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Abstract

We revisit the general framework introduced by Fazylab et al. (SIAM J. Optim. 28, 2018) to construct Lyapunov
functions for optimization algorithms in discrete and continuous time. For smooth, strongly convex objective func-
tions, we relax the requirements necessary for such a construction. As a result we are able to prove for Polyak’s
ordinary differential equations and for a two-parameter family of Nesterov algorithms rates of converge that improve
on those available in the literature. We analyse the interpretation of Nesterov algorithms as discretizations of the
Polyak equation. We show that the algorithms are instances of Additive Runge-Kutta integrators and discuss the rea-
sons why most discretizations of the differential equation do not result in optimization algorithms with acceleration.
We also introduce a modification of Polyak’s equation and study its convergence properties. Finally we extend the
general framework to the stochastic scenario and consider an application to random algorithms with acceleration for
overparameterized models; again we are able to prove convergence rates that improve on those in the literature.

1 Introduction
In this paper we contribute to the literature that explores the relations between optimization algorithms, differential
equations and Lyapunov functions [14, 25, 27, 33]. As is well known, in order to find a minimizer x? of a differentiable
function f : Rd → R, the simplest technique is given by the gradient descent (GD) algorithm

xk+1 = xk − α∇f(xk), (1.1)

which can be seen as the result of discretizing the gradient flow (GF) ordinary differential equation (ODE)

dx(t)

dt
= −∇f(x(t)) (1.2)

by means of Euler’s rule, the simplest conceivable integrator. While, under very general hypotheses (f bounded from
below and∇f Lipschitz), the iterates (1.1) will converge to a stationary point of f if α is suitably chosen, it is standard
[23] to analyze GD when the attention is restricted to functions f that possess additional properties. For appropriate
choices of α, f(xk) − f(x?) converge at a rate O(1/k) when f ∈ FL (the set of convex functions with L-Lipschitz
gradient), while when f ∈ Fm,L (the set ofm-strongly convex functions with L-Lipschitz gradient) one can show that
f(xk)− f(x?) converge with rate O(((κ− 1)/(κ+ 1))k), where κ denotes the condition number κ = L/m.

It is of course possible to improve on the rates provided by GD while staying with first-order information, i.e.
without resorting to information on higher derivatives of f . For instance, the celebrated Nesterov’s algorithm

xk+1 = xk − αk∇f(yk) (1.3a)
yk+1 = xk+1 + βk(xk+1 − xk) (1.3b)
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converges with rate O(1/k2) for f ∈ FL and with rate O
(
((
√
κ− 1)/(

√
κ+ 1))k

)
when f ∈ Fm,L, for appropriate

choices of αk, βk (which depend on the class F of functions under consideration). This improvement in convergence
rate is known as acceleration. The rates quoted for (1.3) are nearly optimal in terms of what a first-order algorithm can
achieve for both classes of functions [23].

As is the case for GD, Nesterov algorithm is related to ODEs, even though the connection was not mentioned in
the original paper [21]. The well-known contribution [30] showed, that, when αk, βk are tailored for f ∈ FL, (1.3)
provides a numerical discretization of

ẍ(t) +
r

t
ẋ(t) +∇f(x(t)) = 0.

For values of αk, βk suited to the case f ∈ Fm,L, (1.3) can be seen as a sophisticated (see e.g. [27]) numerical
discretization of the ODE

ẍ(t) + b̄
√
mẋ(t) +∇f(x(t)) = 0 (1.4)

considered by Polyak [26].1 Polyak showed that, the heavy ball algorithm, a straightforward discretization of (1.4)
exhibits acceleration when applied to quadratic f .

The connection between differential equations and optimization algorithms, further highlighted in [28], has led to
a, by now large, number of research works that proposed accelerated algorithms both in Euclidean and non-Euclidean
geometry, based on discretizations of second-order dissipative ODEs (see e.g. [32, 13]). Furthermore, the links with
Hamiltonian dynamics have motivated contributions that construct or interpret optimization algorithms using concepts
such as shadowing [24], symplecticity [1, 2, 19, 20, 29], discrete gradients [6], or backward error analysis [8]. A
common element of the analysis presented in many of these papers is the construction of discrete Lyapunov functions
that were used to investigate the convergence rate of the optimization algorithms. The reference [7], based on the con-
trol theoretic view of optimization algorithms suggested in [16], has given a general methodology to find convergence
rates by means of Lyapunov functions. Applications of this technique may be seen in [27].

In this work, we restrict our attention to the case of strongly convex functions and modify the general control theory
framework in [7, 27]. We relax some of the conditions needed to obtain a Lyapunov function both in continuous and
discrete time. In the new framework, we construct a Lyapunov function for (1.4) that allows to prove, for each
choice of the friction parameter b̄, a convergence rate that improves on the rate established in [27]. We show that, for
f ∈ Fm,L, b̄ may be chosen to guarantee rates arbitrarily close to

√
2m; this is to be compared with the best rate√

m that may be proved in the approach of [27, 7]. Furthermore, this analysis closes the gap between the quadratic
and non-quadratic objective functions, in particular, for b̄ > 3

√
2/2 the convergence rate given by this analysis is

equal to rate for quadratic objective functions showing in this case that the rate is sharp. Similarly, in the discrete time
setting, we obtain a new Lyapunov function for a two-parameter family of Nesterov optimization methods (1.3). This
allows us to prove, for a suitable choice of parameters, a convergence rate

(
(
√
κ −
√

2)/
√
κ
)2

for ‖xk − x?‖2, an
improvement over the best rate

(
(
√
κ− 1)/(

√
κ+ 1)

)2
available in the literature [23].

In addition, the modified framework is

1. Used to study a perturbation of the GF equation (1.2) that leads to a new second-order ODE related to (1.4).
Discretizations of this ODE have the potential of yielding optimization algorithms with acceleration.

2. Extended to account for stochastic optimization algorithms. This extension is illustrated in the case of acceler-
ated algorithms for over-parameterized models, where again we are able to prove rates better than those available
in the literature [31].

A final contribution of this work is to interpret (1.3) as a member of the class of additive Runge-Kutta methods [3],
and explain the (rather demanding) structural conditions that discretizations of (1.4) should satisfy in order to lead to
accelerated algorithms.

The rest of the paper is organized as follows. In Section 2 we describe the control theoretic framework both
in continuous and in discrete time and formulate general results for the construction of Lyapunov functions. We
then in Section 3 study the convergence properties of (1.4) as well as the family of algorithms (1.3). Section 4
analyses the connections between algorithms of the form (1.3) and the ODE (1.4). We highlight that the algorithms

1Following [27], we use overbars for parameters associated to ODEs.
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may be understood as additive Runge-Kutta discretizations of the ODE, and comment on the structural conditions
that discretizations of (1.4) need to satisfy to achieve acceleration. In Section 5 we study a perturbation of the GF
ODE. Finally in Section 6 we extend our approach to stochastic optimization algorithms and in particular consider
accelerated algorithms for over-parameterized models.

2 Preliminaries

2.1 Control theoretic formulation
We start by discussing a control theoretical formulation [16, 7] of optimization algorithms both in continuous and in
discrete time.

In the continuous time setting, we will consider the following format

ξ̇(t) = Āξ(t) + B̄u(t), x(t) = C̄ξ(t), u(t) = ∇f(x(t)), t ≥ 0, (2.1)

where ξ(t) ∈ Rn is the state, x(t) ∈ Rd(d ≤ n) the feedback output mapped to the input u(t) = ∇f(x(t)). Fixed
points of (2.1) satisfy

0 = Āξ?, x? = C̄ξ?, u? = ∇f(x?);

in the optimization context u? = 0 and x? is the minimizer we seek. Both the GF equation (1.2) and Polyak’s ODE
(1.4) can be cast in the format (2.1). For GF, n = d, ξ = x, and Ā = 0d , B̄ = Id, C̄ = Id, while for (1.4) n = 2d,
ξ = [ẋT, xT]T, and

Ā =

[
−b̄
√
mId 0d
Id 0d

]
, B̄ =

[
−Id
0d

]
, C̄ =

[
0d Id

]
.

In the discrete-time setting, we consider the formulation

ξk+1 = Aξk +Buk, (2.2a)
uk = ∇f(yk), (2.2b)
yk = Cξk, (2.2c)
xk = Eξk, (2.2d)

where ξk ∈ Rn is the state, uk ∈ Rd is the input (d ≤ n), yk ∈ Rd is the feedback output that is mapped to uk by
the nonlinear map ∇f . GD (1.1) and Nesterov’s (1.3) in the particular case αk = α, βk = β we will be focusing on
below are easily written in this format. For GD, n = d and A = 0d, B = −Id, C = Id, E = Id, while for (1.3),
n = 2d, ξk = [xT

k−1, x
T
k]T and,

A =

[
0d Id
−β (β + 1)Id

]
, B =

[
0d
−αId

]
, C =

[
−βId (β + 1)Id

]
, E =

[
0d Id.

]
The format (2.1) can be easily extended [7] to cases where Ā, B̄, . . . depend on t. Likewise in (2.2) it is possible to let
A, B, . . . depend on k. Those extensions are not needed for our purposes here.

2.2 Matrix inequalities
Matrix inequalities may be used to describe different classes of nonlinearities in control theory [18]. For the application
within optimization see e.g. [16, 7]. The key idea here is to express different properties of the function f as matrix
inequalities that relate increments in∇f(x) and increments in x. For example, a function is m-strongly convex if and
only if for all x, y ∈ Rd

m‖x− y‖2 ≤ (x− y)T(∇f(x)−∇f(y)).

This is equivalent to the following matrix inequality: f is m-strongly convex if and only if[
x− y

∇f(x)−∇f(y)

]T [−mId 1
2Id

1
2Id 0d

] [
x− y

∇f(x)−∇f(y)

]
≥ 0.
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In this work, we will use two additional inequalities for f ∈ Fm,L. If ∇f is L-Lipschitz, we have

f(x)− f(y) ≤ ∇f(y)T(x− y) +
L

2
‖x− y‖2

which can be expressed as

f(x)− f(y) ≤
[
x− y
∇f(y)

]T [L
2 Id

1
2Id

1
2Id 0

] [
x− y
∇f(y)

]
(2.3)

For f ∈ Fm,L, we have that

mL

m+ L
‖x− y‖2 +

1

m+ L
‖∇f(x)−∇f(y)‖2 ≤ (∇f(x)−∇f(y))T(x− y)

which gives rise to: [
x− y

∇f(x)−∇f(y)

]T [− mL
m+LId

1
2Id

1
2Id

−1
m+LId

] [
x− y

∇f(x)−∇f(y)

]
≥ 0. (2.4)

2.3 Lyapunov functions for ODEs and their discretizations
A way to study the convergence of the continuous dynamics (2.1) and their discrete counterparts (2.2) is by using a
Lyapunov function. In the case of continuous dynamics, the references [7, 27] use Lyapunov functions of the form

V (ξ(t), t) = eλt
(
f(x(t))− f(x?) + (ξ(t)− ξ?)TP̄ (ξ(t)− ξ?)

)
, (2.5)

where λ > 0 and P̄ is an n × n symmetric matrix. If one can show that, for suitable chosen λ and P̄ , (d/dt)V ≤ 0
along solutions of (2.1), then

eλt
(
f(x(t))− f(x?) + (ξ(t)− ξ?)TP̄ (ξ(t)− ξ?)

)
≤ V (ξ(0), 0),

which, under the additional assumption that P̄ is positive semidefinite, P̄ � 0, leads obviously to the decay estimate

f(x(t))− f(x?) ≤ e−λtV (ξ(0), 0).

In this paper, we relax the hypothesis P̄ � 0 in order to improve the decay rate λ. We leverage the fact that the
attention is restricted to f ∈ Fm,L and therefore

m

2
‖x(t)− x?‖2 ≤ f(x(t))− f(x?), (2.6)

so that from (2.5), using the relation between ξ and x in (2.1),

eλt
(

(ξ(t)− ξ?)TP̃ (ξ(t)− ξ?)
)
≤ V (ξ(t), t),

where P̃ = P̄ + (m/2)C̄C̄T. Thus, if V decreases along the dynamics,

(ξ(t)− ξ?)TP̃ (ξ(t)− ξ?) ≤ e−λtV (ξ(0), 0),

which, after using (2.1) once more, leads to the following decay estimate for x (σ denotes the spectrum of eigenvalues):

‖x(t)− x?‖2 ≤ maxσ(C̄TC̄)‖ξ(t)− ξ?‖2 ≤ maxσ(C̄TC̄)

minσ(P̃ )
e−λtV (ξ(0), 0), (2.7)

provided that minσ(P̃ ) > 0, i.e. that P̃ � 0.
The following theorem provides conditions that guarantee that the Lyapunov function (2.5) is indeed decreasing

along the trajectories of (2.1) so that (2.7) holds. The proof, that will not be given, is similar to the proof of Theorem
6.4 in [7] and relies on computing (d/dt)V along the dynamics and using the relations (2.3) and (2.4).
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Theorem 2.1. Suppose that, for (2.1), there exist λ > 0, σ ≥ 0 and a symmetric matrix P̄ with P̃ := P̄ +
(m/2)C̄TC̄ � 0, that satisfy

T̄ = M̄ (0) + M̄ (1) + λM̄ (2) + σM̄ (3) � 0

where

M̄ (0) =

[
P̄ Ā+ ĀTP̄ + λP̄ P̄ B̄

B̄TP̄ 0

]
,

M̄ (1) =
1

2

[
0 (C̄Ā)T

C̄Ā C̄B̄ + B̄TC̄T

]
,

M̄ (2) =

[
C̄T 0
0 Id

] [
−m2 Id

1
2Id

1
2Id 0

] [
C̄ 0
0 Id

]
,

M̄ (3) =

[
C̄T 0
0 Id

] [
− mL
m+LId

1
2Id,

1
2Id − 1

m+LId

] [
C̄ 0
0 Id

]
.

Then for f ∈ Fm,L, t ≥ 0, and V given by (2.5), the decay estimate (2.7) holds.

Remark 2.2. The Lipschitz constant L only appears in T̄ through the matrix M̄ (3). Therefore if σ = 0 the theorem
holds for arbitrary m-strongly convex f .

The case of the discrete dynamics (2.2) is completely parallel. The Lyapunov functions considered are of the form

Vk(ξ) = ρ−2k
(
a0(f(x)− f(x?)) + (ξ − ξ?)TP (ξ − ξ?)

)
, ρ ∈ (0, 1), (2.8)

with P symmetric and a0 > 0. If one can show that along the discrete dynamics Vk+1(ξk+1) ≤ Vk(ξk) then, for
P � 0, it is easy to show that

f(xk)− f(x?) ≤ ρ2k V0(ξ0)

a0
.

In this paper, for f ∈ Fm,L, we relax the assumption P � 0 by exploiting the bound (2.6). The following theorem
summarises the conditions that guarantee that the Lyapunov function decays along the dynamics (2.2) and provides a
rate of convergence of xk towards x?.

Theorem 2.3. Suppose that, for (2.2), there exist a0 > 0, ρ ∈ (0, 1), ` > 0, and a symmetric matrix P , with
P̃ := P + (a0m/2)ETE � 0, such that

T = M (0) + a0ρ
2M (1) + a0(1− ρ2)M (2) + `M (3) � 0, (2.9)

where

M (0) =

[
ATPA− ρ2P ATPB

BTPA BTPB

]
,

and
M (1) = N (1) +N (2), M (2) = N (1) +N (3), M (3) = N (4),

with

N (1) =

[
EA− C EB

0 Id

]T [L
2 Id

1
2Id

1
2Id 0

] [
EA− C EB

0 Id

]
,

N (2) =

[
C − E 0

0 Id

]T [−m2 Id 1
2Id

1
2Id 0

] [
C − E 0

0 Id

]
,

N (3) =

[
CT 0
0 Id

] [
−m2 Id

1
2Id

1
2Id 0

] [
C 0
0 Id

]
,

N (4) =

[
CT 0
0 Id

] [
− mL
m+LId

1
2Id

1
2Id − 1

m+LId

] [
C 0
0 Id

]
.
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Then, for f ∈ Fm,L, with V given by (2.8), the sequence {xk} satisfies

‖xk − x?‖2 ≤ maxσ(ETE)‖ξk − ξ?‖2 ≤
maxσ(ETE)

minσ(P̃ )
V0(ξ0)ρ2k. (2.10)

3 Analysis of Polyak equation and Nesterov’s algorithm
We will now use the framework in Section 2.3 to study the convergence properties of (1.4). We will then present an
analysis for the convergence properties of the family of algorithms (1.3). Both analyses will be connected in Section
4 by means of the theory of numerical methods for ODEs.

3.1 Continuous time analysis
By introducing the variable v = (1/

√
m)ẋ, equation (1.4) can be rewritten as the system

v̇ = −b̄
√
mv − 1√

m
∇f(x), (3.1a)

ẋ =
√
mv. (3.1b)

The friction parameter b̄ is nondimensional, i.e. it does not change when in (1.4) t, x or f are rescaled. The scaling
factor

√
m has been introduced to ensure that v shares the dimensions of x. If we now set ξ = [vT, xT]T, then (3.1) is

of the form (2.1) with

Ā =

[
−b̄
√
mId 0d√
mId 0d

]
, B̄ =

[
−(1/

√
m)Id

0d

]
, C̄ =

[
0d Id

]
. (3.2)

According to Theorem 2.1 in order to identify a convergence rate for (3.1), it is sufficient to find λ, σ ≥ 0 and a matrix
P̄ with P̄ + (m/2)C̄C̄T � 0 that lead to ̂̄T � 0. We will set σ = 0 as this does not have a significant impact on the
value of λ that results from the analysis (see the discussion in [27]). The matrix T̄ is now only a function of P̄ and λ
(and the ODE parameter b̄).

Before proceeding with the construction of our Lyapunov function it is worth noticing that the matrix Ā in (3.2) is
a Kronecker product of a 2× 2 matrix and Id

Ā =

[
−b̄
√
m 0√
m 0

]
⊗ Id.

The factor Id originates from the dimensionality x and the 2×2 size of the second factor arises from the fact that (1.4)
is a second order ODE. The matrices B̄, C̄ have a similar Kronecker product structure. It is thus natural to consider
symmetric matrices of the form

P̄ = ̂̄P ⊗ Id, ̂̄P =

[
p̄11 p̄12
p̄12 p̄22

]
(3.3)

and then T̄ will also have a Kronecker product structure

T̄ = ̂̄T ⊗ Id, ̂̄T =

t̄11 t̄12 t̄13
t̄12 t̄22 t̄23
t̄13 t̄23 t̄33

 . (3.4)

From (3.2), we find

t̄11 = −2b̄
√
mp̄11 + 2

√
mp̄12 + λp̄11,

t̄12 = −b̄
√
mp̄12 +

√
mp̄22 + λp̄12,

t̄13 = −(1/
√
m)p̄11 +

√
m/2,

t̄22 = λp̄22 − (m/2)λ,

t̄23 = −(1/
√
m)p̄12 + λ/2,

t̄33 = 0.
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We are ready to find λ and ̂̄P , with λ as large as possible, so as to have P̃ � 0, T̄ � 0. The algebra is simplified if we
set λ =

√
m r̄. We proceed in steps.

• First step, p̄11: Since t̄33 = 0, the requirement ̂̄T � 0 implies t̄13 = 0, which leads to

p̄11 = m/2. (3.5)

• Second step, p̄12: Similarly, ̂̄T � 0 implies t̄23 = 0 or

p̄12 = (m/2)r̄. (3.6)

• Third step, p̄22: All elements in the third row/column of ̂̄T vanish and thus we only have to deal with the leading
2× 2 submatrix of ̂̄T . The condition ̂̄T � 0 imposes the constraints t̄11t̄22− t̄212 ≥ 0 and t̄11 ≤ 0, t̄22 ≤ 0, that,
after (3.5)–(3.6), read

∆(p̄22, r̄) := −
√
mr̄

(
3m3/2r̄

2
− b̄ m3/2

) (m
2
− p̄22

)
−m

(
p̄22 +

r̄2m

2
− b̄r̄m

2

)2

≥ 0 (3.7a)

r̄ ≤ 2b/3, (3.7b)
p̄22 ≤ m/2. (3.7c)

Our task is to maximize the function r̄ defined on the (p̄22, r̄) plane (b̄ and m are parameters), subject to the
constraints (3.7a)–(3.7c) and P̃ � 0. We seek points (p̄22, r̄) where ∆ = 0 (the first constraint is active), and,
as we wish to maximize r̄, (∂/∂p̄22)∆ = 0. The second of these relations yields

p̄22 = mr̄2/4. (3.8)

• Fourth step, upper bound on r̄: We have now determined

̂̄P =
m

2

[
1 r̄
r̄ r̄2/2

]
.

This matrix is indefinite for r̄ > 0 and would not be admissible if we were working in the framework of [7].
The requirement P̃ � 0 in Theorem 2.1 is equivalent to the following bound

r̄ <
√

2. (3.9)

• Fifth step, r̄: After using the value of p̄22 in (3.8), ∆ = 0 becomes a fourth degree polynomial equation in r̄,
which may be factorized as

m2r̄

(
−b̄+

3r̄

2

)(
− r̄

2

8
+
br̄

4
− 1

2

)
= 0.

We consider successively the last two factors in the left hand-side (the root r̄ = 0 in the last display is obviously of no
relevance for our purposes).

1. If the penultimate factor vanishes, the constraint in (3.7b) (corresponding to t11 ≤ 0) is active. Because ∆ =

t11t22 − t212 = 0, necessarily t12 = 0 so that ̂̄T is zero except perhaps for its (2, 2) entry r̄
(
r̄2/4− 1/2

)
, which

is < 0 for the admissible rates r̄ <
√

2. Thus, when b̄ ∈ (0, 3
√

2/2), for

r̄ = 2b̄/3 ∈ (0,
√

2)

we have T̂ � 0 and P̃ � 0. Since r̄ cannot be increased without violating the constraint (3.7b), the value of r̄
just found is maximum subject to the constraints P̃ � 0, T̄ � 0.
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(a) Continuous setting
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(b) Discrete setting

Figure 1: The left panel shows the relationship between the rate r̄ = λ/
√
m and the parameter b̄ in the time-continuous

case. The right panel shows the relationship between the rate r and the method parameter b in the discrete case when
δ = δmax = 1/

√
κ; the solid curves are for κ = 106 and the dashed curves are for κ = 102. The red curves correspond

to the present analysis and the blue curves correspond to the hypothesis P̄ � 0. The red and blue solid lines on the
right are indistinguishable from the red and blue lines on the left.

2. Assume now that the last factor vanishes. Solving the quadratic equation, r̄ = b̄±
√
b̄2 − 4, so that b̄ ≥ 2. The

+ sign leads to r̄ > 2 and has to be discarded in view of (3.9). With the− sign the condition b̄−
√
b̄2 − 4 <

√
2,

leads to b̄ > 3
√

2/2. Thus, for b̄ > 3
√

2/2,

r̄ = b̄−
√
b̄2 − 4 > 0

leads to ̂̄T � 0 and P̃ � 0; t̄11, t̄12 and t̄22 are all 6= 0 and the constraints (3.7b)–(3.7c) are inactive. By
construction, for the pair (p22, r̄) we are considering, (∂/∂p22)∆ = 0 and in addition it is trivial to check that
(∂/∂r̄)∆ < 0; the gradient of ∆ as a function of (p22, r̄) is a negative scalar multiple of the gradient of the
objective function r̄ and we have maximized r̄.

To sum up: it is possible to get all rates r̄ in the interval (0,
√

2). Each value of r̄ ∈ (0,
√

2) may be achieved in
two ways, the first by choosing b̄ = 3r̄/2 ∈ (0, 3

√
2/2) and the second by choosing b̄ > 3

√
2/2. The value of r̄ as a

function of b̄ is represented in Figure 1a, where for comparison we have also provided the best value of r̄ that may be
obtained when using the framework in [27] that requires P̄ � 0. As we can see, the modification of the hypothesis on
P̄ allows to prove a significantly better convergence rate.

Remark 3.1. If the objective function f is quadratic, it is of course possible to obtain a sharp bound for the con-
vergence rate λ =

√
mr by solving (1.4) in terms of eigenvalues/vectors. (See [16, Section 2.2] for the analysis in

the discrete scenario.) Also included in Figure 1a is the rate for m-strongly convex quadratic problems, which is
maximized for b̄ = 2, where λ = 2

√
m. For non-quadratic targets, the rate that may be proved under the hypothesis

P̄ � 0 in [7, 27] is also maximized when b̄ = 2, where λ =
√
m. The present analysis proves, for non-quadratic

targets, bounds with rates arbitrarily close to λ =
√

2
√
m, by choosing b̄ close to 3

√
2/2. Note that for b̄ > 3

√
2/2

the rate proved here cannot be improved, as it coincides with the rate that the ODE achieves for quadratic objective
functions.
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Figure 2: Polyak ODE. Bounds for ‖x(t) − x?‖2 for different values of the parameter b̄, when f is given by (3.10),
m = 1, L = 106 .

3.1.1 A numerical illustration

We compare numerically the bound provided by the analysis just presented with the corresponding bound when oper-
ating within the framework in [27]. We use the two-dimensional objective function in Fm,L given by

f(x1, x2) =
m

2
(x21 + x22) + 4(L−m) log (1 + e−x1) (3.10)

(subindices denote scalar components of the vector x) and for 0 ≤ t ≤ 20 compute solutions of (3.1) with a high-order
Runge-Kutta algorithm. We report here results form = 1, L = 106, when the initial condition is chosen as x1(0) = 0,
x2(0) = 50, v1(0) = 0, v2(0) = 0.

The first panel in Fig. 2 corresponds to b̄ = 2, the value that provides the bound with best rate when operating
as in [27]. The solid straight line gives the bound (2.7) when P̄ and λ are taken as in the analysis in the preceding
subsection; one finds minσ(P̃ ) ≈ 0.0195, maxσ(CTC) = 1 and λ = 4/3. The dashed line gives the bound (2.7)
when P̄ � 0 and λ are determined as in [27]; then minσ(P̃ ) ≈ 0.1432, maxσ(CTC) = 1 and λ = 1. We see how,
by relaxing the requirements on P̄ , it is possible to prove a larger rate of convergence, at the expense of increasing
the factor 1/minσ(P̃ ) in (2.7). In this experiment, the slopes of both straight lines clearly underestimate the rate of
decay in the ODE.

In the central panel of Fig. 2, b̄ = 2.1, a value slightly below 3
√

2/2 ≈ 2.1213. Our analysis yields minσ(P̃ ) ≈
0.0034, maxσ(CTC) = 1 and λ = 1.400, while when working as in [27], we get minσ(P̃ ) ≈ 0.1355, maxσ(CTC) =
1 and the quite pessimistic value λ ≈ 0.9950.

In the final panel, b = 2.2 > 3
√

2/2. Now our analysis has minσ(P̃ ) ≈ 0.0319, maxσ(CTC) = 1 and
λ = 1.2835, and, under the hypotheses of [27], minσ(P̃ ) ≈ 0.1493, maxσ(CTC) = 1 and λ ≈ 0.9807. The slope
of the the continuous line describes very well the decay behaviour of the ODE (note that, for this value of b̄, the rate
proved here cannot be improved, as it coincides with the rate the ODE achieves on linear problems). As it is the case
for the other two values of b̄, the rate that may be proved under the assumption P̄ � 0 is unduly pessimistic.

By comparing the three panels, we see that the value of the friction parameter that leads to a faster decay of the ODE
solution is b̄ = 2, i.e. the best choice for quadratic objective functions. In this regard, we note that once t is so large that
x(t) is close to x?, the objective function becomes approximately quadratic f(x) ≈ f(x?)+(1/2)(x−x?)TH(x−x?),
with H given by the Hessian matrix of f evaluated at the minimizer.

3.2 Discrete time analysis
We will now study optimization methods of the form (1.3) for αk = α and βk = β. In order to easily relate what
follows to the time-continuous case, we first introduce as a new variable the divided difference, k = 1, 2, . . .,

dk =
1

δ
(xk − xk−1),
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where the steplength δ =
√
mα is nondimensional (β is also nondimensional). With the new variable, (1.3) becomes

(k = 0, 1, . . .)

dk+1 = βdk −
α

δ
∇f(yk), (3.11a)

xk+1 = xk + δβdk − α∇f(yk), (3.11b)
yk = xk + δβdk, (3.11c)

and these equations are of the form (2.2) with ξk = [dT
k, x

T
k]T ∈ R2d and

A =

[
βId 0
δβId Id

]
, B =

[
−(α/δ)Id
−αId

]
, C =

[
δβId Id

]
, E =

[
0 Id

]
.

According to Theorem 2.3, in order to identify a convergence rate for (1.3), it is sufficient to find numbers a0 > 0,
ρ ∈ (0, 1), ` ≥ 0 and a matrix P with P + (a0m/2)ETE � 0 such that T in (2.9) is � 0. Similarly to the previous
subsection, we set ` = 0, as this does not have a significant impact on the value of ρ that results from the analysis.
This, in turn, allows us to further simplify things, since T is homogeneous in P and a0 and we may assume a0 = 1.
Then T is a function of P and ρ (and the method parameters β and δ).

Similarly to the continuous case, the Kronecker product structure of the matrices A,B,C,E leads us to look for a
2× 2 P̂ and a 3× 3 T̂ as in equations (3.3) and (3.4), rather than for P and T . The elements of T̂ are found to be

t11 = β2p11 + 2δβ2p12 + δ2β2p22 − ρ2p11 − δ2β2m/2,

t12 = βp12 + δβp22 − ρ2p12 − δβm/2 + ρ2δβm/2,

t13 = −δ−1αβp11 − 2αβp12 − δαβp22 + δβ/2,

t22 = p22 − ρ2p22 −m/2 + ρ2m/2,

t23 = −δ−1αp12 − αp22 + 1/2− ρ2/2,
t33 = δ−2α2p11 + 2δ−1α2p12 + α2p22 + α2L/2− α.

Note that in the limit α→ 0, these elements converge to those of the continuous case.
Our objective is to find ρ ∈ (0, 1), p11, p12, and p22 that lead to T̂ � 0 and P̂ + (m/2)ÊTÊ � 0 (which in turn

imply T � 0 and P + (m/2)ETE � 0). The algebra becomes simpler if we represent β and ρ2 as

β = 1− bδ, ρ2 = 1− rδ.

In the continuous case (first and second steps), we had t̄13 = 0 and t̄23 = 0, and we now similarly impose the
conditions t13 = 0 and t23 = 0, which leads to

p11 = p22δ
2 −mrδ +

m

2
,

p12 =
mr

2
− δp22.

These relations imply

t33 =
1

2
α(Lα− 1),

so that we require α ≤ 1/L in order to guarantee t33 ≤ 0. In other words, the step length has to satisfy δ ≤ δmax =
1/
√
κ.

Having dealt with the third row/column of T̂ , we have to take care of the submatrix consisting of the first and
second rows/columns. If ∆ denotes the determinant of that submatrix, we need ∆ ≥ 0. As in the third step of the
continuous case, we impose the conditions ∆ = 0 and (∂/∂p22)∆ = 0. The second of these relations yields

p22 = mr
b2δ3 − b2δ − 2rbδ3 + 2rbδ + 3rδ2 − 2δ − r

(4δr − 4)
,
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an expression that reduces to (3.8) for δ = 0. Similar to the continuous case, the expression for p22 is substituted in
the equation ∆ = 0. This gives a relation ϕ(r, b; δ) = 0 between the method parameter b and the rate r for each choice
of δ. Unlike the simpler continuous case, where the function r = r(b̄) was found analytically, we have to proceed
numerically and for given δ, we solve numerically for r on a grid of values of b, while at the same time checking the
conditions P + (m/2)ETE � 0 and t22 ≤ 0 (the latter guarantees T � 0).

For two values of δmax, we plot in Figure 1b the curve ∆ = 0 for the most favourable step length δ = δmax and, in
addition, we compare with the analogous curve obtained in [27] under the constraint P � 0 required by the framework
in [7]. In [27] the best achievable rate is r = 1. As we may see, by changing the constraint on P it is possible to prove
a significantly better convergence rate. In particular, for the modified constraint in the present analysis, one can show
easily that b may be chosen to get r =

√
2−O(δ), which in turn implies that for δ = δmax in (2.10):

ρ2 = 1−
√

2√
κ

+O
(

1

κ

)
, κ→∞.

Remark 3.2. The parameter values α = 1/L and β = (1 −
√
mα)/(1 −

√
mα) in (1.3) (the standard choice for

Nesterov algorithm) lead to the best convergence rate that may be established with the approach in [27]. The present
analysis shows that higher convergence rates may be rigorously proved for larger values of β as illustrated in Figure
1b.

4 Connecting optimization algorithms and Polyak’s ODE
We now discuss the relations between the continuous and discrete time studies presented above.

4.1 The Nesterov algorithm as an integrator
For suitable parameter choices, the Nesterov algorithm (1.3) is a discretization of Polyak differential equation. How-
ever, as discussed in detail in [27], such a discretization does not correspond to any of the more familiar classes of
ODE solvers, such as linear multistep or Runge Kutta (RK) methods. In particular we remark that in (1.3) ∇f is not
evaluated at the approximations xk delivered by the algorithm. As we shall see presently, it turns out that the Nesterov
algorithm is an example of the class of Additive Runge-Kutta (ARK) algorithms, a generalization of the RK integrators
considered by several authors after its introduction by Cooper [3, 4].

Additive Runge-Kutta (ARK) algorithms integrate systems of differential equations (d/dt)z = g(z) in cases where
it makes sense to decompose g(z) as a sum g(z) =

∑N
ν=1 g

[ν](z). In the plain RK case, the numerical solution is
advanced over a time step zk 7→ zk+1 by evaluating g(z) at a sequence of so-called stage vectors Zk,1, . . . , Zk,s and
then setting zk+1 = zk +

∑s
i=1 big(Zk,i), where the bi are suitable weights. In turn, for the explicit algorithms we are

interested in, the stages are computed successively, i = 1, . . . , s, as Zk,i = zk + h
∑i−1
j=1 ai,jg(Zk,j), with suitable

coefficients ai,j . ARK algorithms are entirely similar, but evaluate the individual pieces g[ν](z) rather than g(z).
With z = [vT, xT]T ∈ R2d, the system (3.1) may be rewritten as

d

dt
z = g[1](z) + g[2](z) + g[3](z) :=

[
−b̄
√
mv

0

]
+

[
− 1√

m
∇f(x)

0

]
+

[
0√
mv

]
;

the three parts of g(z) respectively represent the friction force, potential force and inertia in the oscillator. It is easily
checked that, if we choose a steplength h > 0, and see dk and xk as approximations to v(kh) and x(kh) respectively,
then a step (dk, xk) 7→ (dk+1, xk+1) of the optimization algorithm (3.11) with parameters α = h2, β = 1 − hb̄

√
m,
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δ =
√
mh is just one step zk 7→ zk+1 of the ARK integrator for (3.1) given by:

Zk,1 = zk,

Zk,2 = zk + hg[1](Zk,1),

Zk,3 = zk + hg[1](Zk,1) + hg[3](Zk,2),

Zk,4 = zk + hg[1](Zk,1) + hg[3](Zk,2) + hg[2](Zk,3),

zk+1 = zk + hg[1](Zk,1) + hg[2](Zk,3) + hg[3](Zk,4).

The stage vectors have Zk,1 = [dT
k, x

T
k]T, Zk,2 = [βdT

k, x
T
k]T, Zk,3 = [βdT

k, y
T
k ]T, Zk,4 = [dT

k+1, y
T
k ]T, and therefore the

computation of the second, third and fourth stages incorporate successively the contributions of friction, inertia and
potential force.

If we now think that the value of h > 0 varies and consider the optimization algorithm (3.11) with α = h2,
β = 1 − hb̄

√
m, the standard theory of numerical integration of ODEs shows that, if the initial points x−1 and x0

are chosen in such a way that, as h → 0, x0 and (1/h)(x0 − x−1) converge to limits A and B, then, in the limit of
kh → t, xk and (1/h)(xk+1 − xk) converge to x(t) and ẋ(t) respectively, where x(t) is the solution of (1.4) with
initial conditions x(0) = A and ẋ(0) = B. In addition, the discrete Lyapunov function of the optimization algorithm
in Section 3 may be shown to converge to the Lyapunov function of the ODE found in this section. Finally the discrete
decay factor over k steps (1−

√
mrh)k converges to the continuous decay factor exp(−λt). These facts in particular

explain that, in Figure 1, the graph of the relation between b̄ and r̄ that holds for the ODE is indistinguishable from the
corresponding graph for the optimization algorithm when κ is large (κ being large corresponds to h being small).

4.2 Discretizations that do not succeed in getting acceleration
Many recent contributions have derived optimization algorithms by discretizing suitably chosen dissipative ODEs. It is
well known that, unfortunately, many properties of ODEs are likely to be lost in the discretization process, even if high-
order, sophisticated integrators are used. The archetypical example is provided by the discretization of the standard
harmonic oscillator: most numerical methods, regardless of their accuracy, provide solutions that either decay to the
origin or spiral out to infinity as the number of computed points grows unboundedly. Similarly, discretizations of (1.4)
are likely not to share the favourable decay properties in Section 3.1.

Let us consider the following extension of the optimization algorithm (1.3):

xk+1 = yk + β(xk − xk−1)− α∇f(yk), (4.1a)
yk = xk + γ(xk − xk−1), (4.1b)

with the additional parameter γ. The choice γ = 0 yields the heavy ball algorithm, which (see [27]) corresponds to a
“natural” standard linear multistep discretization of the Polyak equation (1.4) where∇f is evaluated at the approxima-
tions xk. Unfortunately the heavy ball algorithm does not provide acceleration. As shown in [27] for γ = 0 (or more
generally for γ 6= β), the optimization algorithm (4.1) does not inherit a Lyapunov functions from the Polyak ODE.
The analysis in that paper hinges on a study of the nondimensional quantity c := t11/(mδ), which for T̂ � 0 has to
be ≤ 0 and for a discretization of an ODE has a finite limit as δ → 0. When γ = 0, the expression for the quantity c
includes a positive contribution δ(κ− 1)β2/2; for acceleration, δ has to be O(1/

√
κ) which makes it impossible for c

to be ≤ 0.
The unwelcome presence of κ in t11 may be traced back to the appearance of L in the matrixN (1) in Theorem 2.3.

Nesterov’s algorithms of the family (1.3) do not suffer from that appearance because for them the matrix EA − C
that multiplies (L/2)Id in the recipe for N (1) vanishes. The condition EA − C = 0 appears then to be of key
importance in the success of Nesterov algorithms; we put it into words by saying that one has to impose that the point
yk = Cξk where the gradient is evaluated has to coincide with the point xk+1 = EAξk that the algorithm would
yield if uk = ∇f(yk) happened to vanish (see (2.2)). This suggests that the integrator has to treat the potential force
and the friction force in the oscillator separately, something that may be achieved by ARK algorithms but not by more
conventional linear multistep or RK methods that do not avail themselves of the separate pieces g[1](z), g[2](z), g[3](z)
but are rather formulated in terms of g(z).
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5 Derivation and analysis of a new second order ODE
In the last few years there has been a number of works that have studied ways of accelerating convergence towards
equilibrium for dynamics of stochastic differential equations [15, 5, 9, 11, 12] . When the dynamics of the underlying
SDE are linear this problem is directly connected to finding the minimum of a quadratic function f(x) = (1/2)xTSx+
cTx, with S = ST � 0. For simplicity we will assume that c = 0 and in this case the GF (1.2) obtains the simple form

dx

dt
= −Sx

and the speed of convergence towards zero is dictated by the minimum eigenvalue of S. It is possible to increase the
speed of convergence towards zero by introducing a non-reversible perturbation to the above equation. More precisely,
it is easy to show [15] that the dynamics of

dx

dt
= −(I + J)Sx, J = −JT

yields faster convergence towards zero than the original GF. Furthermore, as discussed in [15] there is an optimal
perturbation J? for which the rate of convergence towards zero is maximized, with the maximum value being Tr(S)/d
where d is the dimension of the matrix. A natural question to ask is if this kind of acceleration remains true when
f ∈ Fm,L is not quadratic. In this case the perturbed ODE has the form

dx

dt
= −(I + J)∇f(x), J = −JT.

This equation and discretizations of it were studied in [10]. In particular, it was shown that upon assuming additional
information about the eigenvalues of the Hessian of f , convergence rates may improve both in the continuous and
discrete setting. Here we will instead consider the GD (1.2) for an appropriately chosen extended objective function
and modify its dynamics with a simple non-reversible perturbation. In this case it is possible to fully quantify the
increase in the convergence rate without any additional assumptions on f .

We introduce an auxiliary variable y ∈ Rd and the extended objective function F (y, x) = (L/2)‖y‖2 + f(x) with
minimum at (0, x?). The corresponding GF is

d

dτ

[
y
x

]
= −

[
Ly
∇f(x)

]
and we perturb the right hand-side by adding a skew-symmetric term to get

d

dτ

[
y
x

]
= −

[
Ly
∇f(x)

]
+K

[
0 −I
I 0

] [
Ly
∇f(x)

]
where K ≥ 0 is a perturbation parameter. For K = 0, x evolves as in (1.2) (but the time variable here has been
relabelled for reasons that will become clear immediately). By replacing the variables y and τ and the parameter K
by v, t and b̄ ≥ 0 respectively, with

y =

√
m

L
v, τ =

b̄
√
m

L
t, K =

1

b̄

√
L

m
,

the system becomes

d

dt
v = −b̄

√
mv − 1√

m
∇f(x), (5.1a)

d

dt
x =

b̄
√
m

L
∇f(x) +

√
mv. (5.1b)

Comparing these expressions with (3.1), we see that we are dealing here with a perturbation of Polyak’s equation,
where now ∇f(x) is used both in the v and x equations; Polyak equation is retrieved in the limit L ↑ ∞ with fixed
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m. For this reason we shall refer to (5.1) as the Polyak+ system. As noted before, as the friction coefficient b̄ grows
unboundedly (i.e. K ↓ 0) with fixed L and m, the dynamics of x under (5.1) approaches GD; on the other hand, in the
limit b̄ ↓ 0, (5.1) becomes a Hamiltonian (nondissipative) system.

The system (5.1) is easily cast in the control framework of Section 2 and we use Theorem 2.1 to investigate to
what extent it improves on Polyak’s ODE. The t̄ij in (3.4) are found to be

t̄11 = −2b̄
√
mp̄11 + 2

√
mp̄12 + λp̄11,

t̄12 = −b̄
√
mp̄12 +

√
mp̄22 + λp̄12,

t̄13 = −(1/
√
m)p̄11 +

√
m/2− b̄

√
mp̄12/L,

t̄22 = λp̄22 − (m/2)λ,

t̄23 = −(1/
√
m)p̄12 + λ/2− b̄

√
mp̄22/L,

t̄33 = −b̄
√
m/L.

To carry out the analysis it is convenient to introduce ζ = 1/L; the limit value ζ = 0 then corresponds to Polyak’s
ODE. We saw in Section 3.1 that, in the ζ = 0 case, each rate r̄ <

√
2 may be achieved with two different values of b̄,

one below 3
√

2/2 and the other above. We have carried out the analysis of (5.1) for b̄ < 3
√

2/2. When determining
λ =
√
mr̄ and the elements p̄ij we operate under the following two assumptions:

1. The matrix ̂̄T has rank ≤ 1.

2. We have
p̄11 = m/2. (5.2)

In extensive experimentation we have observed that these two conditions hold when λ is numerically maximized
subject to the constraints P̃ � 0, ̂̄T � 0. Note also that they are satisfied in Polyak’s, ζ = 0, case: for the first
assumption recall that we saw in Section 3.1 that, for b̄ < 3

√
2/2 , when r̄ is maximized all elements of ̂̄T vanish,

except perhaps t̄22 and for the second assumption see (3.5). We point out that Assumption 1 is equivalent to the
requirement that all 2× 2 submatrices of ̂̄T are singular.

The assumptions above uniquely determine λ and P̄ in Theorem 2.1. We proceed as follows:

• By imposing that the determinant of the first and third rows and columns of ̂̄T vanish we find

r̄ = 2b̄− (4/m)p̄12 − (2b̄/m)p̄212ζ. (5.3)

• By annihilating the determinant of the second and third rows and first and third columns

p̄22 = p̄212/m. (5.4)

• We take the expressions for r̄ and p̄22 just found to the equation t̄22t̄33 − t̄223 = 0. This yields an algebraic
relation between p̄12 and ζ:

(2b̄2p̄412 +m2b̄2p̄212)ζ2 + (8b̄p̄312 − 2mb̄2p̄212 + 2m2b̄p̄12 −m3b̄2)ζ + (−3p̄12 +mb̄)2 = 0. (5.5)

The conditions (5.3)–(5.5) guarantee that the rank of ̂̄T is ≤ 1, i.e. the matrix has at least two zero eigenvalues. Since
t̄33 < 0 for b̄ > 0 and ζ > 0 the matrix will have rank exactly one and be negative semidefinite.

The algebraic curve (5.5) in the (p̄12, ζ) plane contains the points P1 = (0, 1/m) and P2 = (mb̄/3, 0). The first
corresponds to the L = m (i.e. κ = 1) situation; the second was known to us at it corresponds to Polyak’s equation.
The global behavior of the curve (5.5) may be investigated by solving the quadratic equation for ζ. Restricting the
attention to 0 ≤ p̄12 ≤ mb̄/3, there is a branch of the curve where to each value of p̄12 there corresponds a unique
value of ζ (i.e. of L), so that as p̄12 increases monotonically from 0 to mb̄/3, ζ decreases monotonically from 1/m
to 0 (or κ increases from 1 to∞). Note that this branch connects the points P1 and P2. Once ζ = ζ(p̄12), for given
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m, b̄, has been determined in this way, the relations (5.2)–(5.4) determine r̄, p̄11, p̄22 as functions of p̄12 ∈ [0,mb̄/3]
with known expressions (that we will not reproduce here). It is easily checked that, for the values of p̄ij defined in this
way, P̃ is in fact � 0. Numerical experiments confirm that maximizing λ subject to the constraints P̃ � 0, ̂̄T � 0 for
different choices of L, m and b̄ leads to the values of p̄ij and r̄ we have just constructed analytically. This confirms
that the procedure we have followed succeeds in identifying the best λ and P̄ in Theorem 2.1 or, in other words, that
the assumptions 1-2 formulated at the outset are valid.

In Fig. 3 we have plotted in the (κ, r̄) plane the parametric curve κ = L/m = 1/(mζ(p̄12)), r̄ = r̄(p12),
p̄12 ∈ [0,mb̄/3] when b̄ = 2. Although the system (5.1) clearly improves on Polyak’s dynamics for small κ, the
improvement becomes negligible as κ increases, i.e. in the regime where it would really be needed. We now make this
matter more precise. At the point P1, where κ = 1, (5.3) yields r̄ = 2b̄; this is to be compared with the value r̄ = 2b̄/3

10
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1
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Figure 3: Converge rate r as a function of the condition number κ for (5.1)

obtained in Section 3 for Polyak’s equation. The introduction of gradient in the first equation in (5.1) increases λ by a
factor of 3.

Let us now consider the neighbourhood of the point P2, i.e. the κ� 1 regime. By implicit differentiation of (5.5),
we find that, at this point, the Taylor expansion of ζ as a function of p12 is given by

ζ =
243

9b̄2 − 2b̄4
(
p12 −

b̄

3

)2
+O

((
p12 −

b̄

3

)3)
, p̄12 → mb̄/3.

On the other hand, using the expression of r̄ as a function of p̄12, one finds

r̄ =
2b̄

3
− 4

m

(
p̄12 −

mb̄

3

)
+O

(
p̄12 −

mb̄

3

)2

, p̄12 → mb̄/3

and, combining the last equations, we obtain after eliminating p̄12,

r̄ =
2b̄

3
+ C(b̄)

1√
κ

+O
(

1

κ

)
, κ→∞, (5.6)

with

C(b̄) = 4

√
9b̄2 − 2b̄4

243
, b̄ < 3

√
2/2.
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Since C(b̄) > 0, we conclude that, for large condition number κ, the Polyak+ system in fact achieves a rate larger
than the rate 2b̄/3 for Polyak’s ODE. Unfortunately, in order to maximize the leading term, 2b̄/3, in the expansion
(5.6), b̄ has to be chosen close to the upper limit 3

√
2/2 and, as b̄ ↑ 3

√
2/2, the increment C(b̄)/

√
κ vanishes. For

instance, for b̄ = 2.1, (5.6) becomes r̄ ≈ 1.4000 + 0.2286/
√
κ; for κ = 104 the increment is only 0.0022. Therefore,

as in the particular case depicted in Fig. 3, the improvement in rate of the Polyak+ system on the Polyak ODE is
indeed negligible, except in the uninteresting case of small κ. For this reason we have not undertaken the analysis of
optimization algorithms based on discretizations of the Polyak+ system.

6 Stochastic problems: The case of over-parameterized models
In this section, we extend the Lyapunov function approach to analyse the performance of optimization methods applied
to specific modern machine learning models. In particular, we study models such as non-parametric regression or
overparameterised deep neural models that are expressive enough to fit or interpolate the data set completely [34, 17].
For these models the function f(x) that one is interested in minimising has the following structure

f(x) =
1

N

N∑
i=1

fi(x). (6.1)

Due to the structure of f in (6.1) any gradient based algorithm would need to calculate

∇f(x) =
1

N

N∑
i=1

∇fi(x)

which when N is large may be computationally very expensive. A typical strategy followed in stochastic optimization
algorithms is to replace the gradient with a random unbiased estimator of it. In the simplest possible case, one uses
the following estimator

∇̂f(x) = ∇fiω
where iω is a uniform random variable in the set of integers {1, · · · , n}. More generally, and without necessarily
assuming the finite sum-structure one replaces the full gradient by

∇̂f(x) = ∇f(x, z)

where z can be thought of as the random gradient noise, which we assume satisfies E(∇f(x, z)) = ∇f(x).

6.1 A framework for stochastic algorithms
We consider optimization algorithms with random noise analogously to (2.2) with the formulation

ξk+1 = Aξk +Bũk, (6.2a)

ũk = ∇̂f(yk), (6.2b)
yk = Cξk, (6.2c)
xk = Eξk, (6.2d)

where ξk ∈ Rn is the state, ũk ∈ Rd is the random input (d ≤ n), yk ∈ Rd is the feedback output that is mapped to ũk
by the random nonlinear map ∇̂f . We assume here that at each step the random gradient is chosen to be independent
of the current state, i.e. ∇̂f(yk) = ∇f(yk, zk) for some random variable zk independent of yk.

Theorem 6.1. Suppose that, for (6.2), there exist a0 > 0, ρ ∈ (0, 1), and a symmetric matrix P , with P̃ := P +
(a0m/2)ETE � 0, such that

T = M (0) + a0ρ
2M (1) + a0(1− ρ2)M (2) � 0, (6.3)
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where

M (0) =

[
ATPA− ρ2P ATPB

BTPA ρ0B
TPB

]
,

and
M (1) = N (1) +N (2), M (2) = N (1) +N (3),

with

N (1) =

[
L
2 (EA− C)T(EA− C) 1

2 (EA− C)T(LEB + 1)
1
2 (LEB + 1)T(EA− C) Lρ0

2 (EB)TEB + 1
2 (EB + (EB)T)

]
,

N (2) =

[
C − E 0

0 Id

]T [−m2 Id 1
2Id

1
2Id 0

] [
C − E 0

0 Id

]
,

N (3) =

[
CT 0
0 Id

] [
−m2 Id

1
2Id

1
2Id 0

] [
C 0
0 Id

]
.

Assume there exists ρ0 > 0 such that for all y ∈ Rd

E[∇̂f(y)T(EB)T(EB)∇̂f(y)] ≤ ρ0∇f(y)T(EB)T(EB)∇f(y), (6.4a)

E[∇̂f(y)TBTPB∇̂f(y)] ≤ ρ0∇f(y)TBTPB∇f(y). (6.4b)

Then, for f ∈ Fm,L, ρ0 > 1 and V given by (2.8), the sequence {xk} satisfies

E[‖xk − x?‖2] ≤ maxσ(ETE)E[‖ξk − ξ?‖] ≤
maxσ(ETE)

minσ(P̃ )
V0(ξ0)ρ2k.

Proof. The proof of this theorem follows the same argument as the proof of Theorem 2.3 except for the derivation of
N (1) and M (0); therefore we only show how these terms differ. Using the Equation (6.2) we have

[
xk+1 − yk
∇f(yk)

]
=

[
EA− C EB 0

0 0 Id

]ξk − ξ?ũk
∇f(yk)

 (6.5)

and substituting (6.5) into (2.3) (with x = xk+1 and y = yk) we have

f(xk+1)− f(yk) ≤

ξk − ξ?ũk
∇f(yk)

T L2 (EA− C)T(EA− C) L
2 (EA− C)TEB 1

2 (EA− C)T

L
2 (EB)T(EA− C) L

2 (EB)TEB 1
2 (EB)T

1
2 (EA− C) 1

2EB 0

ξk − ξ?ũk
∇f(yk)


=:

ξk − ξ?ũk
∇f(yk)

T

Ñ1

ξk − ξ?ũk
∇f(yk)

 .
We can expand this matrix inequality as

f(xk+1)− f(yk) ≤ (ξk − ξ?)TÑ1
11(ξk − ξ?) + 2(ξk − ξ?)TÑ1

12ũk + 2(ξk − ξ?)TÑ1
13∇f(yk)

+ ũT
kÑ

1
22ũk + 2(∇f(yk))TÑ1

23ũk + (∇f(yk))TÑ1
33∇f(yk).

Taking expectation (conditional on ξk) using that E[ũk|ξk] = ∇f(yk) and (6.4) we have

E[f(xk+1)− f(yk)|ξk] ≤ (ξk − ξ?)TÑ1
11(ξk − ξ?) + 2(ξk − ξ?)T(Ñ1

12 + Ñ1
13)∇f(yk)

+ (∇f(yk))T(ρ0Ñ
1
22 + 2Ñ1

23 + Ñ1
33)∇f(yk).
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We can re-express this as a matrix inequality as

E[f(xk+1)− f(yk)|ξk] ≤
[
ξk − ξ?
∇f(yk)

]T

N (1)

[
ξk − ξ?
∇f(yk)

]
with N (1) as given in the statement of the theorem.

The other term to consider is

ρ−2(k+1)(ξk+1 − ξ?)TP (ξk+1 − ξ?)− ρ−2k(ξk − ξ?)TP (ξk − ξ?) =

ρ−2(k+1)

[
ξk − ξ?
ũk

]T [
ATPA− ρ2P ATPB

BTPA BTPB

] [
ξk − ξ?
ũk

]
Taking expectation, using that E[ũk|ξk] = ∇f(yk) and (6.4) we conclude that

E[ρ−2(k+1)(ξk+1 − ξ?)TP (ξk+1 − ξ?)− ρ−2k(ξk − ξ?)TP (ξk − ξ?)|ξk] = ρ−2(k+1)

[
ξk − ξ?
∇f(yk)

]T

M (0)

[
ξk − ξ?
∇f(yk)

]
.

The remainder of the proof follows the same argument as Theorem 2.3.

Remark 6.2. Conditions (6.4) are generalisations of the strong growth condition in [31] which is satisfied if there
exists ρ0 > 0 such that

E[‖∇̂f(y)‖2] ≤ ρ0‖∇f(y)‖2. (6.6)

Such a condition implies that ∇̂f(x∗) = 0 almost surely.

6.2 A family of stochastic optimization algorithms
We now consider the following family of stochastic optimization algorithms

xk+1 = yk − η∇̂f(yk), (6.7a)
yk = α̃vk + (1− α̃)xk, (6.7b)

vk+1 = β̃vk + (1− β̃)ζk − γη∇̂f(yk). (6.7c)

This family was considered in [31] as a generalisation of the accelerated coordinate descent method [22]. By intro-
ducing the variable dk = vk − wk we can write the system (6.7) in a form similar to (3.11) as follows:

dk+1 = (1− α̃)β̃dk − η(γ − 1)∇̂f(yk), (6.8a)

xk+1 = yk − η∇̂f(yk), (6.8b)
yk = xk + α̃dk. (6.8c)

These equations are of the form (6.2) with ξk = [dT
k, x

T
k]T ∈ R2d and

A =

[
(1− α̃)β̃Id 0

α̃Id Id

]
, B =

[
−η(γ − 1)Id
−ηId

]
, C =

[
α̃Id Id

]
, E =

[
0 Id

]
.

As in deterministic case, the Kronecker product structure of the matrices A,B,C,E lead us to look for a matrix P
of the form P = P̂ ⊗ Id for some 2 × 2 matrix P̂ as in (3.3) and to set a0 = 1. Observe that for P of this form and
with the matrices B,E given here we have (EB)T(EB) = η2Id and

BTPB = η2(p11(γ − 1)2 + 2p12(γ − 1) + p22)Id.

Therefore the conditions (6.4) hold for any f which satisfies (6.6) provided the following holds

p11(γ − 1)2 + 2p12(γ − 1) + p22 ≥ 0. (6.9)
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Now by Theorem 6.1 it remains to find P̂ such that T̂ � 0, P̃ = P̂ + (m/2)ÊTÊ � 0 and (6.9) holds for T given by
(6.3). The elements of T̂ are

t11 = α̃
(
α̃p22 − β̃p12 (α̃− 1)

)
− p11ρ2 − β̃

(
α̃p12 − β̃p11 (α̃− 1)

)
(α̃− 1)− α̃2m

2

t12 = α̃p22 − p12ρ2 +
α̃m

(
ρ2 − 1

)
2

− β̃p12 (α̃− 1)

t13 =
α̃ρ2

2
− η

(
α̃p22 − β̃p12 (α̃− 1)

)
−
α̃
(
ρ2 − 1

)
2

− η
(
α̃p12 − β̃p11 (α̃− 1)

)
(γ − 1)

t22 = −
(
1− ρ2

)
(m− 2p22)

2

t23 = −ρ
2

2
− ηp22 − ηp12 (γ − 1) +

1

2

t33 =
Lη2ρ0

2
− η + η2p22ρ0 + 2η2p12ρ0 (γ − 1) + η2p11ρ0 (γ − 1)

2
.

Following the same reasoning as in the deterministic case we first impose that t13 = t23 = 0 by setting

p11 = − α̃+ 2α̃ηp12 − 2α̃ηp22 − 2β̃ηp12 + 2α̃β̃ηp12 − 2α̃ηγp12

2β̃η − 2α̃β̃η − 2β̃ηγ + 2α̃β̃ηγ
,

p12 =
(1− ρ2)− 2ηp22

2η(γ − 1)
.

In [31] the parameters are set as follows for f ∈ Fm,L satisfying (6.6)

α̃ =

√
m

√
m+ ρ0

√
L
, β̃ = 1−

√
m

ρ0
√
L
, γ =

√
L√
m
, η =

1

ρ0L
. (6.10)

For this choice of parameters with p11 and p22 set as above we have that

t33 = −
(ρ0 − 1)

( √
m√
Lρ0
− 1 + ρ2

)
2
√
Lρ0Lρ0

(√
Lρ0 −

√
m
) .

If ρ0 > 1 then t33 is only negative for ρ2 ≤ 1 − 1/(
√
κρ0) which gives the same rate as that obtained in [31,

Theorem 2]. Indeed for this choice of ρ2 and parameters as in (6.10) one can show that setting

P̂ =
m

2

[
1 1
1 1

]
leads to T � 0 with ρ2 ≤ 1 − 1/(

√
κρ0). However by not choosing parameter values differently too (6.10), it is

possible to derive improved rates of convergence. We proceed as follows. We solve t33 = 0 in terms of γ to find

γ = 1− 2β̃(1− α̃)− (1− ρ2)β̃ρ0 + α̃β̃(1− ρ2)ρ0 − L(1− α̃)β̃ηρ0
α̃ρ2ρ0

.

We keep the values α̃, β̃ and η in (6.10), which results in

γ =

√
κρ0 − 1− (r − 1)ρ0
ρ0 − κ−1/2r

. (6.11)

It remains to consider the 2× 2 matrix

T 0 =

[
t11 t12
t12 t22

]
.
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Figure 4: Convergence of the stochastic Nesterov algorithm with α̃, β̃, η given by (6.10) when ρ0 = 10. On the left
we have the convergence rate r, on the right we show, as a fraction of

√
κ, the value of γ from (6.11). In the dashed

lines we show the values when using the approximation γ =
√
κ− (1/3)(1− ρ−10 ).

Following the approach for the deterministic Nesterov algorithm, we calculate r and p22 by imposing ∆ = 0 and
(∂/∂p22)∆ = 0 where ∆ = det(T 0). Since ∆ is a quadratic function of p22, there is a unique value of p22 which
solves (∂/∂p22)∆ = 0. Then we have p22 as a function of ρ2 and it remains to solve ∆ = det(T 0) for ρ2 and check
the following conditions:

t11 ≤ 0 and t22 ≤ 0, (6.12a)

P̂ +
m

2
ÊTÊ � 0, (6.12b)

p11(γ − 1)2 + 2p12(γ − 1) + p22 ≥ 0. (6.12c)

The first of these along with having t13 = t23 = t33 and ∆ = 0 ensures that T � 0. The second condition is an
assumption in Theorem 6.1 which ensures that the Lyapunov function used upper bounds the Euclidean norm. The
third condition is used to ensure that (6.4) holds.

It is convenient to express the variable ρ determined by the procedure above in terms of a new variable r as follows

ρ2 = 1− r
√
m

ρ0
√
L
.

Note that r = 1 corresponds to the rate obtained in [31] and that therefore values r > 1 indicate an improved rate.
In Figure 4 we show how r varies as a function of κ along with the associated value of γ from (6.11). We see, for κ
large, r converges to 4/3 and hence γ is approximately

γ ≈
√
κ− ρ−10 − 1

3

1− 4
3ρ
−1
0 κ−

1
2

≈
√
κ− 1

3
(1− ρ−10 ).

In the dashed line of Figure 4 we show the value of r obtained if we use the approximation of γ =
√
κ−(1/3)(1−ρ−10 ).

We see that for all values of κ considered we have r > 1 and for large values of κ that r approaches 4/3.
To leading order in κ we have that P matches the matrix ̂̄P in the continuous deterministic setting, indeed

P̂ ≈ m

2

[
1 r
r r2/2

]
;

from this we see for κ sufficiently large that (6.12c) holds.

20



1.5 2 2.5

1

1.1

1.2

1.3

1.4

1.5 2 2.5

0.9995

0.9996

0.9997

0.9998

0.9999

1

Figure 5: Convergence of the stochastic Nesterov algorithm with α̃, β̃, η given by (6.13), κ = 106 and ρ0 = 10. On
the left we have the convergence rate r, on the right we show the optimal choice of γ as a fraction of

√
κ. In the solid

line we show the value of r, and the value of γ resulting from t33 = 0. In the dashed lines we show the values when γ
is set by (6.14).

Remark 6.3. In the preceding analyis, we have chosen to use α̃, β̃ and η as in [31] and set an alternative value for γ.
When ρ0 = 1, (6.8) is the same algorithm as (3.11) except with a different set of parameters, and using the parameters
given by (6.10) corresponds to setting β = (

√
κ− 1)/(

√
κ+ 1). As discussed in Section 3, the choice β = 1−

√
2/κ

allows to show an improved convergence rate. We obtain analogous behaviour to Section 3 by proceeding as above
but using the parameter choice:

α̃ =
1

ρ0
√
κ
, β̃ =

1− b 1
ρ0
√
κ

1− α̃
, η =

1

Lρ0
. (6.13)

Here b is a new parameter to be chosen which is introduced to be analogous to the parameter b in Section 3, the choice
b = 2 corresponds to the parameter choice (6.10) to leading order. As before, we can either use γ obtained by solving
t33 = 0 for γ or an approximation, which now is given by

γ =
3κ−1/2 +

√
κ ρ0 −

√
2κ−1/2 − 3

√
2

2 + ρ0 −
√

2ρ0

ρ0 −
√

2κ−1/2
. (6.14)

By the same strategy as above, we establish convergence of ‖x − x?‖2 with rate ρ2, for ρ2 = 1 − rκ−1/2ρ−10 . In
Figure 5 we show how r depends on b. As in Figure 1, we see that b = 3

√
2/2 gives r =

√
2 to leading order in κ.
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