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Abstract

Hamiltonian Monte Carlo (HMC) is a powerful tool for Bayesian statisti-
cal inference due to its potential to rapidly explore high dimensional state
space, avoiding the random walk behavior typical of many Markov Chain
Monte Carlo samplers. The proper choice of the integrator of the Hamil-
tonian dynamics is key to the efficiency of HMC. It is becoming increas-
ingly clear that multi-stage splitting integrators are a good alternative to
the Verlet method, traditionally used in HMC. Here we propose a principled
way of finding optimal, problem-specific integration schemes (in terms of the
best conservation of energy for harmonic forces/Gaussian targets) within the
families of 2- and 3-stage splitting integrators. The method, which we call
Adaptive Integration Approach for statistics, or s-AIA, uses a multivariate
Gaussian model and simulation data obtained at the HMC burn-in stage to
identify a system-specific dimensional stability interval and assigns the most
appropriate 2-/3-stage integrator for any user-chosen simulation step size
within that interval. s-AIA has been implemented in the in-house software
package HaiCS without introducing computational overheads in the simula-
tions. The efficiency of the s-AIA integrators and their impact on the HMC
accuracy, sampling performance and convergence are discussed in compari-
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son with known fixed-parameter multi-stage splitting integrators (including
Verlet). Numerical experiments on well-known statistical models show that
the adaptive schemes reach the best possible performance within the family
of 2-, 3-stage splitting schemes.

Keywords: Hamiltonian Monte Carlo, Multi-stage integrators, Adaptive
integration, Bayesian inference, Stability limit, Velocity Verlet

1. Introduction

First introduced for lattice field theory simulations [1], Hamiltonian
Monte Carlo (HMC) is nowadays recognized as a popular and efficient tool
for applications in Bayesian statistical inference [2].

Using gradient information on the posterior distribution, HMC reduces
random walk behavior typical of many conventional Markov Chain Monte
Carlo (MCMC) samplers and makes it possible to sample high dimensional
and complex distributions more efficiently than simpler MCMC algorithms.
The use of Hamiltonian dynamics makes HMC able to perform large moves
while keeping high acceptance rates, thus lowering the correlation between
samples, provided that an accurate symplectic integrator is in use [3, 4].
On the other hand, known drawbacks of HMC are the computational cost
deriving from the evaluation of gradients and the strong dependence of the
performance on the choice of the parameters in the algorithm. Many variants
of HMC have been proposed in the literature during the last decades (see [5]
for an advanced list of HMC methods in computational statistics and physical
sciences).

Numerical integration of the Hamiltonian equations of motion is crucial
for HMC, since its accuracy and efficiency strongly affect the overall per-
formance of the method. Velocity Verlet [6, 7] is currently the method of
choice owing to its simplicity, optimal stability properties and computational
efficiency. Recently proposed multi-stage splitting integrators have shown
promising performance in HMC for statistical and molecular simulation ap-
plications [8–10]. Such integrators are as easy to implement as Verlet schemes
due to their kick-drift structure. However, they possess shorter stability in-
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tervals1 than corresponding multi-stage Verlet algorithms [8].
The Adaptive Integration Approach (AIA) [11] for HMC and its exten-

sions MAIA and e-MAIA for Modified HMC (MHMC) methods [12] offer
an intelligent (system- and step size-specific) choice of the most appropriate
2-stage integrator in terms of the best conservation of energy for harmonic
forces. They have been formulated and implemented for molecular simula-
tion applications and demonstrated an improvement in accuracy, stability
and sampling efficiency compared with the fixed-parameter 1-, 2-stage nu-
merical integrators (including the standard Verlet) when used in simulations
of complex physical systems [11–16].

In this paper, we propose an Adaptive Integration Approach for statistics,
that we call s-AIA, which extends the ideas of the original AIA to Bayesian
statistical inference applications. The method employs a theoretical analy-
sis of the multivariate Gaussian model and simulation data obtained at the
HMC burn-in stage to identify a system-specific dimensional stability interval
and assigns the most appropriate 2-, 3-stage integrator at any user-chosen
simulation step size within that interval. To construct s-AIA, we address the
difficulties encountered by the extension to the computational statistics sce-
nario of the assumptions typical of molecular simulation applications made in
AIA — such as dominating harmonic forces, known angular frequencies and
resonance conditions, nonrandomized integration step size. The proposed
algorithm does not add computational overheads during a simulation.

We have implemented s-AIA in the in-house software HaiCS (Hamiltoni-
ans in Computational Statistics) [5, 17] and tested its efficiency and impact
on the HMC accuracy, sampling performance and convergence in comparison
with known fixed-parameter multi-stage splitting integrators for HMC-based
methods (including Velocity Verlet). The numerical experiments have been
performed on representative benchmarks and datasets of popular statistical
models.

The paper is structured as follows. We briefly review HMC in Section 2
and multi-stage integrators in Section 3. The s-AIA algorithm and its im-
plementation are presented in Section 4. Validation and testing of the new
algorithm are described and discussed in Section 5. Our conclusions are

1Stability interval is defined as the largest interval of step sizes for which the integrator
stays stable, i.e. the numerical solution remains bounded as the number of computed
points increases when the integrator is applied to the harmonic oscillator [8].
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summarized in Section 6.

2. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo
(MCMC) method for obtaining correlated samples θi ∼ π(θ) from a tar-
get probability distribution π(θ) in RD by generating a Markov chain in the
joint phase space RD × RD with invariant distribution

π(θ,p) = π(θ)p(p) ∝ exp(−H(θ,p)). (1)

Here
H(θ,p) = K(p) + U(θ) =

1

2
pTM−1p+ U(θ) (2)

is the Hamiltonian function, where the potential energy U(θ) is related to
the target π(θ) by means of

U(θ) = − log π(θ) + const ,

and the kinetic energy K(p) is specified through an auxiliary momentum
variable p drawn from the normal distribution N (0,M), with M being a
symmetric positive definite matrix (the mass matrix).

HMC alternates momentum update steps, where a sample of p is drawn
from the distribution N (0,M), with steps where both position θ and mo-
menta p are updated through the numerical integration of the Hamiltonian
dynamics

dθ

dt
= M−1p,

dp

dt
= −∇θU(θ). (3)

The latter is performed using an explicit symplectic and reversible integrator.
If Ψh is the map in phase space that advances the numerical solution over a
step size of length h, symplecticness means [3]

Ψ′
h(θ,p)

TJ−1Ψ′
h(θ,p) = J−1, ∀(θ,p) ∈ Ω, ∀h > 0,

where Ψ′
h is the Jacobian matrix of Ψh, Ω is an open set in phase space,

J =

(
0 I
−I 0

)
,
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and I is the D×D unit matrix. Reversibility demands Ψh◦F = (Ψh ◦ F)−1 ,
where F(θ,p) = (θ,−p) is the momentum flip map. Symplecticness and re-
versibility ensure that π(θ,p) is an invariant measure for the Markov chain.
Given the state of the Markov chain (θi,pi) at the beginning of the i-th itera-
tion, a proposal (θ′,p′) is obtained by integrating the Hamiltonian equations
of motion for L steps using Ψh, i.e.

(θ′,p′) = Ψh ◦ ... ◦Ψh︸ ︷︷ ︸
L times

(θi,pi). (4)

Due to numerical integration errors, the Hamiltonian energy and thus the
target density (1) are not exactly preserved. The invariance of the target
density is ensured through a Metropolis test with acceptance probability

α = min{1, exp(−∆H)},

where
∆H = H(θ′,p′)−H(θi,pi) (5)

is the energy error resulting from the numerical integration. In case of ac-
ceptance, θ′ is the starting point for the following iteration, i.e. θi+1 = θ′,
whereas in case of rejection, the initial proposal θi is kept for the following
iteration, i.e. θi+1 = θi. In both cases, the momentum is discarded and a
new momentum pi+1 is drawn from its Gaussian distribution.

2.1. Splitting
The integration of the Hamiltonian dynamics in HMC is always performed

by resorting to the idea of splitting. The split systems

(A)
dθ

dt
= ∇pK(p) = M−1p,

dp

dt
= −∇θK(p) = 0,

(B)
dθ

dt
= ∇pU(θ) = 0,

dp

dt
= −∇θU(θ),

have solution flows φA
t and φB

t explicitly given by

φA
t (θ,p) = (θ + tM−1p,p), φB

t (θ,p) = (θ,p− t∇θU(θ)); (6)

these flows are often called a position drift and a momentum kick respectively.
The integration of the target dynamics (3) is carried out by combining drifts
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and kicks. The best known algorithm is the Velocity Verlet integrator [6, 7]

p← p− h

2
∇θU(θ),

θ ← θ + hM−1p,

p← p− h

2
∇θU(θ). (7)

With the notation in (6), the algorithm may be written as

ΨVV
h = φB

h
2

◦ φA
h ◦ φB

h
2

. (8)

As before, h is the length of an integration step, i.e. step size. By switching
the roles of A and B in (8) one obtains the Position Verlet algorithm [18],
whose performance is often worse than that of the velocity scheme [4].

More general splitting integration schemes [4, 19] that alternate position
drifts and momentum kicks will be reviewed in Section 3.

2.2. Advantages and limitations of HMC
By suitably choosing the time span Lh of the numerical integration (cf.

(4)), HMC offers the possibility of generating proposals that are sufficiently
far from the current state of the Markov chain. At the same time, for fixed Lh,
one may always reduce h and increase L to achieve a more accurate numerical
integration and therefore an arbitrarily high acceptance rate. Thus HMC is
in principle able to generate samples with low correlation and to explore
rapidly the state space, even if the dimensionality is high, avoiding in this
way the random walk behavior of simpler MCMC algorithms. Unfortunately,
it is well known that in practice the performance of HMC very much depends
on the choice of the parameters h and L.

Since most of the computational effort in HMC goes in the (often ex-
tremely costly) evaluations of the gradient ∇U(θ) required by the integra-
tor, and the acceptance rate depends on the numerical integration error, the
choice of the integration method is key to the efficiency of the HMC algo-
rithm.

3. Multi-stage integrators and adaptive approach

In this Section, we review multi-stage palindromic splitting integrators,
which have demonstrated promising performance in HMC for both statistical
and molecular simulation applications [8–15].
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3.1. k-stage palindromic splitting integrators
The family of palindromic k-stage splitting integrators with k − 1 free

parameters is defined as [4]

Ψh = φB
b1h
◦φA

a1h
◦· · ·◦φA

ak′h
◦φB

bk′+1h
◦φA

ak′h
◦· · ·◦φA

a1h
◦φB

b1h
, bi, aj ∈ R+, (9)

if k = 2k′, and

Ψh = φB
b1h
◦φA

a1h
◦ · · · ◦φB

bk′h
◦φA

ak′h
◦φB

bk′h
◦ . . . φA

a1h
◦φB

b1h
, bi, aj ∈ R+, (10)

if k = 2k′−1. The coefficients bi, aj in (9)-(10) have to satisfy the conditions
2
∑k′

i=1 bi + bk′+1 = 2
∑k′

j=1 aj = 1, and 2
∑k′

i=1 bi = 2
∑k′−1

j=1 aj + ak′ = 1,
respectively. The integrators (9) and (10) are symplectic as compositions of
flows of Hamiltonian systems, and reversible, due to their palindromic struc-
ture. The number of stages k is the number of times the algorithm performs
an evaluation of gradients ∇θU(θ) per step size. Though φB appears k + 1
times in (9) and (10), the number of gradient evaluations performed is still
k since the (last) one in the leftmost φB

b1h
at the current step is reused in the

rightmost φB
b1h

at the following step. Multi-stage splitting integrators alter-
nate position drifts and momentum kicks of different lengths, which makes
all of them, including the most common and popular 1-stage Verlet (8), easy
to implement.

As pointed out above, most of the computational effort in HMC is due
to evaluations of gradients. Splitting integrators with different numbers of
stages do not perform the same number of gradient evaluations per integra-
tion step and therefore using those integrators with a common value of L
and h does not result in fair comparisons (in terms of computational cost).
If L̂ is a number of gradient evaluations/time steps suitable for the 1-stage
Verlet algorithm with step size h, k-stage integrators will here be used by
taking L = L̂/k steps of length kh. In this way all algorithms integrate the
Hamiltonian dynamics over a time interval of the same length L̂h and use
the same number of gradient evaluations.

3.2. Examples of 2- and 3-stage integrators
We plan to derive adaptive 2- and 3-stage integrators and we first review

the examples in the literature of 2- and 3-stage integrators.
The one-parameter family of 2-stage integrators is described as (see (9)):

Ψ2stage
h = φB

bh ◦ φA
ah ◦ φB

b1h
◦ φA

ah ◦ φB
bh,
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with a = 1/2 and b1 = 1− 2b. Thus the integrators can be written as

Ψ2stage
h = φB

bh ◦ φA
h
2

◦ φB
(1−2b)h ◦ φA

h
2

◦ φB
bh, (11)

with b ∈ (0, 0.5) if we wish b > 0 and b1 > 0.
Similarly, (10) with k′ = 2, 2a + a1 = 1 and 2b + 2b1 = 1 yields the

two-parameter family of 3-stage integrators

Ψ3stage
h = φB

bh ◦ φA
ah ◦ φB

( 1
2
−b)h ◦ φ

A
(1−2a)h ◦ φB

( 1
2
−b)h ◦ φ

A
ah ◦ φB

bh, (12)

with a, b ∈ (0, 0.5).
Several 2- and 3-stage integrators with suitably chosen parameters for

achieving high performance in HMC have been proposed in the literature [8,
9, 20, 21]. Some of them are presented below and summarized in Table 1. In
the cited literature, two alternative types of analysis have been carried out in
order to choose the integration parameters a and/or b in the context of HMC.
In [20, 21] or [22], the integration coefficients are determined by minimizing
the coefficients in the Taylor expansion of the Hamiltonian truncation error
[22]

ϵ = H(θ,p)−H(Ψh(θ,p)). (13)

On the other hand, the paper [8] does not look at the behavior of the Hamil-
tonian truncation error as h → 0, as typically integrators are not operated
with small values of h. Their analysis is rather based on a (tight) bound

E[∆H] ≤ ρ(h, z),

for the expected energy error with respect to π(θ,p) (1) for given h, that
may be rigorously proved for Gaussian targets (and has been experimentally
shown to be useful for all targets). Here ∆H is an energy error as defined in
(5), ρ is a function associated with the integrator and z represents the coef-
ficients that identify the integrator within a family. For 2-stage palindromic
splitting schemes [8]

ρ2(h, b) =
h4

(
2b2

(
1
2
− b

)
h2 + 4b2 − 6b+ 1

)2
8 (2− bh2)

(
2−

(
1
2
− b

)
h2
) (

1− b
(
1
2
− b

)
h2
) . (14)

For 3-stage integrators the attention may be restricted to pairs (b, a) that
satisfy [9, 23]

6ab− 2a− b+
1

2
= 0; (15)
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when this condition is not fulfilled the integrator has poor stability properties
blue [9]. Under this restriction (see Appendix A)

ρ3(h, b) =
h4(−3b4+8b3−19/4b2+b+b2h2(b3−5/4b2+b/2−1/16)−1/16)

2

2(3b−bh2(b−1/4)−1)(1−3b−bh2(b−1/2)2)(−9b2+6b−h2(b3−5/4b2+b/2−1/16)−1)
. (16)

The following schemes have been considered in the literature.

• 2-stage Velocity Verlet (VV2). This is the integrator with the
longest stability interval (0, 4) for an integration step size h among 2-
stage splitting schemes and corresponds to b = 1/4 in (11). To perform
one step of length h with this algorithm, one just performs two steps
of length h/2 of standard Velocity Verlet. It means that performance
comparison of alternative 2-stage splitting integrators with standard
Velocity Verlet can be achieved through comparison with VV2 if the
step length and number of steps per integration leg are adjusted ac-
cordingly.

• 2-stage BCSS (BCSS2). This scheme was derived in [8] to minimize
the maximum of ρ2(h, b) in (14) as h ranges over the interval 0 < h < 2
(VV2 is often operated with h close to 2), i.e.

b = argmin
b∈(0,0.5)

max
0<h<2

ρ2(h, b) = 0.211781.

It achieves its best performance when h is near the center of the longest
stability interval, i.e. h ≈ 2 [8, 11, 12, 23–25].

• 2-stage Minimum Error (ME2). The coefficient of this integra-
tor (b = 0.193183) was obtained by McLachlan in [20] through the
minimization of the Hamiltonian truncation error (13). For quadratic
problems, see also [23].

• 3-stage Velocity Verlet (VV3). Similarly to VV2, the 3-stage Ve-
locity Verlet is a 3-stage integrator with the longest stability interval
(0, 6) among 3-stage splitting integrators. One step of this algorithm
of length h is just the concatenation of three steps of length h/3 of the
standard Velocity Verlet integrator. As we did for VV2, we emphasize
that when comparing below VV3 and alternative integrators, one is
really comparing the standard VV algorithms.
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• 3-stage BCSS (BCSS3). The parameter values are found by impos-
ing the relation (15) and

b = argmin
b∈(0,0.5)

max
0<h<3

ρ3(h, b),

with ρ3 in (16).

• 3-stage Minimum Error (ME3). ME3 was derived in [26] by re-
quiring (15) and a Hamiltonian truncation error of size O(h6).

Integrator N. of stages Coefficients Stability interval References
Velocity Verlet 1 - (0, 2) [6, 7]

2-stage Velocity Verlet 2 b = 1/4 (0, 4) [8]
2-stage BCSS 2 b = 0.211781 (0, 2.634) [8]

2-stage Minimum Error 2 b = 0.193183 (0, 2.533) [20, 23]
3-stage Velocity Verlet 3 b = 1/6, a = 1/3 (0, 6) [8, 9]

3-stage BCSS 3
b = 0.118880

(0, 4.662) [8, 9]
a = 0.296195

3-stage Minimum Error 3
b = 0.108991

(0, 4.584) [9, 26]
a = 0.290486

Table 1: Multi-stage splitting integrators presented in Section 3.2.

The performance of the different integrators within HMC very much de-
pends on the simulation parameters, in particular on the choice of step size.
Minimum Error schemes achieve their best performance for small step size,
since they are obtained by studying the limit of vanishing step size. How-
ever, they have shorter stability limits, i.e lengths of the stability intervals,
and may perform badly for bigger integration step sizes. Velocity Verlet
schemes preserve stability for values of the step size larger than those that
may be used in other integrators, but may not be competitive in situations
where the step size is not chosen on grounds of stability (for instance in
problems of large dimensionality where accuracy demands that the step size
be small to ensure non-negligible acceptance rates). BCSS integrators were
designed for optimizing performance for values of the step size not close to 0
and not close to the maximum stability allowed for Verlet.

3.3. Adaptive Integration Approach (AIA)
Adaptive 2-stage integration schemes were proposed by Fernández-Pendás

et al. in [11] for molecular simulation applications. Its extensions, called
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MAIA and e-MAIA, for Modified HMC (MHMC) methods, such as Gen-
eralized Shadow HMC (GSHMC) methods [27–30], were introduced by
Akhmatskaya et al. in [12].

Given a simulation problem, in AIA, the user chooses, according to their
computational budget, the value of h to be used (i.e. h is chosen to be smaller
if more time and resources are available for the simulation). After that, the
AIA algorithm itself finds the most appropriate integration scheme within
the family of 2-stage integrators (11). If the time-step is very small for the
problem at hand, AIA will automatically pick up a parameter value close
to Minimum Error; if the time-step is very large, AIA will automatically
choose an integrator close to the 2-stage Velocity Verlet. For intermediate
values of h, AIA will choose an intermediate parameter value (near the BCSS
integrator). We emphasize that in AIA, the parameter value used changes
with h and with the problem being tackled. Given a simulation problem, the
AIA offers, for any integration step size chosen within an appropriate stability
interval, an intelligent choice of the most appropriate integration scheme
(in terms of the best conservation of energy for harmonic forces) within a
family of 2-stage integrators. The original AIA algorithm is summarized in
Algorithm 1.

Our objective in this paper is to employ the ideas behind the 2-stage AIA
approach for deriving multi-stage adaptive integration schemes specifically
addressed to Bayesian inference applications. Taking into account the recent
indications of the superiority of 3-stage integrators over 2-stage schemes in
statistical applications [23], we plan to develop not only 2-stage adaptive
approaches as in AIA but also 3-stage adaptive algorithms. Extending AIA
to computational statistics is not straightforward. The potential challenges
are discussed in the next Section.

4. s-AIA

4.1. Extension of AIA to computational statistics
AIA makes use of specific properties and assumptions that hold for molec-

ular simulation problems, e.g. the strongest forces in the target distribu-
tion are approximately harmonic (Gaussian) with known angular frequencies,
there are well determined safety factors which scales the longest integration
stability interval to avoid nonlinear resonances, and the step size does not
vary from one integration leg to the next. Unfortunately, those conditions
are not usually met in Bayesian inference applications and therefore, when
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Input: highest angular frequency ω̃ in the problem, dimensional time-step
∆t, safety factor SfAIA =

√
2 [11]

1: Calculate dimensionless time-step: h← SfAIAω̃∆t
2: if h ≥ 4 then
3: abort - there does not exist an integration coefficient b for which a

2-stage integrator Ψ2stage
h in (11) is stable

4: else
5: Find optimal integrator coefficient:

bopt ← argmin
0<b<0.5

max
0<h<h

ρ2(h, b)

6: end if
Output: An integration coefficient bopt which determines an optimal 2-stage

integrator Ψ2stage
h in (11) to be used in an HMC simulation of the given

physical system with integration time-step ∆t

Algorithm 1–Adaptive Integration Approach (AIA). Given a physical system and a time-
step ∆t, AIA offers the most appropriate choice of an integration parameter b for a 2-stage
splitting integrator (11).

formulating s-AIA, the statistics version of AIA, the following issues have to
be dealt with.

• Harmonic forces. In contrast to molecular systems, they are not
typically dominating in the Bayesian scenario.

• Computation of frequencies. Even if the integrator could be chosen
by examining only harmonic forces, the corresponding angular frequen-
cies would not be known a priori in a Bayesian simulation.

• Resonance conditions. Restrictions on the integration step size im-
posed by nonlinear stability are not known in the Bayesian case.

• Choice of a step size. In statistics, the step size is usually randomized
at the beginning of each integration leg and this would involve having
to adjust at each step of the Markov chain the parameter values within
the chosen family of integrators (see Step 5 in Algorithm 1).

We address these issues separately.
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Pre-tabulation of the map h→ bopt
For each family of methods (2- or 3-stage), we tabulate once and for all

the optimal integration coefficients bkopt, k = 2, 3, at small increments of h
[31]. In this way, the extra computational effort due to Step 5 in Algorithm 1
can be avoided.

We produced tables for k-stage s-AIA, k = 2, 3, using grids {hi}k, i =
1, ..., Ngrid of the dimensionless stability interval (0, 2k) (Ngrid controls the
accuracy of the estimated bkopt for a given h). Similarly to Algorithm 1,
{bkopti}, i = 1, ..., Ngrid, k = 2, 3, are found as

bkopti = argmin
b∈(bMEk, bVVk)

max
0<h<hi

ρk(h, b), (17)

hi ∈ {hi}k, i = 1, ..., Ngrid, k = 2, 3,

where bMEk (the optimal parameter for the k-stage integrator as h→ 0) and
bVVk (the longest stability limit for the k-stage family) are the boundaries for
b, and ρ2(h, b), ρ3(h, b) are given by (14) and (16) respectively. For 3-stage
s-AIA, the second parameter a in (12) is calculated according to (15).

Similarly to what happens in AIA, in s-AIA, one expects bkopt to be close
to the MEk integrator coefficients for smaller values of h; to be close to bBCSSk

near h = k, and to increase up to bVVk as h approaches 2k. Figure 1 shows the
ρ2(h, b) and ρ3(h, b) functions for the range of adaptive and fixed-parameter
multi-stage integrators discussed in this work, whereas Figure 2 depicts b2opt
and b3opt as functions of dimensionless step size.

Computation of frequencies
The frequencies ωj, j = 1, ..., D, of the system are calculated during the

burn-in stage (a mandatory initial stage of an HMC simulation to reach its
stationary regime) as

ωj =
√

λj, j = 1, ..., D, (18)

where λj are the eigenvalues of the Hessian matrix of the potential function

Hi,j =
∂2U(θ)

∂θi∂θj
, i, j = 1, ..., D.

Since the Hessian matrix evolves during an HMC simulation, the resulting
frequencies are calculated as averages of (18) over the burn-in stage.

13
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Figure 1: Comparison of the upper bounds ρk(h, b), k = 2 (14), 3 (16) of the energy error,
for fixed-parameter multi-stage splitting integrators — VV2, VV3, BCSS2, BCSS3, ME2,
ME3 (Table 1) — and the adaptive integrators AIA and s-AIAk. The interval for the step
size h is normalized with respect to the number of stages k of the integrator in order to
lead to fair comparisons. The zoomed plot in the upper left corner shows the situation for
h/k ∈ (0, 1.2).

Calculation of fitting factors
Explicit integrators, such as the ones discussed in this study, may become

unstable, and thus suffer from serious step size limitations when applied to
nonlinear Hamiltonian systems [32]. To quantify the step size limitations
imposed by nonlinear stability in the Verlet integrator, Schlick et al. [32]
introduced stability limits on ω∆t for up to the 6th order resonances. This
seemed to cover the worst scenarios in molecular simulations. On the other
hand, to reproduce angular frequencies in the presence of nonlinear reso-
nances, the authors of [11] proposed to multiply them by the so called safety
factor (SF). This also can be interpreted as a reduction of the stability limit
by SF times. The safety factors are closely related to the stability limits
on ω∆t provided in Table 1 in [32] for the range of resonance orders. In
particular, SF = 2

ω∆t
. For readers’ convenience, we list the values of SF for
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Figure 2: Comparison of the integration coefficient b for fixed-parameter multi-stage split-
ting integrators —VV2, VV3, BCSS2, BCSS3, ME2, ME3 (Table 1)— and the adaptive
integrators AIA and s-AIAk, b2opt and b3opt (17). The interval for the step size h is normal-
ized with respect to the number of stages k of the integrator to lead to fair comparisons.

the Verlet integrator that correspond to the resonance orders ranging from
2 to 6 in Table 2. We have already mentioned that AIA [11] makes use of
a safety factor

√
2 (cf. Algorithm 1), which avoids resonances up to 4-th

order, while the MAIA algorithm for Modified HMC [12] utilizes
√
3, that

covers resonances up to 5-th order. In Bayesian inference applications, the
number of multiple time scales and the level of non-linearity are in general
hardly predictable, and should be treated for each problem separately. For
our purposes, instead of a safety factor, we introduce what we call a fitting
factor Sf , which not only plays the role of the safety factor but also results
from fitting the proposed multivariate Gaussian model to the data generated
during the burn-in stage. As in the case of a safety factor in [11], we use a
fitting factor for nondimensionalization of the step size. Thus, for a chosen
step size ∆t, its nondimensional counterpart is found as

h = Sf ω̃∆t. (19)
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Resonance order Safety factor
2 1

3 2
3

√
3 ≈ 1.15

4
√
2 ≈ 1.41

5
√
5
√

10+2
√
5

5
≈ 1.70

6 2

Table 2: Safety factor values for avoiding resonances of up to the 6th order.

Here, Sf is the fitting factor determined below and ω̃ is the highest frequency
of the system, obtained from the burn-in simulation. Our objective now is
to express Sf in terms of the known properties of the simulated system.
We choose to run a burn-in simulation using a Velocity Verlet algorithm and
setting L = 1 and ∆t = ∆tVV, where ∆tVV is an integration step size properly
adjusted to reach a user-chosen target acceptance rate αtarget. In Appendix
B, we provide our recommendation for selecting an αtarget which yields the
highest level of accuracy for fitting factor and frequencies estimations within
the reasonable computational time. The choice of Verlet with L = 1 helps to
obtain a simple closed-form expression for the expected energy error E[∆H]
(see Appendix C for details):

E1
VV[∆H] =

h6
VV

32
, (20)

with hVV being a dimensionless counterpart of ∆tVV, i.e. from (19)

hVV = Sf ω∆tVV.

For a D-dimensional multivariate Gaussian target, one can consider D di-
mensionless counterparts

hVVj
= Sf ωj ∆tVV, j = 1, ..., D, (21)

and find the expected energy error for a multivariate Gaussian model with
the help of (20) as

ED
VV[∆H] =

D∑
j=1

h6
VVj

32
. (22)

16



Combining (22) and (21), we find the fitting factor

Sf =
1

∆tVV

6

√
32ED

VV[∆H]∑D
j=1 ω

6
j

. (23)

Alternatively, the calculation of the frequencies may be avoided (and com-
putational resources saved), if the multivariate Gaussian model is replaced
with a univariate Gaussian model (as in [11]), which leads to

Sf =
1

ω̃∆tVV

6

√
32ED

VV[∆H]

D
. (24)

Notice that, though ω̃ appears in (24), one can compute

Sf ω̃ =
1

∆tVV

6

√
32ED

VV[∆H]

D
, (25)

without needing frequencies and use it in (19).
From now on, in order to distinguish between the two approaches, we will

denote the one in (23) — which requires frequency calculation — by Sω and
the second one in (24) — which does not — by S, i.e.

Sω =
1

∆tVV

6

√
32ED

VV[∆H]∑D
j=1 ω

6
j

, S =
1

ω̃∆tVV

6

√
32ED

VV[∆H]

D
.

As pointed out above, safety factors are meant to impose limitations on a
system-specific stability interval (cf. (19)). Thus, they should not be less
than 1 and, as a consequence, we actually use

Sω = max

(
1, 1

∆tVV
6

√
32ED

VV[∆H]∑D
j=1 ω

6
j

)
, S = max

(
1, 1

ω̃∆tVV

6

√
32ED

VV[∆H]

D

)
. (26)

We remark that, for Sf in (24) smaller than 1, S in (26) is equal to 1, then
ω̃ is required for a nondimensionalization as in (19). However, following
[33], ω̃ can be computed avoiding the calculations of Hessians, i.e. without
introducing a computational overhead.

The only unknown quantity in (26) is ED
VV[∆H], which can be found by

making use of the data collected during the burn-in stage. In fact, following
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the high-dimensional asymptotic formula for expected acceptance rate E[α]
[34] proven for Gaussian distributions in a general scenario [10], i.e.

E[α] = 1− 1

2
√
π

√
ED[∆H], ED[∆H]→ 0, D →∞,

we get an approximation for ED[∆H]

ED[∆H] ≈ 4π (1− E[α])2 . (27)

An estimation of E[α] in a simulation is given by the acceptance rate AR, i.e.
the ratio between the accepted Nacc and the total N number of proposals

AR =
Nacc

N
. (28)

Combining (27) with E[α] = AR calculated during the burn-in stage, we
compute ED

VV[∆H] as

ED
VV[∆H] = 4π (1− AR)2 ,

which gives an explicit expression for the fitting factors in (26)

Sω = max

(
1, 2

∆tVV
6

√
2π(1−AR)2∑D

j=1 ω
6
j

)
, S = max

(
1, 2

ω̃∆tVV

6

√
2π(1−AR)2

D

)
. (29)

Once the fitting factor is computed using (29), a dimensionless counterpart
of a given step size ∆t can be calculated either as

hω =

 2ω̃∆t
∆tVV

6

√
2π(1−AR)2∑D

j=1 ω
6
j

, if Sω > 1,

ω̃∆t, otherwise,
(30)

or

h =

{
2∆t
∆tVV

6

√
2π(1−AR)2

D
, if S > 1,

ω̃∆t, otherwise.
(31)

We remark that for systems with disperse distributions of frequencies, i.e.
when the standard deviation of frequencies, σ, is big, it might be useful to
apply a nondimensionalization of ∆t smoother than the proposed in (30). In
fact, a nondimensionalization method like in (19) cannot be able to properly
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catch the scattered frequencies of such systems. Therefore, for σ > 1, we
propose to use a nondimensionalization

h = Sω (ω̃ − σ) ∆t,

which brings to

hω =


2(ω̃−σ)∆t

∆tVV
6

√
2π(1−AR)2∑D

j=1 ω
6
j

, if Sω > 1,

(ω̃ − σ) ∆t otherwise.
(32)

On the other hand, if σ < 1, (30) is a better choice. We remark that the choice
of a treshold σ = 1 for using a smoother normalization method is heuristic
and validated by the good results obtained in the numerical experiments (Sec.
5), as well as by the fact that the small σ implies the negligible difference
between (30) and (32). The second statement follows from the inspection of
the ratio of hω in (32) to hω in (30). In Section 4.2 we will analyze different
choices of scaling and provide practical recommendations. With (30)-(32)
one has everything in place for finding the optimal integrator parameter bkopt
(17).

To conclude this section, it is worth mentioning yet another useful output
of the analysis. Let us recall that the dimensionless maximum stability limit
of k-stage integrators is equal to 2k, k = 1, 2, 3, ... [4]. Then, the stability
interval can be expressed in terms of the chosen fitting factor Sf (S or Sω in
(26)) as

(
0, 2k/(Sf ω̃)

)
, k = 1, 2, 3, ..., or

0 < ∆t < SL =
2k

Sf ω̃
, k = 1, 2, 3, ... . (33)

Here SL is the stability limit. We remark that, with the nondimensionaliza-
tion (32), the estimation of the stability interval differs from (33) and reads
as

0 < ∆t < SL =
2k

Sω (ω̃ − σ)
, k = 1, 2, 3, ... . (34)

In summary, we have proposed an approach for the prediction of a sta-
bility interval and an optimal multi-stage integrator for a given system. The
step size can be freely chosen within the estimated stability interval.
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4.2. s-AIA algorithm
Since the nondimensionalization method forms a key part of the s-AIA

algorithm, it is important to give some insight into the options offered by
(30)-(32). Obviously, the method (31) is cheaper in terms of computational
effort as it does not require the calculation of frequencies. In addition, (31)
is not affected by potential inaccuracies of the computed frequencies due,
e.g., to insufficient sampling during the burn-in stage. On the other hand,
taking into account the different frequencies (hence, the different time scales)
of the system provides a more accurate estimation of the system-specific sta-
bility interval. Moreover, in the case of dominating anharmonic forces, the
analysis based on the univariate harmonic oscillator model may lead to poor
estimation of the fitting factor S and, as a result, of the dimensionless step
size in (31). Therefore, we expect Sω in (29) to provide a better approxima-
tion of the stability interval, and thus to lead to a better behavior of s-AIA.
However, with the upper bound of the safety factor for the 1-stage Velocity
Verlet suggested in [32], it is possible to identify those computational models
for which the less computationally demanding fitting factor S ensures a re-
liable stability limit estimation. In particular, S > 2 implies an anharmonic
behavior of the underlying dynamics of the simulated model, and thus the
need for a more accurate Sω, together with (30) or (32) (depending on the
distribution of ωj), for a proper estimation of the stability limit. On the
contrary, if S ≤ 2, one expects S and (31) to be able to provide a reliable
approximation of the stability limit. Though, in contrast to (31), the calcu-
lation of S in (29) requires the knowledge of the highest frequency ω̃, it is
still less computationally demanding than the Sω approach since ω̃ can be
computed avoiding calculations of Hessians [33], which is the bulk of com-
putational cost for the frequencies calculations. We remark that the option
to avoid calculating frequencies and use (31) straightaway is present in the
s-AIA algorithm.

The s-AIA algorithm is summarized in Figure 3. Given a model; a dataset;
HMC parameters and settings for Tuning, Burn-in and Production stages; Iω
(see Figure 3) and an order k of s-AIA (k = 2 or 3), s-AIA algorithm works
as shown in Figure 4. We remark that there are no particular requirements
in the algorithm regarding a choice of randomization schemes for step sizes
or trajectory lengths. Some of such schemes will be discussed in Section 5.

s-AIA has been implemented in the BCAM in-house software package
HaiCS (Hamiltonians in Computational Statistics) for statistical sampling
of high dimensional and complex distributions and parameter estimation in
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STAGE INPUT OUTPUTHMC SETTINGS

TUNING

PRODUCTION

BURN-IN

Model and data (D dimension)

Targeted acceptance rate

Number of iterations: N =Ntune

Step size: Δt = 1/D

Trajectory length: L = 1

Integrator: VV

ΔtVV - a tuned step size

Frequencies calculation:

Iω (1 yes, 0 no)

Δt i
pr →h ipr → b ipr (, a i

pr),

i = 1, … , Npr

ωj - frequencies (Iω = 1)

Fitting factors:

S (Iω = 0) or Sω (Iω = 1)

HMC settings for Production: Npr, Δtpr, Lpr

Randomization schemes for Δtpr, Lpr

HMC trajectory

Pretabulated map

h → b (, a) for s-AIAk

Model and data (D dimension)

Model and data (D dimension)

Number of iterations: N = Nburn-in

Step size: Δt = ΔtVV

Trajectory length: L = 1

Integrator: VV

Number of iterations: N = Npr

Step size: Δt ∈ {Δt i
pr}

Trajectory length: L ∈ {L ipr}

Integrator: s-AIAk

i = 1, … , Npr

Figure 3: Summary of the s-AIAk algorithm. The proposed approach consists of three
stages: (i) tuning stage for adjusting the step size ∆tVV to get AR ≈ αtarget (Appendix B);
(ii) burn-in stage; the optimal multi-stage integrator and the HMC simulation parameters
are found by combining the simulation data and the analysis provided; (iii) production
stage to generate the HMC samples.

Bayesian models using MCMC and HMC based methods. A detailed presen-
tation and description of the package can be found in [17], whereas applica-
tions of HaiCS software are presented in [5, 23, 35].

5. Numerical results and discussion

In order to evaluate the efficiency of the proposed s-AIA algorithms, we
compared them in accuracy and performance with the integrators previously
introduced for HMC-based sampling methods (Table 1). We examined 2-
and 3-stage s-AIA on four benchmark models presented.

5.1. Benchmarks
• Gaussian 1, Gaussian 2: two D-dimensional multivariate Gaussian

models N (0,Σ), D = 1000, with precision matrix Σ−1 generated from a
Wishart distribution with D degrees of freedom and the D-dimensional
identity scale matrix [36] (Gaussian 1) and with diagonal precision
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1. Run Ntune HMC iterations: VV, L = 1, ∆t = 1
D

2. Adjust a step size ∆tVV to satisfy AR (28) = αtarget (see
Appendix B)

Tuning:
Ntune

D
αtarget

Input:

1. Run Nburn-in HMC iterations: VV, L = 1, ∆tVV

2. Store Nacc and calculate AR (28) for N = Nburn-in
Burn-in:

Nburn-in

Iω ∈ {0, 1}

Calculate:
ω̃ = maxωj (18)
S (29)

Calculate:
ωj (18), σ
Sω (29)

Calculate:
SL (33)
for Sf = Sω

Calculate:
SL (33)
for Sf = S

Calculate:
SL (34)

1. Compute R(SL) - a randomized stability limit

2. Produce a set of Npr randomized step sizes {∆tpri}i=1,...,Npr

such that ∆tpri = R(∆tpr) ≤ R(SL)

randomization scheme R
randomization interval IR
R ≡ {R, IR}

Npr

∆tpr

Compute:
{hpri}i=1,...,Npr (30)

Compute:
{hpri}i=1,...,Npr (31)

Compute:
{hpri}i=1,...,Npr (32)

For each hpri, i = 1, ..., Npr find bkopti (17)
using the pretabulated map h→ bkopt

Run Npr HMC iterations using (11) (k = 2) or (12) (k = 3)
with bkopti (for k = 3, aopti (15)), Lpri, ∆tpri, i = 1, ..., NprProduction:

Compute averages from the generated HMC trajectory

Iω = 0 Iω = 1

S > 2

S ≤ 2 σ ≤ 1 σ > 1

Figure 4: Detailed schematic representation of the s-AIAk algorithm.

matrix Σ−1 made by D1 = 990 elements taken from N (1000, 100) and
D2 = 10 from N (4000, 1600) (Gaussian 2).

• German, Musk: two real datasets for a Bayesian Logistic Re-
gression model [5, 37] available from the University of California
Irvine Machine Learning Repository [38], with dimensions D =
25 (German), 167 (Musk) and K = 1000 (German), 476 (Musk) obser-
vations.

The frequency distributions of the selected benchmarks estimated as pro-
posed in Section 4.1 are plotted in Figure 5.
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Figure 5: Frequency distributions of the benchmark models.

5.2. Metrics
For HMC performance evaluation we monitored the following properties:

• Acceptance rate. The acceptance rate (AR) is the ratio between the
accepted and the total N number of proposals as in (28).

• Effective Sample Size. The Effective Sample Size (ESS) is the num-
ber of effectively uncorrelated samples out of N collected samples of
a Markov chain. We calculated it, as proposed in [5], through the
effectiveSize function of the CODA package of R [39].

• Monte Carlo Standard Error. The Monte Carlo Standard Error
(MCSE) quantifies the estimation noise caused by Monte Carlo sam-
pling methods. It indicates the estimated Standard Error of the sample
mean

µ̂ =
1

N

N∑
i=1

θi

23



in a Markov chain [40], and is calculated by substituting the sample
size N in the Standard Error formula

SE =

√
σ̂2

N
, (35)

with the ESS, i.e.

MCSE =

√
σ̂2

ESS
. (36)

In (35) and (36), σ̂2 is an estimator of the sample variance [41].

• Potential Scale Reduction Factor. The Potential Scale Reduction
Factor (PSRF) monitors the convergence of a Markov chain by com-
paring it with other randomly initialized chains [42]. We calculated it
as explained in [43] (Sections 1.2-1.3).

We took minESS and min (MCSE)−1 normalized with respect to the the-
oretical average number of gradient evaluations, that is kL̄ (L̄ is the the-
oretical average of number of integration steps, k is the number of stages
of an integrator in use). Evaluation of gradients constitutes the bulk of the
computational effort in HMC simulations and the chosen normalization leads
to fair comparison between integrators with different number of stages. Of
course, larger values of minESS and min (MCSE)−1 imply better sampling
performance.

Finally, we monitored maxPSRF to examine the convergence of tests and
used a very conservative threshold, PSRF < 1.01, as suggested in [41], for all
benchmarks but Musk, for which the threshold was relaxed to 1.1 [42]. We
remark that the popular approach for the ESS and MCSE calculations by
Geyer [44] (as implemented in Stan [45]) was also tested with the proposed
benchmarks and produced almost identical values. We omit those results for
brevity.

5.3. Simulation setup
The proposed k-stage s-AIA algorithms, k = 2, 3, were tested for a range

of step sizes {k∆ti} within the system-specific dimensional stability interval
(0, k∆tSL). Such an interval is found through the dimensionalization of the
theoretically predicted nondimensional stability limit for the k-stage Velocity
Verlet using the fitting factor (29) and a method chosen among (33), (34). To
realize the randomization of each tested step size within the stability interval,
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the interval was adjusted to the heuristically chosen randomization scheme,
i.e. it is increased or decreased by a benchmark-specific kδt as detailed
in Table 3. Afterwards, we built a grid of step sizes {k∆ti}i=1,...,20 of the
modified stability interval, where k∆ti = ik∆tSL

20
, i = 1, ..., 20 and, for each

k∆ti, i = 1, ..., 20, we drew a step size for the simulation either from U(k∆ti+
kδt, k∆ti), if δt < 0, or U(k∆ti, k∆ti + kδt), if δt > 0. The number of
integration steps per iteration, L, was drawn randomly uniformly at each
iteration from {1, ..., 2L̄− 1}, with L̄ such that

L̄h = τD, (37)

where D is the problem dimension and τ is a benchmark-specific constant,
found empirically to maximize performance near the center of the stability
interval h = k. Such a setting provides a fair comparison between various
multi-stage integrators by fixing the average number of gradients evaluations
performed within each tested integrator. We remark that optimal choices of
HMC simulation parameters, such as step sizes, numbers of integration steps
and randomization intervals are beyond the scope of this study and will be
discussed in detail elsewhere. Each simulation was repeated 10 times and the
results reported in the paper were obtained by averaging over those multiple
runs to reduce statistical errors. The simulation settings are detailed in Table
3.

Benchmark D Npr Fitting factor σ correction ∆tSL kL̄ δt

Gaussian 1 1000 20000
S = 1 - 0.03017

4000 −∆tSL
20Sω = 1.2648 yes (σ = 16.7) 0.03248

Gaussian 2 1000 20000
S = 1 - 0.02983

1000
−∆tSL

20

Sω = 1.2641 yes (σ = 3.14) 0.03005 3∆tSL
20

German 25 20000
S = 1.3273 - 0.1093

25 −∆tSL
20Sω = 1.4284 no (σ = 0.897) 0.1015

Musk 167 100000
S = 2.9719 - 0.1030

167 −3∆tSL
20Sω = 3.8827 no (σ = 0.578) 0.07115

Table 3: Parameters settings for each benchmark model: D is the dimension of a bench-
mark, Npr is the number of iterations for the production stage (see Fig. 4), σ is the
standard deviation of the frequencies ωj (18), ∆tSL is the estimated stability limit, k is
the number of stages, L̄ is the average number of integration steps per iteration (37), δt
is the length of a randomization interval for the integration step size.
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5.4. Results and discussion
First, we tested 2- and 3-stage s-AIA integrators using the fitting factor

approach Sω (29) and its corresponding nondimensionalization methods (30)
or (32), selected according to the distribution of ωj (Table 3).

Figures 6–7 show the metrics collected for the Gaussian 1 and the Ger-
man BLR benchmarks. One can appreciate the superiority of 2- and 3-stage
s-AIA in terms of acceptance rate and sampling performance when compared
with fixed-parameter multi-stage schemes of the same number of stages. Re-
call that, as explained before, the standard Verlet typically used in HMC is
included in the family of multi-stage schemes. In particular, s-AIA integra-
tors reach the best possible performance in their groups, i.e. 2- and 3-stage
groups respectively, almost for each step size in the stability interval. This
means that the adaptation of the integrator coefficient bkopt with respect to
the randomized step size did enhance the accuracy and sampling of HMC.
Specifically, the highest performance was reached around the center of the
stability interval, in good agreement with the recommendations in [8, 24].
As expected, HMC combined with 3-stage s-AIA outperformed HMC with
2-stage s-AIA in sampling efficiency. Moreover, the maxPSRF plot demon-
strates that 3-stage s-AIA was the last integrator to lose convergence. In
particular, for German BLR (Figure 7), s-AIA ensured convergence over the
entire range of step sizes, which suggests that the stability limit had been
estimated accurately, i.e. the chosen fitting factor approach worked properly.

Similar trends, though less pronounced, can be observed for the Gaussian
2 benchmark in Figure 8. The top results achieved by 2- and 3-stage s-
AIA are comparable to those demonstrated by the best behaved for this
benchmark BCSS and ME integrators. Again, 3-stage s-AIA showed clear
superiority over its 2-stage counterparts, and both turned out to be the last
integrators to lose convergence in their groups. In contrast, the same fitting
factor approach Sω applied to the Musk BLR benchmark did not show the
level of accuracy observed for other benchmarks. In Figure 9, one can admit
the poor performance achieved for almost all integrators in the second half of
the stability interval, i.e the stability limit was overestimated. However, 3-
stage s-AIA reached the best values in terms of minESS and min (MCSE)−1,
again around the center of the stability interval. Further analysis of the
simulated frequencies and forces of the benchmarks revealed (see Figure 10)
the anharmonic behavior of the Musk system, which, along with the fitting
factor S ≈ 2.93 > 2 (Table 3), explains the inaccuracy of the harmonic
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Gaussian1 - fitting factor Sω + σ
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Figure 6: Gaussian 1 benchmark model with Sω fitting factor (29) and nondimensional-
ization (32). The metrics in Section 5.2 are plotted vs a range of step sizes within the
stability interval (34). s-AIA3 (solid green line) leads to the best HMC performance and
improves on the other integrators for most step sizes and all the metrics. The maxPSRF
plot shows that s-AIA3 is the integrator with best convergence. s-AIA2 (dashed green
line) shows similar advantages over the other 2-stage integration schemes. For both 2- and
3-stage s-AIA, the top performance in terms of minESS and min (1/MCSE) is reached
near the center of the stability interval. The insert in the AR plot shows the log-log scale
for the first 5 time steps of the grid.

analysis presented in Section 4.1 in the estimation of the stability limit in
this case.

Next, we tested 2- and 3-stage s-AIA integrators using the fitting factor
approach S (29) and its corresponding nondimensionalization method (31)
(see Figures 11–14). As expected, the more accurate Sω fitting factor and
its nondimensionalization methods (30), (32) lead to an overall better per-
formance than s-AIA with S and (31). However, for models with S < 2 (cf.
Figures 11, 12, 13), both fitting approaches exhibited similar trends. On the
other hand, for the Musk BLR benchmark, i.e. when S > 2, 2- and 3-stage
s-AIA benefit from the more accurate Sω fitting factor approach, reaching a
clearly better estimation of the stability limit (cf. Figure 14).
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German - fitting factor Sω
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Figure 7: German benchmark model with Sω fitting factor (29) and nondimensionalization
(30). The metrics in Section 5.2 are plotted vs a range of step sizes within the stability
interval (33). s-AIA3 (solid green line) improves on the other integrators for all step sizes
and all the metrics. It shows its best performance near the center of the stability interval.
s-AIA2 (dashed green line) shows similar advantages within the class of 2-stage integration
schemes. The maxPSRF plot shows that both s-AIA2 and s-AIA3, together with AIA2
(dashed black line) and VV2 (dashed red line), maintain convergence within the entire
stability interval. The insert in the AR plot shows the log-log scale for the first 5 time
steps of the grid.

Finally, we wish to review the behavior of the other tested multi-stage
integrators. First, we remark the superiority of 3-stage integrators over their
2-stage counterparts. For any benchmark and fitting factor approach, the
3-stage integrators performed on average better at the same computational
cost, as previously suggested in [23]. In addition, we highlight that the other
integration schemes tested showed a strong dependence on the model in use.
In particular, VV performed poorly for the Gaussian benchmarks (Figures 6,
8) but demonstrated solid performance for the BLR models, especially for
larger step sizes (Figures 7, 9). Similarly to VV, AIA resulted to be one of the
worst integrators for the Gaussian benchmarks (Figures 6, 8), but achieved
performance similar to 2-stage s-AIA for the BLR models (Figures 7, 9). On
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Gaussian2 - fitting factor Sω + σ
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Figure 8: Gaussian 2 benchmark model with Sω fitting factor (29) and nondimensional-
ization (32). Metrics are plotted vs a range of step sizes within the stability interval (34).
s-AIA3 (solid green line) leads to performance comparable to the highest one for most step
sizes. The maxPSRF plot confirms that s-AIA3 guarantees the best HMC convergence.
s-AIA2 (dashed green line) shows similar advantages within the class of 2-stage integration
schemes. The insert in the AR plot shows the log-log scale for the first 5 time steps of the
grid.

the contrary, the BCSS and ME integrators performed similarly to s-AIA
for Gaussian 2 and Musk (Figures 8, 9), whereas they lose performance for
Gaussian 1 and BLR German (Figures 6, 7).

In addition to the benchmarks presented in 5.1, in order to test the effi-
ciency of the s-AIA integrators on a more complex distribution, we considered
a standard epidemiological model SIR [46] applied to the study of the trans-
mission dynamics of COVID-19 in the Basque Country for the period from
the 10th February 2020 to the 31st January 2021 [35]. The proposed model
comprises systems of ODEs (see for details Appendix D) to be solved at each
HMC iteration, which implies time-consuming simulations. For that reason,
only one step size was considered for the model, namely the center of the
estimated stability interval k∆tSL

2
, k = 2, 3. Such a choice is supported by

our numerical experiments presented in this section. We tested both 2- and
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Musk - fitting factor Sω
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Figure 9: Musk with Sω fitting factor (29) and nondimensionalization (30). Metrics are
plotted vs a range of step sizes within the stability interval (33). s-AIA3 (solid green) leads
to the best performance together with ME3 (solid orange) and BCSS3 (solid blue), while
VV2 (dashed red) maintains better performance for larger step sizes. The maxPSRF plot
shows that the stability interval is overestimated. The insert in the AR plot shows the
log-log scale for the first 5 time steps of the grid.

3-stage s-AIA and compared their performance with those obtained using
the integrators summarized in Table 1. The simulation step sizes were ran-
domized, following the procedure described in Section 5.3. Each simulation
was repeated 10 times and the results reported in Figure 15 were obtained
by averaging over multiple runs to reduce statistical errors. The simulation
parameters are detailed in Table 4. Due to the complexity of the model
and significant computational costs involved, for the estimation of the sta-
bility interval, we followed the strategy proposed in Section 4.1 (Calculation
of fitting factor), Eqs. (24)-(25), (33). We remark that the choice of the
simulation length Npr was dictated by the complexity of the model, available
computational resources and the illustrative purposes of the simulations. For
real applications, longer simulations are recommended for achieving reliable
results.
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Figure 10: Evolution of the Euclidean norm of the forces ||∇U || (top) and average frequen-
cies ω̄ (bottom) observed in the numerical experiments for the four benchmarks with Sω

fitting factor (Figures 6–9). On the horizontal axis: Npr is the total number of iterations
during the production stage (see Table 3), iter = i

50Npr, i = 1, ..., 50. The low frequencies
of Musk BLR (violet line, bottom plot) generate the anharmonic behavior (violet line, top
plot).

Model D Npr Fitting factor ∆tSL kL̄ δt

SIR 4 160000 Sω̃ = 387.13 0.0002583 4 ∆tSL
10

Table 4: Parameters settings for the SIR model: D is the dimension of a benchmark, Npr
is the number of iterations for the production stage (see Fig. 4), ∆tSL is the estimated
stability limit, k is the number of stages, L̄ is the average number of integration steps per
iteration (37), δt is the length of a randomization interval for the integration step size.

Figure 15 confirms the superiority of the 3-stage s-AIA algorithm in terms
of minESS and min(MCSE)−1 for the standard SIR model. Moreover, as
expected, 3-stage integrators outperform the 2-stage counterparts, whereas
the 2-stage s-AIA along with the 2-stage Velocity Verlet demonstrate the best
performance within their group. The similar behaviors of s-AIA3 and BCSS3
around the center of the stability interval suggest the accurate estimation of
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Gaussian1 - fitting factor comparison
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Figure 11: Gaussian 1: The effect on the HMC performance of different scaling approaches
S and Sω (29) with (31) (in green) and with (32) (in purple) respectively. The metrics to
monitor are plotted against the 1-stage dimensionless stability interval (0, 2) in order to
display the comparison. HMC with s-AIA using the Sω fitting factor approach (in purple)
exhibits more accuracy and better sampling around the center of the stability interval.

the stability limit.
In conclusion, we observed that the s-AIA algorithms enhanced the per-

formance of HMC, if the stability interval length was estimated accurately.
When that is the case, s-AIA demonstrates the best performance around the
center of the stability interval, which, together with (33)-(34), gives a helpful
suggestion for the choice of step size in HMC simulations. Moreover, the
more accurate fitting factor approach Sω (29) with (30) or (32) provided a
better approximation of the stability limit, which resulted in higher accuracy
and greater performance of the adaptive integrators, mostly when applied to
systems with prevailing anharmonic forces, i.e. if S > 2.
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German - fitting factor comparison
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Figure 12: German BLR: The effect on the performance of different scaling approaches S
and Sω (29) with (31) (in green) and with (30) (in purple) respectively. Metrics are plotted
against the 1-stage dimensionless stability interval (0, 2) for comparison. HMC with s-AIA
using the Sω fitting factor (in purple) exhibits more accuracy and better sampling in the
second part of the stability interval.

6. Conclusion

We have presented a novel adaptive multi-stage integration approach for
enhancing the accuracy and sampling efficiency of HMC-based methods for
Bayesian inference applications. The proposed methodology, which we call
s-AIA, provides, for any choice of step size within the stability interval, a
system-specific palindromic 2- or 3-stage splitting integrator which ensures
the best energy conservation for harmonic forces within its family. Moreover,
we offered a solution for detecting a system specific dimensional stability in-
terval using the simulation data generated at the HMC burn-in stage. In
particular, we introduced three optional scaling/nondimensionalization ap-
proaches for estimating the stability limit with different level of accuracy and
computational effort.

s-AIA was implemented (without introducing computational overheads in
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Gaussian2 - fitting factor comparison
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Figure 13: Gaussian 2: The effect of the scaling approaches S and Sω (29) with (31)
(in green) and with (32) (in purple) respectively. Metrics to monitor are plotted against
the 1-stage dimensionless stability interval (0, 2) for comparison. Both approaches lead to
almost identical performance in terms of accuracy, sampling and stability.

simulations) in the in-house software package HaiCS (Hamiltonians in Com-
putational Statistics) [5, 17] and tested against the popular numerical inte-
grators (Verlet [6, 7], BCSS [8] and Minimum Energy [20, 26]) on the range
of benchmark models. We found that the adaptivity helped to reach the best
possible performance within the families of 2-, 3-stage splitting integration
schemes. We emphasize that standard Velocity Verlet, the HMC integrator
of choice, is a member of those families. If the stability limit was estimated
accurately, s-AIA integrators reached the best performance in their groups,
i.e. 2- and 3-stage groups, almost for each step size in the stability interval.
Also, using more stages enhanced the sampling performance, stability and
conservation of the energy of the harmonic forces with the same computa-
tional effort.

We have demonstrated that the more accurate fitting factor approach Sω

(29) led to an overall better performance in HMC simulations than its less
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Musk - fitting factor comparison
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Figure 14: Musk BLR: The effect of the scaling approaches S and Sω (29) with (31)
(in green) and with (30) (in purple) respectively. Metrics are plotted against the 1-stage
dimensionless stability interval (0, 2) for comparison. Using Sω (in purple) helps to shift
the best performance of both adaptive schemes towards the center of the stability interval.
Moreover, maxPSRF confirms that the stability limit is estimated better with Sω.

computationally expensive counterpart S. However, the latter was able to
reach comparable results when lying below the upper threshold S < 2 [32].
In that way, computational time and resources may be saved by avoiding
the computation of angular frequencies. On the other hand, for more com-
plex distributions, e.g. with dominating low-frequencies (like the Musk BLR
benchmark model [38]), we found that a proper analysis of the underlying
dynamics of the simulated system might assist in the choice of a suitable
system-specific fitting factor, the randomization interval and the number of
HMC iterations required for a chain to converge.

We remark that even in the case of a rough estimation of the stability
limit (like in Musk BLR), HMC with multi-stage adaptive splitting schemes
achieves top performance in comparison with the fixed-parameter schemes,
though the exact location of the optimal step size is harder to predict in this
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Figure 15: Standard SIR model combined with the COVID-19 daily incidence data from
the Basque Country. Comparison of the minESS and min(MCSE)−1 collected from HMC
simulations with the integrators presented in Table 1. s-AIA3 (solid green bar) reaches
the top performance with both performance metrics. 3-stage integrators (solid bars) out-
perform 2-stage counterparts (dashed bars).

case. In an upcoming study, we will show how the proposed methodology
can be adjusted for refining optimal parameters of HMC-based simulations.

Appendix A. Derivation of ρ3(h, b) in (16)

Consider the harmonic oscillator with Hamiltonian

H =
1

2
(p2 + θ2), θ, p ∈ R, (A.1)

and equations of motions

dθ

dt
= p,

dp

dt
= −θ. (A.2)
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Given a k-stage palindromic splitting integrator Ψh (h is the integration step
size), it acts on a configuration (θi, pi) at the i-th iteration as

Ψh

(
qi
pi

)
=

(
qi+1

pi+1

)
=

(
Az

h Bz
h

Cz
h Dz

h

)(
qi
pi

)
, (A.3)

for suitable method-dependent coefficients Az
h, Bz

h , Cz
h , Dz

h (z = {bi, aj}
is the set of k − 1 integration coefficients). In [8], a formula for ρ(h, z) is
provided:

ρ(h, z) =
(Bz

h + Cz
h )

2

2(1− Az
h
2)

. (A.4)

For a 3-stage palindromic splitting integrator (12), the integrator coefficients
are (z = {b, a})

Az
h = 1− h2

2
+ a(1/2− b)(1/2− a+ b)h4 − 2a2b(1/2− a)(1/2− b)2h6,

(A.5)
Bz

h = h− 2a(1− a)(1/2− b)h3 + 2a2(1/2− a)(1/2− b)2h5, (A.6)
Cz

h = −h+ (2ab(1− b)− a/2 + 1/4)h3+

+ 2ab(1/2− b)(a(1− b)− 1/2)h5 + 2a2b2(1/2− a)(1/2− b)2h7. (A.7)

Finally, for a, b in (15) and Az
h, Bz

h and Cz
h in (A.5)-(A.6)-(A.7), ρ(h, z) in

(A.4) becomes

ρ3(h, b) =
h4(−3b4+8b3−19/4b2+b+b2h2(b3−5/4b2+b/2−1/16)−1/16)

2

2(3b−bh2(b−1/4)−1)(1−3b−bh2(b−1/2)2)(−9b2+6b−h2(b3−5/4b2+b/2−1/16)−1)
.

Appendix B. Derivation of αtarget for s-AIA tuning.

For the burn-in stage, we choose the 1-stage Velocity Verlet integrator
with L = 1 and step size ∆tVV, which should be ideally chosen to be close to
the center of the stability interval to achieve the best accuracy and sampling
efficiency of an HMC simulation [24]. In order to identify such a step size, we
estimate the expected acceptance probability E[α] following [10] (Sec. 5.2,
Th. 1), i.e.

E[α] = 1− 2

π
arctan

√
E[∆H]

2
, (B.1)

which holds for standard univariate Gaussian distribution, i.e. the harmonic
oscillator with the Hamiltonian (A.1), regardless of the integrator being used,
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Input: number of iterations Ntune, dimension of the simulated system D,
number of iterations for AR check Ncheck, target αtarget, sensibility ϵ > 0,
step size increment δt > 0

Initialize: ∆tVV = 1
D

, N = Ntot = Nacc = 0
1: while Ntot +Ncheck < Ntune do
2: Perform Ncheck HMC iterations with VV and L = 1
3: N = N +Ncheck

4: Nacc number of acceptances over the last N iterations
5: Compute AR (28)
6: if AR < αtarget − ϵ then
7: ∆tVV = ∆tVV − δt
8: N = 0
9: else if AR > αtarget + ϵ then

10: ∆tVV = ∆tVV + δt
11: N = 0
12: end if
13: Ntot = Ntot +Ncheck

14: end while
Output: ∆tVV

Algorithm 2: Routine for tuning a step size ∆tVV in a burn-in HMC simulation.

the step size and L. For the burn-in stage simulation setting, the expected
energy error E[∆H] is defined in (C.3) and, evaluated at the middle of the
stability interval, h = 1, it is equal to

E[∆H] =
1

32
. (B.2)

Combining (B.1) and (B.2), one obtains

E[α] ≈ 0.92 = αtarget.

We provide a detailed procedure for adjusting a step size ∆tVV to reach αtarget

in Algorithm 2

Appendix C. Derivation of E1
VV[∆H] in (20)

According to [8], for the harmonic oscillator with the Hamiltonian (A.1)
and the equations of motion (A.2), the expected energy error produced by a
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k-stage palindromic splitting integrator Ψh applied for L integration steps is
given by

E[∆H] = sin2 (LΘz
h) ρ(h, z), (C.1)

where Θz
h = arccosAz

h, and Az
h is defined in (A.3). For L = 1 and ρ(h, z)

defined in (A.4), (C.1) yields

E[∆H] =
(Bz

h + Cz
h )

2

2
. (C.2)

For the 1-stage Velocity Verlet integrator (7), one has

ΨVV
h

(
θi
pi

)
=

 (
1− h2

2

)
θi + hpi(

−h+ h3

4

)
θi +

(
1− h2

2

)
pi

 ,

that is
Bz

h = h, Cz
h = −h+

h3

4
,

which, combined with (C.2), provides

E1
VV[∆H] =

h6
VV

32
. (C.3)

Appendix D. SIR model

The system of ODEs underlying the Susceptible-Infectious-Removed (SIR)
compartmental model is the following

dS

dt
= −βS I

P
,

dI

dt
= βS

I

P
− γI,

dR

dt
= γI,

(D.1)

with initial conditions S(t0) = P −I0, I(t0) = I0 and R(t0) = 0. Here, S(t) is
the number of the susceptibles, I(t) is the number of infectious people, R(t)
is the number of recovered individuals, β is the transmission rate, γ is the
inverse of the average infectious time, I0 is the initial number of infectious
individuals and P = S(t) + I(t) + R(t) is the total (constant) population.
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Since we utilized daily incidence data gathered in the Basque Country during
the COVID-19 pandemic, we added a counting compartment CI(t) which
counts the number of new infections, i.e.

dCI

dt
= βS

I

P
.

Due to the imprecise collection of data during the COVID-19 pandemic,
we took explicitly into account under-reporting of new infected cases. Given
{C̃t0+j}nj=1 that account for the new daily incidence - n is the number of days,
in our case n = 356 - one can see them as realizations of a random variable
C̃(t0 + j) which gives the daily incidence at day j. In that way, C̃(t0+j)

η(t0+j)
,

j = 1, ..., n represents the real number of new daily infections, η(t) ∈ (0, 1].
Therefore, following [35], we took

C̃(t)

η(t)
∼ NB(C(t), ϕ),

where C(t) = CI(t) − CI(t − 1) and ϕ−1 controls the overdispersion around
C(t).

For our numerical experiments, the model parameters to be estimated
have the following priors:

β ∼ N (βµ, βσ), γ ∼ N (γµ, γσ), I0 ∼ N (I0µ , I0σ), ϕ−1 ∼ Exp(ϕ−1
λ ),

where

βµ = 0.3, βσ = 0.1,

γµ = 0.1, γσ = 0.015,

I0µ = 21.88017, I0σ = 7.29339,

ϕ−1
λ = 0.1.

The ODE system (D.1) was solved numerically using CVODES from the
SUNDIALS suite [47], which employs the backward differentiation formula
(BDF) method, Newton iteration with the DENSE linear solver, and a user-
supplied Jacobian routine (for details see [47] and references therein).
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