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Abstract

For systems of the form q̇ = M−1p, ṗ = −Aq + f(q), common in many applications, we analyze
splitting integrators based on the (linear/nonlinear) split systems q̇ = M−1p, ṗ = −Aq and q̇ = 0,
ṗ = f(q). We show that the well-known Strang splitting is optimally stable in the sense that, when
applied to a relevant model problem, it has a larger stability region than alternative integrators. This
generalizes a well-known property of the common Störmer/Verlet/leapfrog algorithm, which of course
arises from Strang splitting based on the (kinetic/potential) split systems q̇ = M−1p, ṗ = 0 and q̇ = 0,
ṗ = −Aq + f(q).

1 Introduction

We are concerned with numerical integrators for second-order systems in Rd

Mq̈ = −Aq + f(q), (1)

where M and A are constant d× d matrices (M invertible), or equivalently for first-order systems in R2d

q̇ = M−1p, ṗ = −Aq + f(q).

Our aim is to prove that the Strang splitting integrator [31] based on the (linear/nonlinear) split systems

q̇ = M−1p, ṗ = −Aq (2)

and

q̇ = 0, ṗ = f(q) (3)

possesses an optimal stability property.
The format (1) is a particular instance of the system

Mq̈ = g(q) (4)

that appears very frequently in many applications. The best-known integrator for (4) is perhaps the
Störmer/leapfrog/Verlet algorithm [20]. In its Verlet formulation, the integrator is constructed by applying
Strang’s splitting to the first-order system

q̇ = M−1p, ṗ = g(q),

with the (kinetic/potential) split systems

q̇ = M−1p, ṗ = 0, (5)
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and

q̇ = 0, ṗ = g(q). (6)

More precisely, let us denote by ϕ
[D]
t the solution flow of (5), t ∈ R,

ϕ
[D]
t (q, p) = (q + tM−1p, p),

and by ϕ
[K]
t the solution flow of (6),

ϕ
[K]
t (q, p) = (q, p+ tg(q)),

then a timestep of length h > 0 of the position Verlet algorithm is given by the map

ψ
[pos]
h = ϕ

[D]
h/2 ◦ ϕ

[K]
h ◦ ϕ[D]

h/2

and a step of the velocity Verlet algorithm is defined by the map

ψ
[vel]
h = ϕ

[K]
h/2 ◦ ϕ

[D]
h ◦ ϕ[K]

h/2,

where the roles of ϕ[D] and ϕ[K] have been swapped. The labels D and K we have used correspond to the
words drift and kick, commonly used in molecular dynamics to refer to ϕ[D] and ϕ[K] respectively [18].

In spite of its simplicity, the Verlet integrator is the method of choice in many applications [23]. One
of the advantages of the (position or velocity) Verlet integrator is that it possesses, among a wide class of
explicit integrators, an optimal stability interval [21, 16, 29, 10]. In fact, Verlet strictly maximizes the scaled
length of the stability interval, i.e. the quotient Λ/m, where Λ is the length of the stability interval and
m the number of evaluations of g per step. In other words, for any explicit competitor integrator using m
evaluations per step, there are values of h such that Verlet integrations with steplength h are stable while
the (equally costly) integrations of the competitor with steplength mh are unstable. In short, the Verlet
algorithm may be operated with longer (scaled) timesteps than any of its explicit competitors; this makes it
appealing in applications, including molecular dynamics, where integrations are performed with values of h
close to the stability limit because high accuracy is either not required or impossible to achieve due to the
complexity of the problem (for instance in cases where g is very expensive to evaluate).

When, in (4), g takes the particular form g(q) = −Aq + f(q) as in (1), instead of splitting the given
system as (5)–(6), it may be advantageous to split as (2)–(3) and consider the Strang integrators RKR and
KRK

ψ
[RKR]
h = ϕ

[R]
h/2 ◦ ϕ

[K]
h ◦ ϕ[R]

h/2 (7)

and

ψ
[KRK]
h = ϕ

[K]
h/2 ◦ ϕ

[R]
h ◦ ϕ

[K]
h/2, (8)

where ϕ
[R]
t and ϕ

[K]
t denote respectively the solution flows of the systems (2) and (3). (Of course, kicks are

now based on f rather than on g.) We use the identifier R from rotation because in typical applications the
matrices M and A are symmetric and positive definite and then the solution map[

q
p

]
7→ exp

(
t

[
0 M−1

−A 0

])[
q
p

]
of (2) describes, after a suitable linear change of variables, d rotations in the (two-dimensional) planes (qi, pi),
i = 1, . . . , d, where qi and pi are the scalar components of q and p. The splitting (2)–(3) is particularly
appealing when, in g(q) = −Aq+ f(q), f(q) is a small perturbation of −Aq: RKR, KRK and other splitting
algorithms are exact if the perturbation vanishes. The main contribution of this paper is to show that, as
is the case for the velocity and position Verlet integrators, the RKR and KRK integrators (7)–(8) possess
an optimal stability property. Roughly speaking, we show that for a model test problem, for each given
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steplength, RKR and KRK remain stable for larger perturbations f than any other integrator (see Section 3
for a precise statement).

Motivation. Our interest in problems of the form (1) originated when studying integrators for the
Hamiltonian Monte Carlo (HMC) method, a sampling technique widely used in statistics and statistical
physics [25, 27]. The bulk of the computational effort in HMC is in integrating systems of the form (4)
where g(q) is the negative gradient of the logarithm of the target probability density function and M is a
positive-definite symmetric matrix chosen by the user. Therefore devising suitable efficient integrators is of
key importance to HMC [8, 10]. In many situations of interest [30], the target density is a perturbation of
a Gaussian density and then g(q) = −Aq + f(q) with A the symmetric positive-definite precision matrix of
the Gaussian distribution and f(q) a perturbation. As shown in [15], it is then very advantageous to choose
M = A and then (1) becomes

q̈ = −q + f̄(q), f̄(q) = A−1f(q). (9)

For reasons detailed in [5, 4], as a rule, integrations of (9) within HMC simulations are best carried
out with values of h close to the stability limit of the integrator. Therefore it is of interest to identify the
integrators with optimal stability interval. In fact the motivation for the present research originated when
our multiple attempts to construct integrators that improved on KRK or RKR failed [15].

Contents. The article has five sections. Section 2 contains preliminary material. The main optimality
result is presented and proved in Section 3. Section 4 provides complementary results to compare the size
of the stability regions of the Strang splitting algorithms and some possible competitors. The final section
contains a technical proposition.

2 Preliminaries

In this section we present a number of facts that are required to formulate and prove the main result presented
in the next section.

2.1 Splitting integrators

The importance of splitting integrators in different applications has increased substantially in recent decades
[6], often in connection with preservation of geometric properties, such as symplecticness [28]. Of course,
the RKR and KRK methods (7) and (8) are not the only splitting algorithms to integrate (1) with the help
of the split systems (2) and (3). One may consider m-stage integrators by interleaving rotations and kicks,
beginning with either R or K as follows

ψh = ϕ
[R]
rm+1h

◦ ϕ[K]
kmh
◦ ϕ[R]

rmh
◦ . . . ◦ ϕ[K]

k1h
◦ ϕ[R]

r1h
, ψh = ϕ

[K]
km+1h

◦ ϕ[R]
rmh
◦ ϕ[K]

kmh
◦ . . . ◦ ϕ[R]

r1h
◦ ϕ[K]

k1h
. (10)

We always assume the consistency requirements
∑
i ri = 1 and

∑
i ki = 1. Some of the coefficients ri or ki

are allowed to vanish as this simplifies the presentation. Note that the first format in (10) uses (at most)
m kicks and therefore (at most) ≤ m evaluations of f per step; the second format uses ≤ m+ 1 kicks, but,
since, if km+1 6= 0 and k1 6= 0, the value of f at the last kick of the current timestep may be used to perform
the first kick of the next timestep, also requires essentially ≤ m evaluations of f per timestep.

If M and A are symmetric and positive definite and f(q) = −∇V (q) for a suitable scalar function V , then
(1) is equivalent to the Hamiltonian system with Hamiltonian function (1/2)pTM−1p+ (1/2)qTAq + V (q).

In this case the split systems (2) and (3) are also Hamiltonian and therefore ϕ
[R]
t and ϕ

[K]
t are, for each

t ∈ R, symplectic maps, as flows of Hamiltonian systems. It follows that the splitting integrators in (10) will
be symplectic, as is required in HMC applications [10].

It is often the case that the coefficients ri, ki in (10) are chosen palindromically, i.e. for compositions
starting with R, rm+2−i = ri, i = 1, . . . ,m+1, and km+1−j = kj , j = 1, . . . ,m, and similarly for compositions
starting with K. RKR and KRK are both palindromic. Palindromic splitting integrators have at least second
order of accuracy and, in addition, are time-reversible, as required in HMC applications [10].
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2.2 Conjugate integrators

Given two integrators ψh and ψ̄h of the form (10), we say that they are conjugate if there is an invertible
map χh such that

ψ̄h = χh ◦ ψh ◦ χ−1h .

This notion goes back to Butcher’s algebraic theory of Runge-Kutta methods [11, 12, 13]. The n-fold
composition map ψ̄nh used to advance n steps with method ψ̄h may be written as

ψ̄nh = (χh ◦ ψh ◦ χ−1h ) ◦ (χh ◦ ψh ◦ χ−1h ) ◦ · · · ◦ (χh ◦ ψh ◦ χ−1h ) = χh ◦ ψnh ◦ χ−1h ,

and therefore to advance n steps with method ψ̄h one may (i) apply once the map χ−1h (preprocessing), (ii)
advance n steps with the integrator ψh, (iii) apply once the map χh (postprocessing). Butcher was interested
in the case where ψ̄h has order of consistency higher than ψh, since then pre/postprocessing make it possible
to perform high-order integrations with ψ̄h by implementing the low-order integrator ψh.

An example of conjugate methods is afforded by the integrators RKR and KRK with the postprocessor

χh = ϕ
[R]
h/2 ◦ ϕ

[K]
h/2:

ψ
[RKR]
h = ϕ

[R]
h/2 ◦ ϕ

[K]
h ◦ ϕ[R]

h/2

=
(
ϕ
[R]
h/2 ◦ ϕ

[K]
h/2

)
◦
(
ϕ
[K]
h/2 ◦ ϕ

[R]
h ◦ ϕ

[K]
h/2

)
◦
(
ϕ
[R]
h/2 ◦ ϕ

[K]
h/2

)−1
= χh ◦ ψ[KRK]

h ◦ χ−1h .

One may prove by means of similar manipulations that all (consistent) one-stage integrators, including

the non palindromic, first-order Lie-Trotter integrators ϕ
[R]
h ◦ ϕ[K]

h and ϕ
[K]
h ◦ ϕ[R]

h may be conjugated to

either RKR or KRK, which are palindromic and second-order. Clearly, ϕ
[R]
h ◦ ϕ

[K]
h is obtained by setting

r2 = 1, k1 = 1, r1 = 0 in the first equality in (10); ϕ
[K]
h ◦ ϕ[R]

h results from the choice r2 = 0, k1 = 1, r1 = 1
in the same equality. Both integrators may also be obtained by using the format in the second equality in
(10).

It is proved in [7] that every integrator may be conjugated to a palindromic integrator.
For each problem (1) the numerical trajectory ψnh(q, p), n = 0, 1, 2, . . . , generated by ψh with initial

condition (q, p) is mapped by χh into the trajectory ψ̄nh(q∗, p∗), n = 0, 1, 2, . . . , with initial condition
(q∗, p∗) = χh(q, p). For this reason the long-time properties of the numerical solutions generated by ψh
and ψ̄h may be expected to be similar (for instance bounded/unbounded trajectories of ψh correspond to
bounded/unbounded trajectories of ψ̄h).

2.3 The model problem

Roughly speaking, a numerical integration with a given integrator and steplength h is said to be unstable if
the numerical solution shows unphysical growth as the number of computed timesteps increases. In order to
make this notion mathematically precise, it is standard to restrict the attention to integrations performed
on an easy-to-analyse model problem chosen in such a way that conclusions based on the model are relevant
when dealing with more general problems.

For (4), it is standard to use the model scalar problem q̈ = −ω2q, i.e. the familiar harmonic oscillator.
The relevance of this choice of model problem may be justified as follows. Let us assume, for simplicity, that
M , as is the case in most applications, is symmetric and positive-definite (this hypothesis may be relaxed).
Writing M = LLT and introducing new variables q̄ = LT q, (4) becomes ¨̄q = L−1g(L−T q̄). Furthermore, if g
is linear, g(q) = −Aq, then ¨̄q = −L−1AL−T q̄. The important case, with oscillatory solutions, is that where
L−1AL−T is diagonalizable with positive eigenvalues (which happens if in particular A is symmetric and
positive definite). Then a new change of variables reduces the system to a set of d uncoupled scalar harmonic
oscillators q̈ = −ω2q (the eigenvalues of L−1AL−T provide the values of ω2). For this construction to be
useful it is required that the transformations that diagonalize the system being integrated also diagonalize
the integrator, something that invariably happens for all integrators of practical interest.

In order to identify a suitable model problem for integrators for (1) we proceed similarly. We consider
the case where f is linear f(q) = −Bq; the change of variables q̄ = LT q brings the system to the form
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¨̄q = −L−1(A + B)L−T q̄. Under the hypothesis that there is a linear transformation that brings both
L−1AL−T and L−1BL−T to diagonal form, after a new change of variables the system is transformed into
d uncoupled scalar equations of the form

q̈ = −(λ+ µ)q, (11)

where λ and µ are eigenvalues of L−1AL−T and L−1BL−T associated with the same eigenvector. We are
interested in problems with λ > 0 and λ + µ > 0 (something which happens in the important case where
A and A + B are symmetric and positive definite), so that the equations (11) corresponds to harmonic
oscillators. The analysis of (11) is simplified if we introduce a new time variable t/

√
λ, so as to have, after

denoting ε = µ/λ,

q̈ = −q − εq, ε > −1. (12)

This model problem, that we refer to hereafter as “the model problem”, has appeared e.g. in [9].
In the particular situation of the system (9) arising in the HMC method, the derivation just outlined of

the model (12) may be greatly simplified. In fact, if f is linear, f(u) = −Bu so that f̄(u) = A−1Bu, and
A−1B diagonalizes with eigenvalues ε > −1, then a single change of variables reduces (9) to d uncoupled
harmonic oscillators of the form (12). In the case where f(u) = −Bu is a small perturbation of Au, the
eigenvalues ε will actually have small magnitude.

2.4 Integrating the model problem. Stability

For the model problem (12),

ϕ
[R]
t (q, p) =

[
cos(t) sin(t)
− sin(t) cos(t)

] [
q
p

]
, ϕ

[K]
t (q, p) =

[
1 0
−tε 1

] [
q
p

]
,

where we note that both transformations have unit determinant as each corresponds to the flow of a Hamil-
tonian system. By multiplying the matrices that represent the flows being composed in (10), we obtain the
matrices representing one step of the splitting integrator ψh. In particular for the Strang splittings (7) and
(8), we find that the matrices that perform a timestep of length h are[

cos(h)− hε
2 sin(h) sin(h)− εh sin2

(
h
2

)
− sin(h)− εh cos2

(
h
2

)
cos(h)− hε

2 sin(h)

]
for ψ

[RKR]
ε,h (13)

and [
cos(h)− hε

2 sin(h) sin(h)

−εh cos(h)− (1−
(
hε
2

)2
) sin(h) cos(h)− hε

2 sin(h)

]
for ψ

[KRK]
ε,h . (14)

For the integrators in (10) the (real) matrix takes the form

Mε,h =

[
Aε,h Bε,h
Cε,h Dε,h

]
.

The dependence of the coefficients A −D on ε is polynomial and with m stages A and D are polynomials
of degree ≤ m in ε (this is easily proved by induction). The dependence on h, on the other hand, involves
both powers of h and trigonometric functions, as illustrated by (13) and (14). For palindromic compositions
Aε,h = Dε,h (see e.g. [8, 14]).

The matrix Mε,h has unit determinant, as it results from multiplying rotations and kicks of unit deter-
minant. Then its (possibly complex) eigenvalues are inverse to one another, λε,h and 1/λε,h, and it is well
known that one of the three following situations obtains:

1. The modulus of the trace Aε,h + Dε,h = λε,h + 1/λε,h of Mε,h is < 2. This corresponds to two
different complex eigenvalues of unit modulus. As n increases the powers Mn

ε,h remain bounded and
the integration is stable.
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2. The modulus of the trace is = 2. Then there is a double real eigenvalue λ = 1/λ ∈ {−1, 1}. If, in
addition Mε,h diagonalizes, then Mε,h is either I (the identity matrix) or −I, with bounded powers, and
the integration is stable. When Mε,h does not diagonalize its powers grow linearly and the integration
is linearly unstable.

3. The modulus of the trace is > 2. Then there is one real eigenvalue of modulus > 1, leading to
exponential instability.

Cases 1 and 3 above are robust against perturbations, in the sense that if, for a given integrator, the pair
(ε, h) is in case 1 (respectively, case 3), all sufficiently close pairs are also in case 1 (respectively, case 3).
Perturbations of case 2, on the contrary, will generically lead to either case 1 or case 3. The stability region
of an integrator is the set in the (ε, h) plane where it is stable.

The semitrace
P (ε, h) = (1/2)(Aε,h +Dε,h) = (1/2)(λε,h + 1/λε,h)

of Mε,h will be called, using a not very precise terminology, the stability polynomial of the integrator;
recall that it is a polynomial in ε of degree ≤ m but its dependence on h includes trigonometric functions.
Exponentially unstable integrations correspond then to |P (ε, h)| > 1.

If the integrators ψh and ψ̄h are conjugate to each other, then the corresponding matrices satisfy the
similarity condition

M̄ε,h = Sε,hMε,hS
−1
ε,h

where the matrix Sε,h corresponds to the postprocessor. As a consequence M̄ε,h and Mε,h share the same
pair of eigenvalues λε,h, 1/λε,h and therefore conjugate integrators share a common stability polynomial.
This property is illustrated by the RKR, KRK pair in (13)–(14). The property was perhaps to be expected,
because it was pointed out above that for any two conjugate integrators the numerical trajectories of one of
them are mapped by the processor into numerical trajectories of the other.

2.5 A property of the stability polynomial

The following result will be essential to prove our main result.

Proposition 1 For each (consistent) integrator (10) the stability polynomial satisfies:

P (ε, h) =
1

2
(Aε,h +Dε,h) = cos(h)− εh

2
sin(h) +O(ε2), ε→ 0. (15)

Proof 1 It is sufficient to consider the R-first format in the first equality in (10); a K-first integrator may
be rewritten in the R-first format by adding dummy rotations of duration 0h at the beginning and end of the
step. We introduce the matrices

R =

[
0 1
−1 0

]
, K =

[
0 0
−1 0

]
,

whose exponentials represent the rotation and the kick

exp(tR) =

[
cos(t) sin(t)
− sin(t) cos(t)

]
, exp(tK) = I + tK =

[
1 0
−t 1

]
.

Then the matrix associated with the integrator is

Mε,h = exp(hrm+1R)(I + εhkmK) exp(hrmR)(I + εhkm−1K) · · · (I + εhk1K) exp(hr1R), (16)

which leads to

Mε,h = exp(hθm+1R) + εh

m∑
i=1

ki exp(h(1− θi)R)K exp(hθiR) +O(ε2),
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where θi =
∑i
j=1 rj. By consistency θm+1 = 1 and therefore the semitrace of exp(hθm+1R) is cos(h); this

gives the term independent of ε in the stability polynomial, as it was to be established in order to prove (15).
The term of first degree in ε in the last display may be computed as

−εh
m∑
i=1

ki

[
sin(hθi) cos(h(1− θi)) sin(hθi) sin(h(1− θi))
cos(hθi) cos(h(1− θi)) cos(hθi) sin(h(1− θi))

]
.

Thus the coefficient of ε in the stability polynomial is

−h
2

m∑
i=1

ki

(
sin(hθi) cos(h(1− θi)) + cos(hθi) sin(h(1− θi)

)
= −h

2

m∑
i=1

ki sin(h) = −h
2

sin(h),

as was to be proved.

2.6 Stability of the integrators RKR and KRK

We now study the stability of RKR/KRK with stability polynomial/semitrace (see (13)–(14)):

P (ε, h) = cos(h)− hε

2
sin(h). (17)

The conditions P (ε, h) = 1 and P (ε, h) = −1 correspond to ε = α(h) and ε = β(h) respectively with

α(h) = − 2

h
tan

(
h

2

)
, β(h) =

2

h
cot

(
h

2

)
. (18)

If we restrict attention to 0 < h < π, then the condition |P (ε, h)| ≤ 1 holds if and only if ε ∈ [α(h), β(h)];
also, for such values of h, α(h) < −1, 0 < β(h). When integrating the model problem (where ε > −1) we
have stability for ε ∈ (−1, β(h)) and exponential instability for ε > β(h). The case ε = β(h) yields linear
instability. The function β(h) decreases monotonically for h ∈ (0, π) and therefore increasing h results in a
decrease of the interval (0, β(h)) of positive values of ε leading to a stable integration. As h ↑ π, we have
β(h) ↓ 0, the interval (0, β(h)) approaches the empty set and thus there is little interest in considering h ≥ π
when dealing with RKR and KRK.

Since, as pointed out before, all (consistent) one-stage integrators are conjugate to RKR or KRK the
discussion above also applies to them. In particular, their stability polynomial is also given by (17) (a
conclusion that may be reached alternatively from Proposition 1, after taking into account that for m = 1
the stability polynomial is of first degree in ε, so that the term O(ε2) in (15) must vanish).

2.7 The RKRm and KRKm integrators

To avoid duplications, the presentation in this subsection is limited to RKR, but all the results apply to
KRK in an obvious manner.

In the analysis in the next section we shall use the auxiliary m-stage integrator

ψ
[RKRm]
h =

(
ψ
[RKR]
h/m

)m
;

a single step of length h of ψ[RKRm] demands performing m consecutive substeps with ψ[RKR], each of
steplength h/m. As a consequence, integrations with ψ[RKRm] are in fact nothing but ψ[RKR] integrations;
ψ[RKRm] is just a mathematical construction to facilitate the fair comparison between m-stage integrators
(with m evaluations of f per step) and the one-stage ψ[RKR] (with only one evaluation of f per step).

Clearly

M
[RKRm]
ε,h =

(
M

[RKR]
ε,h/m

)m
,

and, for the eigenvalues, λ
[RKRm]
ε,h =

(
λ
[RKR]
ε,h/m

)m
. It follows easily from (18) that, restricting attention to

h < mπ, |P [RKRm]| < 1 if and only if ε ∈ (αm(h), βm(h)) with

αm(h) = −2m

h
tan

(
h

2m

)
< −1, βm(h) =

2m

h
cot

(
h

2m

)
> 0. (19)
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m 1 2 3 4 5 6 7 8 9 10
hm π 4.92 5.98 6.85 7.61 8.30 8.93 9.53 10.08 10.61

Table 1: Values of the quantity hm used in the main theorem.

When integrating the model problem, RKRm is stable if and only if ε ∈ (αm(h), βm(h)) (although, as
mentioned above, only stability for ε > −1 > αm(h) is significant). The case ε > βm(h) yields exponential
instability and ε = βm(h) gives linear instability. See Figure 1.

We now find an expression for the stability polynomial P [RKRm](ε, h). Write λ
[RKR]
ε,h = exp(iθε,h) (θ is

real if λ has unit modulus) with i the imaginary unit. Then, recalling (17), we may write

cos(h)− hε

2
sin(h) = P [RKR](ε, h) =

1

2

(
λ
[RKR]
ε,h +

1

λ
[RKR]
ε,h

)
=

1

2

(
exp(iθε,h) + exp(iθε,h)

)
= cos(θε,h),

and

P [RKRm](ε, h) =
1

2

(
λ
[RKRm]
ε,h +

1

λ
[RKRm]
ε,h

)
=

1

2

(
exp(imθε,h/m) + exp(imθε,h/m)

)
= cos(mθε,h/m),

so that, introducing the standard Chebyshev polynomial of the first kind Tm with Tm(cos(ζ)) = cos(mζ) for
all (real or complex) ζ, we conclude that

P [RKRm](ε, h) = Tm

(
cos

(
h

m

)
− hε

2m
sin

(
h

m

))
. (20)

3 Main result

In the statement of the main result we denote by hm the smallest positive root of the equation

mh

2
sin

(
h

m

)
= cos

( π
m

)
− cos

(
h

m

)
.

For m = 1, hm = π and, for m > 1, hm < mπ. In addition hm increases monotonically with m and a
straightforward Taylor expansion shows that, as m ↑ ∞, hm = 121/4π1/2m1/2 + o(m1/2). See Table 1.

Theorem 1 Define hm as above. Then:

• For h < mπ, ε > −1, integrations of the model problem (12) with either RKRm and KRKm are
exponentially unstable if and only if ε ∈ (βm(h),∞).

• Consider an m-stage splitting integrator ψh of the form (10) with stability polynomial different from
the stability polynomial (20) of the integrators RKRm/KRKm. Then, for h 6= π, 2π, . . . , (m− 1)π and
h < hm, the (open) set of values of ε > −1 that lead to exponentially unstable integrations of the model
problem is strictly larger than the interval (βm(h),∞) where RKRm and KRKm show exponential
instability.

This result may be restated by saying that for each fixed h∗, h∗ < hm, h∗ 6= π, 2π, . . . , (m − 1)π, the
intersection of the stability region with the line h = h∗ is strictly larger for RKRm and KRKm than for
integrators with stability polynomial different from (20). Before we prove Theorem 1, we need an auxiliary
result that we present in the following subsection.

3.1 Chebyshev polynomials

It is well known that many properties of the Chebyshev polynomials are a consequence of the following
equioscillation property: Tm(ξi) = (−1)i at the points ξi = cos(iπ/m), i = 0, . . . ,m, that partition [−1, 1] as
−1 = ξm < ξm−1 < · · · < ξ1 < ξ0 = 1. We shall need the following well-known, elementary equioscillation
result, whose proof we provide for completeness:
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Lemma 1 Consider k + 1 real points x0 < x1 < · · · < xk. If Q is a real polynomial such that either

Q(xi) ≥ 0, i even and Q(xi) ≤ 0, i odd,

or
Q(xi) ≤ 0, i even and Q(xi) ≥ 0, i odd,

then Q(x) has ≥ k zeros (counting multiplicities) in the interval [x0, xk].

Proof 2 Consider the k disjoint intervals

J1 = [x0, x1), J2 = [x1, x2), . . . , Jk−1 = [xk−2, xk−1), Jk = [xk−1, xk],

that partition [x0, xk]. We first point out that Q(x) must have at least a zero in the closed interval Jk
(otherwise Q(x) would be strictly > 0 or strictly < 0 for x ∈ [xk−1, xk], in contradiction with the hypothesis).
On the other hand, it is possible that some of the semiclosed Ji, i = 1, . . . , k − 1, contain no zero of Q(x),
but, if that is the case, then Q(xi) = 0. Furthermore, in that case, Ji+1 must contain at least two zeros, for
if it only contained a single zero at xi, then either Q(xi−1) > 0, Q(xi+1) < 0 or Q(xi−1) < 0, Q(xi+1) > 0.
Thus, if a subinterval other than Jk carries no zero, then the one to its right carries two, and this gives a
total of at least k zeros.

The following result on Chebyshev polynomials is to our best knowledge not available in the literature.
Its proof is based on the preceding lemma.

Proposition 2 For given m ≥ 2, let P (x) be a real polynomial of degree ≤ m different from Tm(x). Assume
that P (x) − Tm(x) has a double zero ξ ∈ (−1, 1) such that ξ 6= ξi = cos(iπ/m) for i = 1, . . . ,m − 1. Then
|P (x)| > 1 for some x ∈ (ξm, ξ1) = (−1, cos(π/m)).

Proof 3 Assume that |P (x)| ≤ 1 in (ξm, ξ1) and consider the difference D(x) = P (x) − Tm(x). For i =
1, . . . ,m with i odd, we have D(ξi) = P (ξi)−T (xi) = P (ξi)− (−1) ≥ −1+1 = 0. Similarly, for i = 1, . . . ,m
with i even, we have D(ξi) ≤ 0. There are two cases:

1. ξ ∈ (ξ1, ξ0). Then, by the lemma, D(x) has ≥ m − 1 zeros in [ξm, ξ1]. These and the double zero
ξ ∈ (ξ1, ξ0) provide ≥ m+ 1 zeros of D(x). It follows that D(x) vanishes identically, in contradiction
with the hypotheses of the proposition.

2. ξ is in an interval (ξj+1, ξj) with j = 1, . . . ,m− 1. By applying the lemma twice, we see that D(x) has
≥ j − 1 zeros in [ξj , ξ1] and ≥ m − j − 1 zeros in [ξm, ξj+1]. The subinterval (ξj+1, ξj) must contain
at least three zeros, because, if the multiplicity of ξ were exactly 2 and there were no other zeros in
the subinterval, then D(ξj) and D(ξj+1) would be either both > 0 or both < 0. We have thus found
≥ j − 1 + (m− j − 1) + 3 = m+ 1 zeros, which again leads to a contradiction.

3.2 Proof of the main result

The first item in Theorem 1 was established at the very end of Section 2. In the second item, we only have
to deal with m ≥ 2, because we also saw in Section 2 that there is no consistent one-stage integrator with
stability polynomial different from the stability polynomial (17) of RKR or KRK.

With fixed h satisfying the conditions of the theorem, we change variables replacing ε by the new variable

x = cos

(
h

m

)
− εh

2m
sin

(
h

m

)
.

Since h < hm < mπ, this transformation is bijective. It maps ε = αm(h) (see (19)) into x = 1 and ε = βm(h)
into x = −1. The change of variables is chosen in such a way that, according to (20), the stability polynomial
of RKRm or KRKm is transformed into the Chebyshev polynomial Tm(x).

Denote by P (x) the m-degree polynomial in the variable x resulting from changing variables in the
stability polynomial P (ε, h) of the integrator ψh (note that the dependence of P (x) on h has been left out of
the notation). By hypothesis, P (x) cannot coincide with Tm(x). From Proposition 1, P (ε, h)−P [RKRm](ε, h)

9



π 2π 3π 4π h
−1

0

1

5

9

ε

αm(h)

βm(h)
γm(h)

hm

m = 4

Figure 1: Proof of the main result in the case m = 4. In the model problem ε > −1. RKR4 and KRK4
are stable in the open region bounded by the lines h = 0, h = mπ, ε = −1, ε = βm(h). For each fixed h
such that h < 4π, h 6= π, 2π, 3π, a competitor integrator will have |P (ε, h)| > 1 for some ε ∈ (γh, βh). When
h < hm, those values of ε are > −1.

as a polynomial in ε has a double root at ε = 0 and accordingly P (x) − Tm(x) has a double zero at the
corresponding value of x given by ξ = cos(h/m). Since h is assumed to be 6= π, 2π, . . . , (m−1)π, ξ is not one
of the extrema ξi = cos(iπ/m), i = 1, . . . ,m− 1, of Tm(x). Proposition 2 reveals that |P (x)| has to exceed
1 as some point x ∈ (−1, cos(π/m)); the corresponding ε-value will be in the interval (γm(h), βm(h)) with

γm(h) =
2m

h sin(h/m)

(
cos(h/m)− cos(π/m)

)
.

The condition h < hm implies γm(h) > −1 (see Figure 1). We have thus found values of ε ∈ (−1, βm(h))
that lead to instability and the proof is complete.

4 Assessing the size of the stability region

The result we have just presented does not provide quantitative information on the size of stability regions
in the full (ε, h) plane of the different integrators. In this section, we present a more quantitative analysis;
it turns out that Strang integrators have much larger stability regions than their competitors.

4.1 Stability near ε = 0, h = nπ

When ε = 0 all splitting integrators (10) are exact and therefore M0,h is the matrix corresponding to a
rotation by h radians, with semitrace P (0, h) = cos(h). If h > 0 is not an integer multiple of π, the
magnitude of the trace is < 2 and the matrix M0,h is strongly stable [3, sections 25 and 42] and [22] (see
also [9]). Accordingly, the integrator is stable in a neighborhood of (0, h). On the other hand, P (0, nπ) =
(−1)n, n = 1, 2, . . . , and perturbations of the parameter values ε = 0, h = nπ may render the integrator
exponentially unstable. For instance, RKRm and KRKm are stable, as we know, in the neighbourhood of
(0, π), . . . , (0, (m − 1)π) but not in the neighbourhood of (0,mπ) (see Figure 1). We now investigate the
stability of general integrators (10) in the neighbourhood of the points (0, nπ), n = 1, 2, . . .

We assume that n is odd (the case n even is entirely parallel). Then P (0, nπ) = −1 and a necessary condi-
tion for the method to be stable in a neighbourhood of (0, nπ) is that this point be a minimum of P . Since, for
ε = 0, P (0, h) = cos(h), we have (∂/∂h)P (0, h) = − sin(h) and (∂/∂h)P (0, nπ) = 0. In addition, from Propo-
sition 1, (∂/∂ε)P (0, h) = −(h/2) sin(h), and, therefore (∂/∂ε)P (0, nπ)) = 0; we conclude that all integrators
satisfy the first-order necessary conditions for (0, nπ) to be a minimum of P . Turning now to the second-order
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necessary conditions, from (∂2/∂h2)P (0, h) = − cos(h) and (∂2/∂ε∂h)P (0, h) = (−1/2)(sin(h) + h cos(h)),
we see that the Hessian of P at (0, nh) takes the form[

∂2

∂ε2P (0, nπ) nπ
2

nπ
2 1

]
.

(The top left entry changes with the integrator, the other three do not.) For (0, nπ) to be a minimum,
the Hessian has to be positive semidefinite; since the bottom right entry is > 0, positive semidefiniteness is
equivalent to nonnegative determinant, i.e. to

∂2

∂ε2
P (0, nπ) ≥ n2π2

4
.

However Proposition 4 ensures that the opposite inequality holds and we have proved the n odd case of the
following result (the n even case is proved in a parallel way, changing minimum to maximum, etc.).

Proposition 3 Assume that an integrator of the form (10) is stable for values of (ε, h) in a neighbourhood
of (0, nπ), n = 1, 2, . . . Then necessarily:

∂2

∂ε2
P (0, nπ) = (−1)n+1n

2π2

4
.

This proposition is helpful to identify suitable values of the parameters ri and kj in (10), as will be clear
in our study of the stability of the families of three-stage integrators.

4.2 Palindromic methods with m = 3 stages

Integrators with three or fewer stages are important because, arguably, integrators with four or more stages
are too complicated to be used in most applications. For the case of the split systems (5)–(6), there are
3-stage integrators that clearly improve on Verlet in HMC and molecular dynamics [17, 26, 24, 2, 19, 1]. As
we shall prove presently, for the (2)–(3) splitting studied in this paper, there is little room for improving on
the Strang splitting.

For the sake of brevity we only present our findings for the K-first case in (10). The results for the R-first
case differ in the details but yield the same conclusions. As we have noted several times, it is sufficient to
study the palindromic case, for which, after imposing consistency, integrators take the form

ψh = ϕ
[K]
kh ◦ ϕ

[R]
rh ◦ ϕ

[K]
(1/2−k)h ◦ ϕ

[R]
(1−2r)h ◦ ϕ

[K]
(1/2−k)h ◦ ϕ

[R]
rh ◦ ϕ

[K]
kh . (21)

There are two free parameters k and r. If we wish to have stability in a neighbourhood of (0, π) in the (ε, h)
plane, we have to impose the necessary condition in Proposition 3, that for (21) is found to read

4k sin2(πr) = − cos(2πr).

However, this condition is only necessary for P to have a minimum P = −1 at ε = 0, h = π. To investigate
the behaviour of P in the neighbourhood of (0, π), we proceed as follows. We use the last display to express
k in terms of r and see P as a function of (ε, h, r). We then fix a value h∗ = 3.12 of h slightly below π and
look at the behaviour of P (ε, h∗, r). For each r in a suitable range,1 we identify the value ε∗(h∗, r) ≈ 0 of
ε for which (∂/∂ε)P (ε, h∗, r) vanishes (and therefore the function ε 7→ P (ε, h∗, r) may achieve a minimum)
and plug this value into P to obtain a function F (r) = P (ε(h∗, r), h∗, r) of the real variable r. This function
is plotted in the right panel of Figure 2, where we see that for “most” values of r, F (r) takes values below
−1, indicating exponential instability of the integrator. There are however three exceptional values of r,
where F = −1:

• r = 1/4. This leads to k = 0 so that the first and last kicks in (21) are the identity and may be
suppressed. The integrator is then seen to be RKR2, that we know is indeed stable in the neighbourhood
of (0, π).

1We present results for r ∈ [0.2, 0.6]. Values of r outside this interval are not of interest as a preliminary computer search
shows they have poor stability properties near ε = −1.
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r

1.3700

1.3725

1.3750

1.3775

1.3800

1.3825

1.3850

1.3875

1.3900

ε∗

×10−2

0.2 0.3 0.4 0.5 0.6

r

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

1
+
P

(ε
∗ ,
h
∗ )

×10−10

r = 1
3r = 1

4 r = 1
2

K-first, ∂εP = 0 (m = 3, h∗ = 3.12)

Figure 2: Palindromic three-stage, K-first integrators. On the left, for each r, the value ε∗ of the parameter
ε
that locally minimizes the stability polynomial P (ε, h∗, r). On the right, the minimum value P (ε∗, h∗, r) as
a function of r: except for three exceptional cases (see text), all integrators show P < −1, i.e. exponential
instability.

• r = 1/3. This yields KRK3, that we know is stable in the neighbourhood of (0, π) (and also in the
neighbourhood of (0, 2π)).

• r = 1/2. Now the central rotation in (21) is the identity. The integrator is KRK2, that we know is
stable in the neighbourhood of (0, π).

The values of ε∗ where the algorithm has been found to be exponentially unstable are plotted in the
left panel of Figure 2. This shows that, for h = 3.12, all the integrators considered (with the exceptions of
RKR2, KRK2 and KRK3) are unstable for values of ε extremely close to 0. For comparison, using (19),
one sees that for h = 3.12, RKR3 and KRK3 are stable for ε ∈ (−1, 3.36) and RKR2, KRK2 are stable for
ε ∈ (−1, 1.30). Also, from Theorem 1, for fixed, very small ε > 0, RKR3 and KRK3 are stable up to h ≈ 3π,
while most three stage integrators have lost stability before h reaches π. The conclusion is clear: three-stage
splitting integrators different from Strang have very limited stability domains.

5 A technical result

In this section we establish the following result that was used to prove Proposition 3:

Proposition 4 The stability polynomial P (ε, h) of any (consistent) splitting integrator (10) satisfies

∂2

∂ε2
P (0, nπ) ≤ n2π2

4
, n = 1, 3, . . . ,

and
∂2

∂ε2
P (0, nπ) ≥ −n

2π2

4
, n = 2, 4, . . .

12



Proof 4 We recommence from (16) in the proof of Proposition 1. The coefficient of ε2 in the right hand-side

of that equality is, with ηi =
∑m+1
n=i+1 rn, θj =

∑j
n=1 rn,

h2
m∑
i=2

i−1∑
j=1

kikj exp(ηihR)K exp((1− ηi − θj)hR)K exp(θjhR),

where, by using the expressions for exp(tR) and K, the product of matrices in the summation may be
computed as[
−
(

sin(hθj) cos(h(1− ηi − θj))− sin(h(1− ηi))
)

sin(hηi) · · ·
· · · −

(
sin(hηi) cos(h(1− ηi − θj))− sin(h(1− θj))

)
sin(hθj)

]
.

We next take semitraces and recall that, from Taylor’s theorem, the coefficient of ε2 in a polynomial equals
twice its second derivative evaluated at ε = 0. In this way we find

∂2

∂ε2
P (0, h) = −h2

m∑
i=2

i−1∑
j=1

kikj

[(
sin(hθj) cos(h(1− ηi − θj))− sin(h(1− ηi))

)
sin(hηi)

+
(

sin(hηi) cos(h(1− ηi − θj))− sin(h(1− θj))
)

sin(hθj)
]
.

By transforming the products of trigonometric functions into sums, we obtain

∂2

∂ε2
P (0, h) =

h2

2

m∑
i=2

i−1∑
j=1

kikj

(
cos

(
2h

(
1

2
− ηi − θj

))
− cos(h)

)
,

and evaluating at h = nπ we find, after some additional trigonometric manipulations,

∂2

∂ε2
P (0, nπ) = (−1)n+1n2π2

m∑
i=2

i−1∑
j=1

kikj sin2
(
nπ(ηi + θj)

)
.

We now note that ηi + θj = 1− (θi − θj) and sin2(nπ − (θi − θj)) = sin2(nπ(θi − θj)), so that

∂2

∂ε2
P (0, nπ) = (−1)n+1n2π2

m∑
i=2

i−1∑
j=1

kikj sin2
(
nπ(θi − θj)

)
.

The proof will be ready if we prove that

m∑
i=2

i−1∑
j=1

kikj sin2
(
nπ(θi − θj)

)
≤ 1

4
,

or, writing the double sum in a more symmetric form,

S =

m∑
i=1

m∑
j=1

kikj sin2
(
nπ(θi − θj)

)
≤ 1

2
.

At this point, it is convenient to assume that (i) m is even and (ii) the integrator is palindromic. As noted
before there is no loss of generality in assuming (ii). And m may always be taken to be even by adding
dummy stages. The double sum S may be decomposed as

S =

m∑
i=1

m∑
j=1

=

m/2∑
i=1

m/2∑
j=1

+

m/2∑
i=1

m∑
j=m/2

+

m∑
i=m/2

m/2∑
j=1

+

m∑
i=m/2

m∑
j=m/2

,
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which, by symmetry, implies

S = 2

m/2∑
i=1

m/2∑
j=1

kikj sin2
(
nπ(θi − θj)

)
+ 2

m/2∑
i=1

m∑
j=m/2

kikj sin2
(
nπ(θi − θj)

)
.

and, since km+1−j = kj, θi − θm+1−j = θi + θj − 1, sin2
(
nπ(θi + θj − 1)

)
= sin2

(
nπ(θi + θj)

)
,

S = 2

m/2∑
i=1

m/2∑
j=1

kikj sin2
(
nπ(θi − θj)

)
+ 2

m/2∑
i=1

m/2∑
j=1

kikj sin2
(
nπ(θi + θj)

)
.

We finally invoke the trigonometric identity sin2(A+B) + sin2(A−B) = 1− cos(2A) cos(2B) and write

S = 2

m/2∑
i=1

m/2∑
j=1

kikj

(
1− cos(2nθi) cos(2nθj)

)

= 2

m/2∑
i=1

ki

2

− 2

m/2∑
i=1

ki cos(2nπθi)

2

≤ 2

m/2∑
i=1

ki

2

=
1

2
,

and the proof is complete.
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