf
2γ2k
∥χk+1 − χk∥2,

=

(
1− 1

γk

)(
f(yk) + ⟨∇k, xk − yk⟩

)
+

1

γk

(
f(yk) + ⟨∇k, x⋆ − yk⟩

)
+

1

γk
⟨∇k, χk+1 − x⋆⟩+

Lf
2γ2k
∥χk+1 − χk∥2.

Invoking again the convexity of f

f(xk+1) ≤
(
1− 1

γk

)
f(xk) +

1

γk
f(x⋆) +

1

γk
⟨∇k, χk+1 − x⋆⟩

+
Lf
2γ2k
∥χk+1 − χk∥2,
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and therefore

f(xk+1)− f(x⋆) ≤
(
1− 1

γk

)(
f(xk)− f(x⋆)

)
+

1

γk
⟨∇k, χk+1 − x⋆⟩

+
Lf
2γ2k
∥χk+1 − χk∥2.

We now multiply across by γ2kh and take into account the formula in Step 2 of the algorithm,

γ2kh
(
f(xk+1)− f(x⋆)

)
≤ (γ2k − γk)h

(
f(xk)− f(x⋆)

)
−⟨ζk+1 − ζk, χk+1 − x⋆⟩+

Lfh

2
∥χk+1 − χk∥2.

The bounds (25) and (27) then yield

(γ2k+1 − γk+1)h
(
f(xk+1)− f(x⋆)

)
≤ (γ2k − γk)h

(
f(xk)− f(x⋆)

)
(38)

−⟨ζk+1 − ζk, χk+1 − x⋆⟩+
1

2Lχ
∥χk+1 − χk∥2.

We next address the part of the Lyapunov function involving the variable ζ. By using the three-
points lemma for Dψ⋆ as in (Krichene et al., 2015a, Lemma 5) and recalling that χ(ζ⋆) = x⋆,

Dψ⋆(ζk+1, ζ
⋆) = Dψ⋆(ζk, ζ

⋆)−Dψ⋆(ζk, ζk+1) + ⟨ζk+1 − ζk, χk+1 − x⋆⟩,

and the smoothness bound in (Krichene et al., 2015a, Lemma 5) yields

Dψ⋆(ζk+1, ζ
⋆) ≤ Dψ⋆(ζk, ζ

⋆)− 1

2Lχ
∥χk+1 − χk∥2 + ⟨ζk+1 − ζk, χk+1 − x⋆⟩.

It is now sufficient to add the last bound to (38).

6.3 Proof of Theorem 4

By differentiating we have,

d

dt
V̂ =

2t

r2
(
f(x(t))− f(x⋆)

)
+
t2

r2
⟨∇f(x(t)), ẋ(t)⟩

+⟨ d
dt
∇ϕ

(
χ(ζ(t))

)
, x⋆ − χ(ζ(t))⟩,

and Lemma 1, Part 3, implies

⟨ d
dt
∇ϕ

(
χ(ζ(t))

)
, x⋆ − χ(ζ(t))⟩ = ⟨ζ̇(t), x⋆ − χ(ζ(t))⟩.

These two equalities and the differential equations (21a)–(21b) may be combined to yield:

d

dt
V̂ =

(
2

r
− 1

)
t

r

(
f(x(t))− f(x⋆)

)
− t
r

(
f(x⋆)− f(x(t))− ⟨∇f(x(t)), x⋆ − x(t)⟩

)
.

Both terms in the right hand-side are ≤ 0, the first because r ≥ 2 and the second because f is
convex.
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6.4 Proof of Theorems 5 and 6

We begin with Theorem 6. We reproduce the proof of Theorem 3 until we reach (38). For the part
involving Bregman divergences, the three-points lemma for Dϕ gives

Dϕ(x
⋆, χk+1) = Dϕ(x

⋆, χk)−Dϕ(χk+1, χk)

+⟨∇ϕ(χ(ζk+1))−∇ϕ(χ(ζk)), χk+1 − x⋆⟩

and, as a consequence of Lemma 1, Part 3, the differences∇ϕ(χ(ζk+1))−ζk+1 and∇ϕ(χ(ζk))−ζk
are in N and we may alternatively write

Dϕ(x
⋆, χk+1) = Dϕ(x

⋆, χk)−Dϕ(χk+1, χk) + ⟨ζk+1 − ζk, χk+1 − x⋆⟩.

From (Beck, 2017, Lemma 9.4 (a))

Dϕ(x
⋆, χk+1) ≤ Dϕ(x

⋆, χk)−
1

2Lχ
∥χk+1 − χk∥2 + ⟨ζk+1 − ζk, χk+1 − x⋆⟩,

because ψ = ϕ + δX is (1/Lχ)-strongly convex (Beck, 2017, Theorem 5.26(a)). The proof con-
cludes by adding the last bound to (38).

To prove Theorem 5 one may proceed similarly. The part of the Lyapunov function involving x
is dealt with as in the proof of Lemma 2 in Krichene et al. (2015a) and the difference in Bregman
divergences is treated exactly as in the proof of Theorem 6 just given.
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