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Abstract

We study Hamiltonian Monte Carlo (HMC) samplers based on splitting
the Hamiltonian H as H0(θ, p) + U1(θ), where H0 is quadratic and
U1 small. We show that, in general, such samplers suffer from stepsize
stability restrictions similar to those of algorithms based on the standard
leapfrog integrator. The restrictions may be circumvented by precon-
ditioning the dynamics. Numerical experiments show that, when the
H0(θ, p)+U1(θ) splitting is combined with preconditioning, it is possi-
ble to construct samplers far more efficient than standard leapfrog HMC.
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1 Introduction

In this paper we study Hamiltonian Monte Carlo (HMC) algorithms [1] that
are not based on the standard kinetic/potential splitting of the Hamiltonian.

The computational cost of HMC samplers mostly originates from the
numerical integrations that have to be performed to get the proposals. If
the target distribution has density proportional to exp(−U(θ)), θ ∈ Rd, the
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2 Split HMC revisited

differential system to be integrated is given by the Hamilton’s equations corre-
sponding to the Hamiltonian function H(θ, p) = (1/2)pTM−1p+ U(θ), where
p ∼ N (0,M) is the auxiliary momentum variable and M is the symmetric,
positive definite mass matrix chosen by the user. In a mechanical analogy, H
is the (total) energy, while T (p) = (1/2)pTM−1p and U(θ) are respectively
the kinetic and potential energies. The Störmer/leapfrog/Verlet integrator is
the method of choice to carry out those integrations and is based on the idea
of splitting [2], i.e. the evolution of (θ, p) under H is simulated by the sep-
arate evolutions under T (p) and U(θ) (kinetic/potential splitting). However
H(θ, p) = T (p) + U(θ) is not the only splitting that has been considered in
the literature. In some applications one may write H(θ, p) = H0(θ, p) +U1(θ),
with H0(θ, p) = T (p) +U0(θ), U(θ) = U0(θ) +U1(θ) and replace the evolution
under H by the evolutions under H0 and U1 [1]. The paper [3] investigated
this possibility; two algorithms were formulated referred to there as “Leapfrog
with a partial analytic solution” and “Nested leapfrog”. Both suggested algo-
rithms were shown to outperform, in four logistic regression problems, HMC
based on the standard leapfrog integrator.

In this article we reexamine H(θ, p) = H0(θ, p) + U1(θ) splittings, in
particular in the case where the equations for H0 can be integrated analyti-
cally (partial analytic solution) because U0(θ) is a quadratic function (so that
∝ exp(−U0(θ)) is a Gaussian distribution). When U1 is slowly varying, the
splitting H = H0 + U1 is appealing because, to quote [3], “only the slowly-
varying part of the energy needs to be handled numerically and this can be
done with a larger stepsize (and hence fewer steps) than would be necessary
for a direct simulation of the dynamics”.

Our contributions are as follows:

1. In Section 3 we show, by means of a counterexample, that it is not nec-
essarily true that, when H0 is handled analytically and U1 is small, the
integration may be carried out with stepsizes substantially larger than those
required by standard leapfrog. For integrators based on the H0 + U1 split-
ting, the stepsize may suffer from important stability restrictions, regardless
of the size of U1.

2. In Section 4 we show that, by combining the H0 +U1 splitting with the idea
of preconditioning the dynamics, that goes back at least to [4], it is possible
to bypass the stepsize limitations mentioned in the preceding item.

3. We present an integrator (that we call RKR) for the H0 +U1 splitting that
provides an alternative to the integrator tested in [3] (that we call KRK).

4. Numerical experiments in the final Section 5, using the test problems in
[3], show that the advantages of moving from standard leapfrog HMC to
the H0 + U1 splitting (without preconditioning) are much smaller than
the advantages of using preconditioning while keeping the standard kinet-
ic/potential splitting. The best performance is obtained when the H0 + U1

splitting is combined with the preconditioning of the dynamics. In par-
ticular the RKR integration technique with preconditioning decreases the
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computational cost by more than an order of magnitude in all test problems
and all observables considered.

There are two appendices. In the first, we illustrate the use of the Bernstein-
von Mises theorem (see e.g. section 10.2 in [5]) to justify the soundness of
the H0 + U1 splitting. The second is devoted to presenting a methodology
to discriminate between different integrators of the preconditioned dynamics
for the H0 + U1 splitting; in particular we provide analyses that support the
advantages of the RKR technique over its KRK counterpart observed in the
experiments.

2 Preliminaries

2.1 Hamiltonian Monte Carlo

HMC is based on the observation that [1, 6], for each fixed T > 0, the exact
solution map (flow) (θ(T ), p(T )) = ϕT (θ(0), p(0)) of the Hamiltonian system
of differential equations in R2d

dθ

dt
=
∂H

∂p
= M−1p,

dp

dt
= −∂H

∂θ
= −∇U(θ), (1)

exactly preserves the density ∝ exp(−H(θ, p)) = exp(−T (p) − U(θ)) whose
θ-marginal is the target ∝ exp(−U(θ)), θ ∈ Rd. In HMC, (1) is integrated
numerically over an interval 0 ≤ t ≤ T taking as initial condition the current
state (θ, p) of the Markov chain; the numerical solution at t = T provides the
proposal (θ′, p′) that is accepted with probability

a = min

{
1, e−

(
H(θ′,p′)−H(θ,p)

)}
. (2)

This formula for the acceptance probability assumes that the numerical inte-
gration has been carried out with an integrator that is both symplectic (or at
least volume preserving) and reversible. The difference H(θ′, p′) − H(θ, p) in
(2) is the energy error in the integration; it would vanish leading to a = 1 if
the integration were exact.

2.2 Splitting

Splitting is the most common approach to derive symplectic integrators for
Hamiltonian systems [2, 7]. The Hamiltonian H of the problem is decomposed
in partial Hamiltonians as H = H1 +H2 in such a way that the Hamiltonian
systems with Hamiltonian functions H1 and H2 may both be integrated in

closed form. When Strang splitting is used, if ϕ
[H1]
t , ϕ

[H2]
t denote the maps

(flows) in R2d that advance the exact solution of the partial Hamiltonians over
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a time-interval of length t, the recipe

ψε = ϕ
[H1]
ε/2 ◦ ϕ[H2]

ε ◦ ϕ[H1]
ε/2 , (3)

defines the map that advances the numerical solution a timestep of length
ε > 0. The numerical integration to get a proposal may then be carried out
up to time T = εL with the L-fold composition ΨT = (ψε)

L
. Regardless of the

choice of H1 and H2, (3) is a symplectic, time reversible integrator of second
order of accuracy [8].

2.3 Kinetic/potential splitting

The splittingH = H1+H2,H1 = T ,H2 = U gives rise, via (3), to the common-
est integrator in HMC: the Störmer/leapfrog/velocity Verlet algorithm. The
differential equations for the partial Hamiltonians T , U and the corresponding
solution flows are

d

dt

(
θ
p

)
=

(
0

−∇U(θ)

)
=⇒ ϕ[U ]

ε (θ, p) = (θ, p− ε∇U(θ)),

d

dt

(
θ
p

)
=

(
M−1p

0

)
=⇒ ϕ[T ]

ε (θ, p) = (θ + εM−1p, p).

As a mnemonic, we shall use the word kick to refer to the map ϕ
[U ]
ε (θ, p) (the

system is kicked so that the momentum p varies without changing θ). The

word drift will refer to the map ϕ
[T ]
ε (θ, p) (θ drifts with constant velocity).

Thus one timestep of the velocity Verlet algorithm reads (kick-drift-kick).

ψ[KDK]
ε = ϕ

[U ]
ε/2 ◦ ϕ[T ]

ε ◦ ϕ[U ]
ε/2.

There is of course a position Verlet algorithm obtained by interchanging
the roles of T and U . One timestep is given by a sequence drift-kick-drift
(DKD). Generally the velocity Verlet (KDK) version is preferred (see [8] for a
discussion) and we shall not be concerned hereafter with the position variant.

With any integrator of the Hamiltonian equations, the length εL = T of
the time interval for the integration to get a proposal has to be determined to
ensure that the proposal is sufficiently far from the current step of the Markov
chain, so that the correlation between successive samples is not too high and
the phase space is well explored [9, 10]. For fixed T , smaller stepsizes ε lead
to fewer rejections but also to larger computational cost per integration and
it is known that HMC is most efficient when the empirical acceptance rate is
around approximately 65% [11].

Algorithm 1 describes the computation to advance a single step of the
Markov chain with HMC based on the velocity Verlet (KDK) integrator. In the
absence of additional information, it is standard practice to choose M = I, the
identity matrix. For later reference, we draw attention to the randomization
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of the timestep ε. As is well known, without such a randomization, HMC may
not be ergodic [1]; this will happen for instance when the equations of motion
(1) have periodic solutions and εL coincides with the period of the solution.

Algorithm 1 KDK Verlet

Input: θ, U,H,M, ε̄, L

1: Draw ξ ∼ N (0,M), ε ∼ ε̄× U[0.8,1] . Randomise ε
2: θ′, p← θ, ξ . Refresh momentum
3: for i = {1, . . . , L} do . Do velocity Verlet integration
4: p← p− ε

2∇U(θ′)
5: θ′ ← θ′ + εM−1p
6: p← p− ε

2∇U(θ′)
7: end for
8: a← min {1, exp(H(θ, ξ)−H(θ′, p))}
9: Draw γ ∼ B(a) . γ Bernoulli-distributed with mean a

10: θ ← γθ′ + (1− γ)θ . Accept proposal with probability a

2.4 Alternative splittings of the Hamiltonian

Splitting H(θ, p) in its kinetic and potential parts as in Verlet is not the only
meaningful possibility. In many applications, U(θ) may be written as U0(θ) +
U1(θ) in such a way that the equations of motion for the Hamiltonian function
H0(θ, p) = (1/2)pTM−1p + U0(θ) may be integrated in closed form and then
one may split H as

H = H0 + U1, (4)

as discussed in e.g. [1, 3].
In this paper we focus on the important particular case where (see Section 5

and Appendix A)

U0(θ) =
1

2
(θ − θ∗)TJ (θ − θ∗), (5)

for some fixed θ∗ ∈ Rd and a constant symmetric, positive definite matrix J .
Restricting for the time being attention to the case where the mass matrix M
is the identity (the only situation considered in [3]), the equations of motion
and solution flow for the Hamiltonian

H0(θ, p) =
1

2
pT p+ U0(θ) (6)
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are

d

dt

(
θ
p

)
=

(
0 I
−J 0

)(
θ − θ∗
p

)
, ϕ

[H0]
t (θ, p) = exp

(
t

(
0 I
−J 0

))(
θ − θ∗
p

)
+

(
θ∗

0

)
.

(7)

If we write J = ZTDZ, with Z orthogonal and D diagonal with positive
diagonal elements, then the exponential map in Eq. (7) is

exp

(
t

(
0 I
−J 0

))
=

(
ZT 0
0 ZT

)
etΛ
(
Z 0
0 Z

)
, etΛ =

(
cos(t

√
D) D−1/2 sin(t

√
D)

−D1/2 sin(t
√
D) cos(t

√
D)

)
.

(8)

In view of the expression for exp(tΛ), we will refer to the flow of H0 as a
rotation.

Choosing in (3) U1 and H0 for the roles of H1 and H2 (or viceversa) gives
rise to the integrators

ψ[KRK]
ε = ϕ

[U1]
ε/2 ◦ ϕ[H0]

ε ◦ ϕ[U1]
ε/2 , ψ[RKR]

ε = ϕ
[H0]
ε/2 ◦ ϕ[U1]

ε ◦ ϕ[H0]
ε/2 , (9)

where one advances the solution over a single timestep by using a kick-rotate-
kick (KRK) or rotate-kick-rotate (RKR) pattern (of course the kicks are based
on the potential function U1). The HMC algorithm with the KRK map in
(9) is shown in Algorithm 2, where the prefix Uncond, to be discussed later,
indicates that the mass matrix being used is M = I. The algorithm for the
RKR sequence in (9) is a slight reordering of a few lines of code and is not
shown. Algorithm 2 (but not its RKR counterpart) was tested in [3].1

Since the numerical integration in Algorithm 2 would be exact if U1 van-
ished (leading to acceptance of all proposals), the algorithm is appealing in
cases where U1 is “small” with respect to H0. In some applications, a decom-
position U = U0 + U1 with small U1 may suggest itself. For a “general” U
one may always define U0 by choosing θ∗ to be one of the modes of the target
∝ exp(−U(θ)) and J the Hessian of U evaluated at θ?; in this case the success
of the splitting hinges on how well U may be approximated by its second-
order Taylor expansion U0 around θ?. In that setting, θ∗ would typically have
to be found numerically by minimizing U . Also Z and D would typically be
derived by numerical approximation, thus leading to computational overheads
for Algorithm 2 not present in Algorithm 1. However, as pointed out in [3],
the cost of computing θ?, Z and D before the sampling begins is, for the test
problems to be considered in this paper, negligible when compared with the
cost of obtaining the samples.

1It is perhaps of interest to mention that in Algorithm 2 the stepsize ε is randomized for the
same reasons as in Algorithm 1. If only the stepsize used in the U1-kicks is randomized, while the
stepsize in exp(εΛ) is kept constant, then one still risks losing ergodicity when εL coincides with
one of the periods present in the solution. This prevents precalculation, prior to the randomization
of ε, of the rotation matrix exp(εΛ).
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Algorithm 2 UncondKRK

Input: θ, Z,Λ, U,J , H, ε̄, L
1: Draw ξ ∼ N (0, I), ε ∼ ε̄× U[0.8,1]

2: Compute eεΛ

3: θ′, p← θ, ξ
4: for i = {1, . . . , L} do . Do KRK integration
5: p← p− ε

2 (∇U(θ′)− J (θ′ − θ∗))
6: θ′, p← Z(θ′ − θ∗), Zp
7: θ′, p← eεΛ

(
θ′

p

)
8: θ′, p← ZT θ′ + θ∗, ZT p
9: p← p− ε

2 (∇U(θ′)− J (θ′ − θ∗))
10: end for
11: a← min {1, exp(H(θ, ξ)−H(θ′, p))}
12: Draw γ ∼ B(a)
13: θ ← γθ′ + (1− γ)θ

2.5 Nesting

When a decomposition U = U0 + U1, with U1 small, is available but the
Hamiltonian system with Hamiltonian H0 = T + U0 cannot be integrated in
closed form, one may still construct schemes based on the recipe (3). One step
of the integrator is defined as

ϕ
[U1]
ε/2 ◦

(
ϕ

[U0]
ε/2k ◦ ϕ

[T ]
ε/k ◦ ϕ

[U0]
ε/2k

)k
◦ ϕ[U1]

ε/2 , (10)

where k is a suitably large integer. Here the (untractable) exact flow of H0 is
numerically approximated by KDK Verlet using k substeps of length ε/k. In
this way, kicks with the small U1 are performed with a stepsize ε/2 and kicks
with the large U0 benefit from the smaller stepsize ε/(2k). This idea has been
successfully used in Bayesian applications in [3], where it is called “nested
Verlet”. The small U1 is obtained summing over data points that contribute
little to the loglikelihood and the contributions from the most significant data
are included in U0.

Integrators similar to (10) have a long history in molecular dynamics, where
they are known as multiple timestep algorithms [12–14].

3 Shortcomings of the unconditioned KRK and
RKR samplers

As we observed above, Algorithm 2 is appealing when U1 is a small pertur-
bation of the quadratic Hamiltonian H0. In particular, one would expect that
since the numerical integration in Algorithm 2 is exact when U1 vanishes,
then this algorithm may be operated with stepsizes ε chosen solely in terms
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of the size of U1, independently of H0. If that were the case one would expect
that Algorithm 2 may work well with large ε in situations where Algorithm 1
requires ε small and therefore much computational effort. Unfortunately those
expectations are not well founded, as we shall show next by means of an
example.

We study the model Hamiltonian with θ, p ∈ R2 given by

H(θ, p) = H0(θ, p) + U1(θ), H0 =
1

2
pT p+

1

2
θT
(
σ−2

1 0
0 σ−2

2

)
θ, U1 =

κ

2
θT θ.

(11)

The model is restricted to R2 just for notational convenience; the extension to
Rd is straightforward. The quadratic Hamiltonian H0 is rather general—any
Hamiltonian system with quadratic Hamiltonian (1/2)pTM−1p+ (1/2)θTWθ
may be brought with a change of variables to a system with Hamiltonian
of the form (1/2)pT p + (1/2)θTDθ, with M,W symmetric, positive definite
matrices and D diagonal and positive definite [10, 15]. In (11), σ1 and σ2 are
the standard deviations of the bivariate Gaussian distribution with density
∝ exp(−U0(θ)) (i.e of the target in the unperturbed situation U1 = 0). We
choose the labels of the scalar components θ1 and θ2 of θ to ensure σ1 ≤ σ2 so
that, for the probability density ∝ exp(−U0(θ)), θ1 is more constrained than
θ2. In addition, we assume that κ is small with respect to σ−2

1 and σ−2
2 , so

that in (11) U1 is a small perturbation of H0. The Hamiltonian equations of
motion for θi, given by d

dt θi = pi,
d
dt pi = −ω2

i θi, with ωi = (σ−2
i +κ)1/2 ≈ σ−1

i ,

yield d2

dt2 θi + ω2
i θi = 0. Thus the dynamics of θ1 and θ2 correspond to two

uncoupled harmonic oscillators; the component θi, i = 1, 2, oscillates with an
angular frequency ωi (or with a period 2π/ωi).

We note, regardless of the integrator being used, the correlation between
the proposal and the current state of the Markov chain will be large if the
integration is carried out over a time interval T = εL much smaller than the
periods 2π/ωi of the harmonic oscillators [1, 10]. Since 2π/ω2 is the longest of
the two periods, L has then to be chosen

L ≥ C

εω2
≈ Cσ2

ε
, (12)

where C denotes a constant of moderate size. For instance, for the choice
C = π/2, the proposal for θ2 is uncorrelated at stationarity with the current
state of the Markov chain as discussed in e.g. [10].

For the KDK Verlet integrator, it is well known that, for stability reasons
[1, 8], the integration has to be operated with a stepsize ε < 2/max(ω1, ω2),
leading to a stability limit

ε ≈ 2σ1; (13)
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integrations with larger ε will lead to extremely inaccurate numerical solutions.
This stability restriction originates from θ1, the component with greater pre-
cision in the Gaussian distribution ∝ exp(−U0). Combining (13) with (12) we
conclude that, for Verlet, the number of timesteps L has to be chosen larger
than a moderate multiple of σ2/σ1. Therefore when σ1 � σ2 the computa-
tional cost of the Verlet integrator will necessarily be very large. Note that the
inefficiency arises when the sizes of σ1 and σ2 are widely different; the first
sets an upper bound for the stepsize and the second a lower bound on the
length εL of the integration interval. Small or large values of σ1 and σ2 are
not dangerous per se if σ2/σ1 is moderate.

We now turn to the KRK integrator in (9). For the i-th scalar component
of (θ, p), a timestep of the KRK integrator reads

(
θi
pi

)
←
(

1 0
−εκ/2 1

)(
cos(ε/σi) σi sin(ε/σi)

−σ−1
i sin(ε/σi) cos(ε/σi)

)(
1 0

−εκ/2 1

)(
θi
pi

)

or

(
θi
pi

)
←
(

cos(ε/σi)− (εσiκ/2) sin(ε/σi) σi sin(ε/σi)
(ε2σiκ

2/4) sin(ε/σi)− σ−1
i sin(ε/σi) + εκ cos(ε/σi)) cos(ε/σi)− (εσiκ/2) sin(ε/σi)

)(
θi
pi

)
.

Stability is equivalent to |cos(ε/σi)− (εσiκ/2) sin(ε/σi)| < 1, which, for κ > 0,
gives 2 cot((ε/(2σi)) > εκσi. From here it is easily seen that stability in the
i-th component is lost for ε/σi ≈ π for arbitrarily small κ > 0. Thus the KRK
stability limit is

ε ≈ πσ1. (14)

While this is less restrictive than (13), we see that stability imposes an upper
bound for ε in terms of σ1, just as for Verlet. From (12), the KRK integrator,
just like Verlet, will have a large computational cost when σ1 � σ2. This is
in spite of the fact that the integrator would be exact for κ = 0, regardless of
the values of σ1, σ2.

For the RKR integrator a similar analysis shows that the stability limit is
also given by (14); therefore that integrator suffers from the same shortcomings
as KRK.

We also note that, since as k increases the nested integrator (10) approx-
imates the KRK integrator, the counterexample above may be used to show
that the nested integrator has to be operated with a stepsize ε that is limited
by the smallest standard deviations present in U0, as is the case for Verlet,
KRK and RKR. For the stability of (10) and related multiple timestep tech-
niques, the reader is referred to [16] and its references. The nested integrator
will not be considered further in this paper.
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4 Preconditioning

As pointed out above, without additional information on the target, it is stan-
dard to set M = I. When U = U0 + U1, with U0 as in (5), it is useful to
consider a preconditioned Hamiltonian with M = J :

H [precond](θ, p) =
1

2
pTJ−1p+ U(θ) =

1

2
pTJ−1p+

1

2
(θ − θ∗)TJ (θ − θ∗) + U1(θ).

(15)

Preconditioning is motivated by the observation that the equations of motion
for the Hamiltonian

H
[precond]
0 (θ, p) =

1

2
pTJ−1p+

1

2
(θ − θ∗)TJ (θ − θ∗),

given by d
dt θ = J−1p, d

dt p = −J (θ − θ?), yield d2

dt2 (θ − θ?) + (θ − θ?) = 0.
Thus we now have d uncoupled scalar harmonic oscillators (one for each scalar
component θi − θ?i ) sharing a common oscillation frequency ω = 1.2 This
is to be compared with the situation for (6), where, as we have seen in the
model (11), the frequencies are the reciprocals 1/σi of the standard deviations
of the distribution ∝ exp(−U0(θ)). Since, as we saw in Section 3, it is the
differences in size of the frequencies of the harmonic oscillators that cause the
inefficiency of the integrators, choosing the mass matrix to ensure that all
oscillators have the same frequency is of clear interest. We call unconditioned
those Hamiltonians/integrators where the mass matrix is chosen as the identity
agnostically without specializing it to the problem.

For reasons explained in [11] it is better, when J has widely different
eigenvalues, to numerically integrate the preconditioned equations of motion
after rewriting them with the variable v = M−1p = J−1p replacing p. The
differential equations and solution flows of the subproblems are then given by

d

dt

(
θ
v

)
=

(
0

−J−1∇θU1(θ)

)
=⇒ ϕ

[U1]
t (θ, v) =

(
θ

v − tJ−1∇θU1(θ)

)
,

and

d

dt

(
θ
v

)
=

(
0 I
−I 0

)(
(θ − θ∗)

v

)
=⇒ ϕ

[H
[precond]
0 ]

t (θ, v) =

(
cos(t) sin(t)
− sin(t) cos(t)

)(
(θ − θ∗)

v

)
+

(
θ∗

0

)
.

Since J is a symmetric, positive definite matrix, it admits a Cholesky fac-
torisation J = BBT . The inversion of J in the kick may thus be performed
efficiently using Cholesky-based solvers from standard linear algebra libraries.
It also means it is easy to draw from the distribution of v ∼ B−TN (0, I).

Composing the exact maps ϕ
[.]
ε using Strang’s recipe (3) then gives a numer-

ical one-step map ψ
[.]
ε in either an RKR or KRK form. The preconditioned

2The fact that the frequency is of moderate size is irrelevant; the value of the frequency may
be arbitrarily varied by rescaling t. What is important is that all frequencies coincide.
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KRK (PrecondKRK) algorithm is shown in Algorithm 3; the RKR version is
similar and will not be given.

Algorithm 3 PrecondKRK

Input: θ,B−T , ε̄, U,J , θ∗, L,H
1: Draw ξ ∼ B−TN (0, I), ε ∼ ε̄× U[0.8,1]

2: θ′, v ← θ, ξ
3: for i = {1, . . . , L} do
4: v ← v − ε

2

(
J−1∇θU(θ′)− (θ′ − θ∗)

)
5: θ′ ← (θ′ − θ∗)
6: θ′, v ← θ′ cos(ε) + v sin(ε), v cos(ε)− θ′ sin(ε)
7: θ′ ← θ′ + θ∗

8: v ← v − ε
2

(
J−1∇θU(θ′)− (θ′ − θ∗)

)
9: end for

10: a← min {1, exp(H(θ, ξ)−H(θ′, v))}
11: Draw γ ∼ B(a)
12: θ ← γθ′ + (1− γ)θ

Of course it is also possible to use the KDK Verlet Algorithm 1 with pre-
conditioning (M = J ) (and v replacing p). The resulting algorithm may be
seen in Algorithm 4.

Algorithm 4 PrecondVerlet

Input: θ,B−T , ε̄, U,J , θ∗, L,H
1: Draw ξ ∼ B−TN (0, I), ε ∼ ε̄× U[0.8,1]

2: θ′, v ← θ, ξ
3: for i = {1, . . . , L} do
4: v ← v − ε

2J−1∇θU(θ′)
5: θ′ ← θ′ + εv
6: v ← v − ε

2J−1∇θU(θ′)
7: end for
8: a← min {1, exp(H(θ, ξ)−H(θ′, v))}
9: Draw γ ∼ B(a)

10: θ ← γθ′ + (1− γ)θ

Applying these algorithms to the model problem (11), an analysis parallel
to that carried out in Section 3 shows that the decorrelation condition (12)
becomes, independently of σ1 and σ2

L ' C/ε
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and the stability limits in (13) and (14) are now replaced, also independently
of the values of σ1 and σ2, by

ε ≈ 2, ε ≈ π,

for Algorithm 4 and Algorithm 3 respectively. The stability limit for the Pre-
condRKR algorithm coincides with that of the PrecondKRK method. (See also
Appendix B.)

The idea of preconditioning is extremely old; to our best knowledge it
goes back to [4]. The algorithm in [17] may be regarded as a θ-dependent
preconditioning. For preconditioning in infinite dimensional problems see [18].

5 Numerical results

In this section we test the following algorithms:

• Unconditioned Verlet: Algorithm 1 with M = I.
• Unconditioned KRK: Algorithm 2.
• Preconditioned Verlet: Algorithm 4.
• Preconditioned KRK: Algorithm 3.
• Preconditioned RKR: similar to Algorithm 3 using a rotate-kick-rotate

pattern instead of kick-rotate-kick.

The first two algorithms were compared in [3] and in fact we shall use the
exact same logistic regression test problems used in that reference. If x are
the prediction variables and y ∈ {0, 1}, the likelihood for the test problems is

(x̃ =
[
1, xT

]T
, θ =

[
α, βT

]T
)

L(θ; x, y) =

n∏
i=1

(
1 + exp(−θT x̃i)

)−y (
1 + exp(θT x̃i)

)y−1
. (16)

For the preconditioned integrators, we set U0 as in (5) with θ∗ given by the
maximum a posteriori (MAP) estimation and J the Hessian at θ∗.

For the two unconditioned integrators, we run the values of L and ε chosen
in [3] (this choice is labelled as A in the tables). Since in many cases the
autocorrelation for the unconditioned methods is extremely large with those
parameter values (see Fig. 1), we also present results for these methods with
a principled choice of T and ε (labelled as B in the tables). We take T = εL =
π/(2ωmin), where ωmin is the minimum eigenvalue of

√
D given in Eq. (8). In

the case where the perturbation U1 is absent, this choice of T would decorrelate
the least constrained component of θ. We then set ε as large as possible to
ensure an acceptance rate above 65% [11]— the stepsizes in the choice B are
slightly smaller than the values used in [3], and the durations T are, for every
dataset, larger. We are able thus to attain greater decorrelation, although at
greater cost. For the preconditioned methods, we set T = π/2, since this gives
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samples with 0 correlation in the case U1 = 0, and then set the timestep ε as
large as possible whilst ensuring the acceptance rate is above 65%.

In every experiment we start the chain from the (numerically calculated)
MAP estimate θ? of θ and acquire Ns = 5× 104 samples. The autocorrelation
times reported are calculated using the emcee function integrated time with
the default value c = 5 [19]. We also estimated autocorrelation times using
alternative methods [20–23]; the results obtained do not differ significantly
from those reported in the tables.

Finally, note that values of ε̄ quoted in the tables are the maximum timestep
that the algorithms operate with, since the randomisation follows ε ∼ ε̄ ×
U[0.8,1]. All code is available from the github repository https://github.com/
lshaw8317/SplitHMCRevisited.

5.1 Simulated Data

We generate simulated data according to the same procedure and parameter
values described in [3]. The first step is to generate x ∼ N (0, σ2) with σ2 =
diag

{
σ2
j : j = 1 . . . , d− 1

}
, where

σ2
j =


25 j ≤ 5

1 5 < j ≤ 10

0.04 j > 10

.

Then, we generate the true parameters θ̂ = [α, βT ]T with α ∼ N (0, γ2) and the
vector β ∈ Rd−1 with independent components following βj ∼ N (0, γ2), j =
1, . . . , d − 1, with γ2 = 1. Augmenting the data x̃i = [1, xTi ]T , from a given
sample xi, yi is then generated as a Bernoulli random variable yi ∼ B((1 +

exp(−θ̂T x̃i))−1). In concreteness, a simulated data set {xi, yi}ni=1 with n = 104

samples is generated, xi ∈ Rd−1 with d − 1 = 100. The sampled parameters
θ ∈ Rd are assumed to have a prior N (0,Σ) with Σ = diag {25 : j = 1 . . . , d}.

Results are given in Table 1. The second column gives the number L of
timesteps per proposal and the third the computational time s (in millisec-
onds) required to generate a single sample. The next columns give, for three
observables, the products τ × s, with τ the integrated autocorrelation (IAC)
time. These products measure the computational time to generate one inde-
pendent sample. The notation τ` refers to the observable f(θ) = log(L(θ; x, y))
where L is the likelihood in (16), and τθ2 refers to f(θ) = θT θ. The degree of
correlation measured by τ` is important in optimising the cost-accuracy ratio
of predictions of y, while τθ2 is relevant to estimating parameters of the dis-
tribution of θ [24, 25]. Following [3], we also examine the maximum IAC over
all the Cartesian components of θ, since we set the time T in order to decorre-
late the slowest-moving/least constrained component. Finally the last column
provides the observed rate of acceptance.

Comparing the values of τ × s in the first four rows of the table shows the
advantage, emphasized in [3], of the H0 + U1 (4) over the kinetic/potential

https://github.com/lshaw8317/SplitHMCRevisited
https://github.com/lshaw8317/SplitHMCRevisited
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Fig. 1: Autocorrelation function plots for the slowest moving component asso-
ciated to the IAC τmax for each dataset. For the unconditioned methods, we
show the principled choice B (solid line) and the choice A from [3] (dotted).
The values of ε and T are as given in the tables.

splitting: Unconditioned KRK operates with smaller values of L than Uncon-
ditioned Verlet and the values of τ×s are smaller for Unconditioned KRK than
for unconditioned Verlet. However when comparing the results for Uncondi-
tioned Verlet A or B with those for Preconditioned Verlet, it is apparent that
the advantage of using the Hessian J to split U = U0 + U1 with M = I is
much smaller than the advantage of using J to precondition the integration
while keeping the kinetic/potential splitting.

The best performance is observed for the Preconditioned KRK and RKR
algorithms that avail themselves of the Hessian both to precondition and to
use rotation instead of drift. Preconditioned RKR is clearly better than its
KRK counterpart (see Appendix B). For this problem, as shown in Appendix
A, U1 is in fact small and therefore the restrictions of the stepsize for the KRK
integration are due to the stability reasons outlined in Section 3. In fact, for
the unconditioned algorithms, the stepsize ε̄KRK = 0.03 is not substantially
larger than ε̄V erlet = 0.015, in agreement with the analysis presented in that
section.

The need to use large values of L in the unconditioned integration stems, as
discussed above, from the coexistence of large differences between the frequen-
cies of the harmonic oscillators. In this problem the minimum and maximum
frequencies are ωmin = 2.6, ωmax = 105.0.
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L s [ms] τ` × s τθ2 × s τmax × s AP

UncondVerlet A 20 4.70 3.5× s = 16.5 11.4× s = 53.6 7.0× s = 32.9 0.69
UncondVerlet B 40 8.49 3.7× s = 31.4 2.6× s = 22.1 2.0× s = 17.0 0.68
UncondKRK A 10 3.04 3.4× s = 10.3 11.1× s = 33.8 6.6× s = 20.1 0.76
UncondKRK B 20 5.27 3.9× s = 20.5 3.3× s = 17.4 3.0× s = 15.8 0.69
PrecondVerlet 3 1.60 2.5× s = 4.0 2.3× s = 3.7 2.3× s = 3.7 0.79
PrecondKRK 1 1.22 2.8× s = 3.4 3.4× s = 4.2 3.5× s = 4.3 0.75
PrecondRKR 1 0.99 1.6× s = 1.6 2.1× s = 2.1 2.1× s = 2.1 0.87

Table 1: SimData: For methods labelled A, parameters from [3]: T = 0.3,
ε̄V erlet = 0.015, ε̄UKRK = 0.03. For the unconditioned methods labelled B,
T = π/2ωmin = 0.6, and ε̄V erlet = 0.015, ε̄UKRK = 0.03. For the precondi-
tioned methods, T = π/2, and ε̄V erlet = T/3 ≈ 0.52; the other preconditioned
methods operate with ε̄Precon = T ≈ 1.57.

5.2 Real Data

The three real datasets considered in [3], StatLog, CTG and Chess, are also
examined, see Tables 2–4. For the StatLog and CTG datasets with the uncon-
ditioned Hamiltonian, KRK does not really provide an improvement on Verlet.
In all three datasets, the preconditioned integrators clearly outperform the
unconditioned counterparts. Of the three preconditioned algorithms Verlet is
the worst and RKR the best.

StatLog

Here, n = 4435, d− 1 = 36. The frequencies are ωmin = 0.5, ωmax = 22.8.

L s [ms] τ` × s τθ2 × s τmax × s AP

UncondVerlet A 20 1.99 5.5× s = 11.0 5.8× s = 11.6 9.8× s = 19.5 0.69
UncondVerlet B 40 3.34 7.6× s = 25.4 2.5× s = 8.3 2.6× s = 8.7 0.64
UncondKRK A 14 1.73 6.2× s = 10.7 5.7× s = 9.9 9.5× s = 16.5 0.72
UncondKRK B 28 2.79 8.7× s = 24.3 2.9× s = 8.1 2.9× s = 8.1 0.65
PrecondVerlet 3 0.64 2.5× s = 1.6 2.6× s = 1.7 2.7× s = 1.7 0.88
PrecondKRK 2 0.60 2.9× s = 1.7 3.2× s = 1.9 3.3× s = 2.0 0.88
PrecondRKR 2 0.53 2.3× s = 1.2 2.5× s = 1.3 2.7× s = 1.4 0.94

Table 2: StatLog: For methods labelled A, parameters are from [3]: T = 1.6,
ε̄V erlet = 0.08, ε̄UKRK = 0.114. For the unconditioned methods labelled B, T =
π/2ωmin = 3.26, and ε̄V erlet = 0.08, ε̄UKRK = 0.114. For the preconditioned
methods, T = π/2, and ε̄V erlet = T/3; the other preconditioned methods
operate with ε̄Precon = T/2.

CTG

Here, n = 2126, d− 1 = 21. The frequencies are ωmin = 0.2, ωmax = 23.9.

Chess

Here, n = 3196, d− 1 = 36. The frequencies are ωmin = 0.3, ωmax = 22.3.
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L s [ms] τ` × s τθ2 × s τmax × s AP

UncondVerlet A 20 1.06 5.9× s = 6.2 20.1× s = 21.2 80.3× s = 84.8 0.69
UncondVerlet B 98 4.28 6.1× s = 26.1 5.1× s = 21.8 36.0× s = 154.2 0.64
UncondKRK A 13 0.95 6.5× s = 6.2 17.9× s = 17.0 53.0× s = 50.3 0.77
UncondKRK B 66 3.89 6.1× s = 23.7 5.1× s = 19.8 37.2× s = 144.6 0.65
PrecondVerlet 2 0.36 2.6× s = 0.9 2.1× s = 0.7 2.6× s = 0.9 0.76
PrecondKRK 2 0.41 1.8× s = 0.7 1.8× s = 0.7 2.4× s = 1.0 0.90
PrecondRKR 2 0.35 1.9× s = 0.7 1.7× s = 0.6 2.1× s = 0.7 0.93

Table 3: CTG: For runs labelled A, parameters are from [3]: T = 1.6, ε̄V erlet =
0.08, ε̄UKRK = 0.123. For the unconditioned runs labelled B, T = π/2ωmin =
7.85, and ε̄V erlet = 0.08, ε̄UKRK = 0.118. For the preconditioned methods,
T = π/2, and ε̄ = T/2.

L s [ms] τ` × s τθ2 × s τmax × s AP

UncondVerlet A 20 1.52 12.2× s = 18.5 18.9× s = 28.6 42.3× s = 64.1 0.62
UncondVerlet B 65 4.20 3.6× s = 15.1 1.5× s = 6.3 19.9× s = 83.6 0.68
UncondKRK A 9 0.90 13.3× s = 11.9 21.3× s = 19.1 37.7× s = 33.8 0.72
UncondKRK B 40 3.31 4.1× s = 13.6 1.9× s = 6.3 22.1× s = 73.1 0.64
PrecondVerlet 2 0.46 2.6× s = 1.2 3.1× s = 1.4 5.2× s = 2.4 0.63
PrecondKRK 2 0.50 1.6× s = 0.8 2.5× s = 1.2 4.6× s = 2.3 0.81
PrecondRKR 2 0.44 1.6× s = 0.7 2.2× s = 1.0 3.8× s = 1.7 0.85

Table 4: Chess: For runs labelled A, parameters are from [3]: T = 1.8,
ε̄V erlet = 0.09, ε̄UKRK = 0.2. For runs labelled B, T = π/2ωmin = 5.71, and
ε̄V erlet = 0.087, ε̄UKRK = 0.142. For the preconditioned methods, T = π/2,
and ε̄ = T/2.

Appendix A Bernstein-von Mises theorem

From the Bernstein-von Mises theorem (see e.g. section 10.2 in [5]), as the size
of the dataset n increases unboundedly, the posterior distribution π(θ | x, y)
becomes dominated by the likelihood and is asymptotically Gaussian; more
precisely N (θ̂, n−1IF (θ̂)−1), where θ̂ represents the true value and IF denotes
the Fisher information matrix. This observation shows that, at least for n large,
approximating the potential ∝ exp(−U(θ)) by a Gaussian ∝ exp(−U0(θ)) with
mean θ∗ as in Section 5.1 is meaningful.

An illustration of the Bernstein-von Mises theorem is provided in Figure 2
that corresponds to the simulated data problem described in Section 5.1. As
the number of data points increases from 27 = 128 to 214 = 32, 768, the scaled
values ωj/

√
n where ω2

j are the eigenvalues of the numerically calculated Hes-
sian J (θ∗) that we use in U0 converge to the square roots of the eigenvalues of

the Monte Carlo estimation of the Fisher information matrix IF (θ̂) calculated
using the true parameter values and the randomly generated xi.

A further illustration is provided in Figure 3 where again the number of
data points increases from 27 = 128 to 214 = 32, 768. The following parameter
values are used:
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Fig. 2: The ordered rotation frequencies (ωj =
√
λj , with λj an eigenvalue

of J ) scaled by
√
n as the number of data points n increases converge to the

square roots of the eigenvalues of the (estimated) Fisher information matrix.

• The preconditioned algorithms, where solutions of the Hamiltonian H0 are
periodic with period 2π, have T = π/2. For the KRK and RKR splittings
we take two timesteps per proposal, i.e. L = 2 and for the preconditioned
Verlet, L = 3.

• For the unconditioned algorithms we set T = (π/2)/ωmin. i.e. a quarter of the
largest period present in the solutions of H0. Both Verlet and UncondKRK
are operated with L = 30 timesteps per proposal.

Note that since, as n varies the value of L for each algorithm remains constant,
the number of evaluations of ∇U1 (for methods with rotations) or ∇U (for the
Verlet integrator) remains constant. The figure shows that, as n increases, the
acceptance rate for the methods Unconditioned KRK, Preconditioned KRK,
and Preconditioned RKR based on the splitting (4) approaches 100%. These
methods are exact when U1 = 0 and exp(−U) coincides with the Gaussian
exp(−U0) and therefore have smaller energy errors/larger acceptance rates as
n increases. On the other hand the integrators based on the kinetic/potential
splitting are not exact when the potential U is quadratic, and, correspondingly,
we see that the acceptance rate does not approach 100% as n ↑ ∞.

Appendix B Integrating the preconditioned
Hamilton equations

KRK and RKR are two possible reversible, symplectic integrators for the
equations of motion corresponding to the preconditioned Hamiltonian (15), but
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per proposal. For methods using rotations the acceptance rate approaches
100% as n ↑ ∞.

many others are of course possible. In this Appendix we present a methodol-
ogy to choose between different integrators. The material parallels an approach
suggested in [15] to choose between integrators for the kinetic/potential split-
ting; an approach that has been followed by a number of authors (see [26] for
an extensive list of references). The methodology is based on using a Gaus-
sian model distribution to discriminate between alternative algorithms, but,
as shown in [27], is very successful in predicting which algorithms will perform
well for general distributions.

To study the preconditioned H0 + U1 splitting, we select the model one-
dimensional problem

H(θ, p) =
1

2
(p2 + θ2) +

1

2
κθ2. (B1)

We assume that κ > −1 so that the potential energy (1/2)θ2 + (κ/2)θ2 is
positive definite. The application of one step (of length ε) of an integrator for
this problem in all practical contexts takes the linear form

(
θn+1

pn+1

)
= Mκ,ε

(
θn
pn

)
, Mκ,ε =

[
Aκ,ε Bκ,ε
Cκ,ε Dκ,ε

]
. (B2)
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From Eq. (B2), it is clear that an integration leg of length T = εL (with initial
condition θ(0) = θ0, p(0) = p0) is given by(

θL
pL

)
= ML

κ,ε

(
θ0

p0

)
.

We now apply two restrictions to the integration matrix in Eq. (B2).
Reversibility imposes that Aκ,ε = Dκ,ε; symplecticity (in one dimension
equivalent to volume-preservation) implies that [15]

det(Mκ,ε) = A2
κ,ε −Bκ,εCκ,ε = 1. (B3)

The eigenvalues of the matrix Mκ,ε are then

λ = Aκ,ε ±
√
A2
κ,ε − 1,

which shows that there are three cases:

1. |Aκ,ε| > 1. For one of the eigenvalues, |λ| > 1 and so the integration is
unstable.

2. |Aκ,ε| < 1. The integration is stable as both eigenvalues have magnitude 1.
3. |Aκ,ε| = 1. The symplectic condition Eq. (B3) necessarily impliesBκ,εCκ,ε =

0, which gives two sub-cases:
(a) |Bκ,ε|+ |Cκ,ε| = 0. The matrix Mκ,ε = ±I and the integration is stable.
(b) |Bκ,ε|+ |Cκ,ε| 6= 0. Then, if Bκ,ε 6= 0,

ML
κ,ε =

[
AL LAL−1B
0 AL

]
and the integration is (weakly) unstable. Similarly there is weak insta-
bility if instead Cκ,ε 6= 0

Thus for stable integration, one may find ηκ,ε such that Aκ,ε = cos(ηκ,ε) ∈
[−1, 1]; in addition we define χκ,ε = Bκ,ε/ sin(ηκ,ε) for sin(ηκ,ε) 6= 0 and let
χκ,ε be arbitrary if sin(ηκ,ε) = 0. In this way, for the model problem, all stable,
symplectic integrations have a propagation matrix of the form

Mκ,ε =

[
cos(ηκ,ε) χκ,ε sin(ηκ,ε)

−χ−1
κ,ε sin(ηκ,ε) cos(ηκ,ε)

]
. (B4)

We now state a lemma analogue of Proposition 4.3 in [15].

Lemma 1. Denote A = cos(Lηκ,ε), B = χκ,ε sin(Lηκ,ε), C = −χ−1
κ,ε sin(Lηκ,ε).

Given the initial conditions θ0, p0, and integrating the dynamics of the Hamil-
tonian of the model problem Eq. (B1) using the integrator in Eq. (B4) for L
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steps to give new values of θL, pL, the energy error may be expressed as:

∆ ≡ H(θL, pL)−H(θ0, p0) =
1

2
(C + (1 + κ)B)

(
Cθ2

0 + 2Aθ0p0 +Bp2
0

)
.

(B5)

Proof Applying the symplectic condition Eq. (B3), the energy error ∆ ≡ H(θL, pL)−
H(θ0, p0) then follows

2∆ = p2
L + (1 + κ)θ2

L − p
2
0 − (1 + κ)θ2

0

= (Cθ0 +Ap0)2 + (1 + κ) (Bp0 +Aθ0)2 − p2
0 − (1 + κ)θ2

0

= (C2 + (A2 − 1)(1 + κ))θ2
0 + 2A(C + (1 + κ)B)θ0p0 + (A2 − 1 + (1 + κ)B2)p2

0

= (C + (1 + κ)B)
(
Cθ2

0 + 2Aθ0p0 +Bp2
0

)
.

�

Theorem 1. With the notation of the lemma, assume that the initial con-
ditions θ0 ∼ N (0, 1/(1 + κ)), p0 ∼ N (0, 1) are (independently) distributed
according to their stationary distributions corresponding to the Hamiltonian
for the model problem Eq. (B1). Then the expected energy error follows

E[∆] = sin2(Lηκ,ε)ρ(ε, κ) ≤ ρ(ε, κ),

where ρ is given by

ρ(ε, κ) =
1

2

(√
1 + κχκ,ε −

1√
1 + κχκ,ε

)2

=
(Cκ,ε + (1 + κ)Bκ,ε)

2

2(1 + κ)(1−A2
κ,ε)

. (B6)

Proof Since E[θ0p0] = E[θ0]E[p0] = 0 and E[p2
0] = 1,E[θ2

0] = 1/(1 + κ), the
expectation of Eq. (B5) is

E[∆] =
1

2
(C + (1 + κ)B)

(
C

1 + κ
+B

)
=

1

2

(
C√

1 + κ
+
√

1 + κB

)2

.

Substituting the expressions for B,C from the definitions in the theorem above into
the last display and dropping the subscripts to give χ = χκ,ε, s = sin(Lηκ,ε) and
c = cos(Lηκ,ε) gives

E[∆] =
1

2
s2

(
1

(1 + κ)χ2
+ (1 + κ)χ2 − 2

)
= sin2(Lηκ,ε)ρ(ε, κ).

�

Since ηκ,ε and χκ,ε depend on the integrator Eq. (B4), the ρ function also
depends on the integrator. Note that ρ does not change with L. For the model
problem, integrators with smaller ρ lead to smaller averaged energy errors at
stationarity of the chain and therefore to smaller empirical rejection rates.
By diagonalization it is easily shown as in [15] that the same is true for all
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Gaussian targets ∝ exp(−U(θ)), U = U0 + U1. This suggests that, all other
things being equal, integrators with smaller ρ should be preferred (see a full
discussion in [27]).

B.1 KRK vs. RKR

For the KRK integration, we find (similarly to Section 3) that a stable inte-
gration requires −1 < cos(ε) − εκ sin(ε)/2 < 1, so that, the stability limit for
κ > 0 is

ε <
2 cot(ε/2)

κ
. (B7)

Note that ε < π for any value of κ > 0. For −1 < κ < 0, the stability limit
is ε < π. Application of the formula Eq. (B6) gives the ρ function of the
integrator as

ρ[KRK](ε, κ) =
κ2 csc(ε)(−4ε cos(ε) + (4 + κε2) sin(ε))2

8(1 + κ)(4κε cos(ε) + (4− κ2ε2) sin(ε))
.

For κ = 0, ρ vanishes as expected because then the integration is exact.
Similarly, for RKR, stable integration requires −1 < cos(ε)− εκ sin(ε)/2 <

1, so that, the stability limit for κ > 0 of RKR is the same we found in (B7).
Again for −1 < κ < 0, the stability limit is ε < π, as for KRK.

Application of the formula Eq. (B6) gives the ρ function of the RKR
integrator as

ρ[RKR](ε, κ) =
κ2 csc(ε)(κε cos(ε) + 2 sin(ε)− (2 + κ)ε)2

2(1 + κ)(4κε cos(ε) + (4− κ2ε2) sin(ε))
.

The following result implies that for all Gaussian problems, at stationarity,
RKR always leads to smaller energy errors/higher acceptance rates than KRK.

Theorem 2. For each choice of κ > −1, κ 6= 0, and ε > 0 leading to a stable
KRK or RKR integration

ρ[RKR](ε, κ) < ρ[KRK](ε, κ).

Proof From the expressions for ρ given above, we have to show that

4(κε cos(ε) + 2 sin(ε)− (2 + κ)ε)2 < (−4ε cos(ε) + (4 + κε2) sin(ε))2.

It is therefore sufficient to show that

2(κε cos(ε) + 2 sin(ε)− (2 + κ)ε) < −4ε cos(ε) + (4 + κε2) sin(ε) (B8)

and

4ε cos(ε)− (4 + κε2) sin(ε) < 2(κε cos(ε) + 2 sin(ε)− (2 + κ)ε). (B9)
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The inequality (B8) may be rearranged as

2κε
(

cos(ε)− 1
)
< 4ε

(
1− cos(ε)

)
+ κε2 sin(ε),

or

−4κε sin2(ε/2) < 8ε sin2(ε/2) + 2κε2 sin(ε/2) cos(ε/2).

Since for stable runs ε < π, so that sin2(ε/2) > 0, the last display is equivalent to

−4κ < 8 + 2κε cot(ε/2)

or

−4 < κ
(
ε cot(ε/2) + 2

)
.

For 0 < ε < π, ε cot(ε/2) + 2 takes values between 4 and 2 and therefore the last
inequality certainly holds for each κ > −1.

The inequality (B9) may be similarly rearranged as

κε
(
2− ε cot(ε/2)

)
< 4

(
2− ε cot(ε/2)

)
cot(ε/2)

)
.

Since, for 0 < ε < π, 2− ε cot(ε/2) > 0, we conclude that (B9) is equivalent to

κε < 4 cot(ε/2),

a relation that, according to (B7), holds for stable integrations with κ > 0 and is
trivially satisfied for κ < 0, ε ∈ (0, π). �

B.2 Multistage splittings

In addition to the Strang formula (3) one may consider more sophisticated
schemes

ψε = ϕ[H1]
a1ε ◦ ϕ

[H2]
b1ε
◦ ϕ[H1]

a2ε ◦ · · ·ϕ[H1]
am−1ε ◦ ϕ

[H2]
bm−1ε

◦ ϕ[H1]
amε (B10)

where
∑
aj =

∑
bj = 1. These integrators are always symplectic and in

addition are time reversible if they are palindromic i.e. ai = am−i+1, i =
1, . . . ,m, bi = bm−i, i = 1, . . . ,m − 1. In the case of the kinetic/potential
splitting of H, integrators of the form (B10) when used for HMC sampling
may provide very large improvements on leapfrog/Verlet (see [26, 27] and their
references). For the preconditioned H0 + U1 splitting in this paper, we have
investigated extensively the existence of formulas of the format (B10) that
improve on the RKR integrator based on the Strang recipe (3). We proceeded
in a way parallel to that followed in [15]. For fixed m, m = 3 or m = 4, and a
suitable range of values of κ and ε, we choose the values of ai and bi so as to
minimize the function ρ in Theorem 1, thus minimizing the expected energy
error at stationarity in the integration of the model problem. The outcome of
our investigation was that, while we succeeded in finding formulas that improve
on the Preconditioned RKR integrator, the improvements were minor and did
not warrant the replacement of RKR by more sophisticated formulas.
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