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Abstract In a series of papers the present authors and their coworkers have devel-
oped a family of algebraic techniques to solve a number of problems in the theory
of discrete or continuous dynamical systems and to analyze numerical integrators.
Given a specific problem, those techniques construct an abstract, universal version
of it which is solved algebraically; then, the results are transferred to the original
problem with the help of a suitable morphism. In earlier contributions, the abstract
problem is formulated either in the dual of the shuffle Hopf algebra or in the
dual of the Connes-Kreimer Hopf algebra. In the present contribution we extend
these techniques to more general Hopf algebras, which in some cases lead to more
efficient computations.

1 Introduction

A series of papers [1, 5, 7–10, 25–28, 37] have developed a family of algebraic
techniques to solve a number of problems in the theory of discrete or continuous
dynamical systems and to analyze numerical integrators. Given a specific problem,
those techniques construct an abstract, universal version of it which is solved
algebraically; then, the result is transferred to the original problem with the help
of a suitable morphism Ψ . The abstract problem is formulated either in the dual
of the shuffle Hopf algebra of words [27] or in the dual of the Connes-Kreimer
Hopf algebra of rooted trees [8]. Operations with elements of the relevant dual
are mapped by Ψ into operations with formal series of differential operators. For
the shuffle Hopf algebra, the solution of the original problem appears expressed
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as a so-called word series [27]. In the Connes-Kreimer case, the resulting series
for the original problem are B-series; the Butcher group (the group of characters
of the Connes-Kreimer Hopf algebra) and B-series first appeared in the context of
numerical analysis of differential equations (see [37] for a survey) decades before
the Connes-Kreimer Hopf algebra was introduced in the context of renormalization
in quantum field theory. Duals of Hopf algebras are useful in this setting because
they provide rules for composing formal series.

In the present contribution we extend these techniques to more general Hopf
algebras, which in some cases lead to more efficient computations (cf. [15]).

Problems that may be treated in this form include averaging of periodically or
quasiperiodically forced differential systems [7–10, 25, 28], construction of formal
invariants of motion [8–10, 26] computation of normal forms [26, 28], calculations
on central manifolds [5], and error analysis of splitting integrators for deterministic
[27] or stochastic [1] systems of differential equations. Of course it would be
impossible to take up here each of those problems; the examples in this paper only
refer to the computation of high-order averaged systems for periodically forced
differential equations and to the analysis of the Strang splitting formula when
applied to perturbations of integrable systems.

The techniques studied here go back to a number of earlier developments, in
particular, mention has to be made of Ecalle’s mould calculus [13, 14] (see [15, 29,
32, 33, 38] for more recent contributions), and of the algebraic theory of integrators
[4, 22–24, 37].

An outline of this paper now follows. Section 2 reviews some well-known
ideas on the reformulation of differential systems in Euclidean spaces as operator
differential equations. Section 3 illustrates the algebraic approach in the series of
papers mentioned at the beginning of this introduction. It does so by considering
a concrete averaging problem in R5 and explicitly finding a high-order averaged
system by first working abstractly in the group of characters of the shuffle Hopf
algebra. The complexity of the computations grows very quickly with the order
of the averaged system sought and this motivates the material in Sect. 4, where
we show how to work with other Hopf algebras to increase the efficiency of the
algorithms. The vector fields (derivations) appearing in the given problem P in
Euclidean space are written as images by a Lie algebra homomorphism Ψ mapping
a suitable graded Lie algebra g̃ into the Lie algebra of derivations. From g̃ we
construct a graded, commutative Hopf algebra H in such a way that an ‘abstact’
version of P may be formally solved in the group of characters G of H; finally
the formal solution in G is translated into a formal solution of P. For the concrete
averaging problem in R5, we present a succession of alternative Hopf algebras that
make it possible to compute approximations of increasingly higher order. The final
section presents material where the ideas in the paper are suitably modified to cater
for problems written in perturbation form, generalizing the notion of extended word
series introduced in [27] and used in [26, 28].

Due to space constraints, we have not attempted to present the results in the most
general conceivable scenario. For instance, it is possible to work with differential
systems defined on differentiable manifolds rather than in Euclidean spaces and
scalars could be complex rather real.
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2 Algebraic Formulation of Differential Systems

It is well known that differential systems in RD may be interpreted as differential
equations that describe the evolution of suitably chosen linear operators. This
section reviews that interpretation, which plays a key role in later developments.We
use the following notation. The vector space C = C∞(RD) consists of all smooth
R-valued functions on RD . Functions χ ∈ C are sometimes called observables.
With respect to the pointwise multiplication of observables, the space C is an
associative and commutative algebra. The symbol End(C) denotes the vector space
of all linear operators X : C → C. When operators are multiplied by composition,
(X1X2)(χ) = X1(X2(χ)), End(C) is an associative algebra with a unit: the identity
operator I : χ $→ χ .

Consider the initial value problem in RD

d

dt
x(t) = f (x(t), t), x(0) = x0, (1)

with f smooth. For each frozen value of t , the vector field f (·, t) defines a first-order
linear differential operator F(t) ∈ End(C) that associates with each observable χ

the observable F(t)χ ∈ C such that

F(t)χ(x) = f (x, t)T · ∇χ(x) =
D∑

j=1

fj (x, t)
∂

∂xj
χ(x)

for each x = (x1, . . . , xD) ∈ RD . Actually, F(t) is a derivation of the algebra C,
i.e.

F(t)(χ1χ2) = (F (t)χ1)χ2 + χ1 (F (t)χ2).

The space Der(C) ⊂ End(C) consisting of all derivations in C is a Lie algebra with
respect to the commutator [F1, F2] = F1F2 − F2F1.

Assuming for the time being that for each x0 ∈ Rd the solution x(t) of (1) exists
for all t ∈ R, we may define a one-parameter family X(t), t ∈ R, of elements of
End(C) as follows: for each observable χ ∈ C and each t ∈ R, X(t)χ ∈ C is
such that X(t)χ(x(0)) = χ(x(t)) for each x(0) ∈ RD . Clearly each X(t) is an
automorphism of the algebra C, i.e.

X(t)(χ1χ2) = X(t)(χ1)X(t)(χ2), (2)

for any χ1,χ2 ∈ C. The set Aut(C ) of all algebra automorphisms is a group for the
composition of operators.
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Since given χ ∈ C,

d

dt
χ(x(t)) = χ ′(x(t)) · f (x(t), t)T · ∇χ(x(t))

we have that

d

dt
X(t) = X(t)F (t), X(0) = I, (3)

or equivalently

X(t) = I +
∫ t

0
X(s)F (s) ds. (4)

In this way the solvability of (1) implies the solvability of the operator initial
value problem (3). When comparing (3) with (1) we note that (3) is linear in X

even when (1) is not linear in x; the multiplication of operators X(t)F (t) in (3)
corresponds to the composition of the maps t $→ x(t), (x, t) $→ f (x, t) that appears
in (1).

Conversely assume that F : R → Der(C) is such that there exists a one-
parameter family X(t) of elements of Aut(C ) satisfying (3). We then define,
for each t , a vector field f (·, t) in RD by setting f i(x, t) = F(t)χ i (x), i =
1, . . . ,D, where χ i is the i-th coordinate function χ i (x) = xi (superscripts denote
components of a vector), and consider the corresponding problem (1). Then, it is
easily checked that (1) has, for each x0, a solution x(t) defined for all real t and the
i-component of x(t) may be found as xi(t) = (X(t)χ i )(x0). We emphasize that for
this construction to work it is essential that the operators X(t) satisfy (2), i.e. they
are automorphisms of C.

We will present below algebraic frameworks where the initial value problem (3)
is interpreted in a broader sense, admitting solution curves X(t) that evolve
in groups of formal automorphisms rather than in Aut(C ). Roughly speaking
such formal automorphisms will be formal series of linear maps that preserve
multiplication of observables as in (2). Even in the case where X(t) does not
correspond to an actual curve in Aut(C), such formal solution curves X(t) may
be used to derive rigorous results on the solution x(t) of (1).

3 An Example

In this section we illustrate the use of Hopf algebra techniques by means of an
example: the construction of high-order averaged systems for a periodic differential
system in R5.



Hopf Algebra Techniques to Handle Dynamical Systems and Numerical Integrators 633

3.1 A Highly-Oscillatory Differential System

The following system of differential equations arises in the study of vibrational
resonance in an energy harvesting device [11]:

dx

dt
= y,

dy

dt
= 1

2
x
(
1− x2

)
− y + v

20
+ A cos

(
t

10

)
+ ω2 cos(ωt),

dv

dt
= − v

100
− y

2
.

Here v is the voltage across the load resistor, x and y are auxiliary state variables,
and ω ≫ 1 is the frequency of the environmental vibration. The aim is to investigate
the effect that the value of the amplitude A of the low-frequency forcing has on the
output v.

Averaging, i.e. reducing the time-periodic system to an autonomous system with
a help of a periodic change of variables [2, 35], is a very helpful tool to study this
kind of problem [25]. To average the vibrational resonance problem above, we begin
by introducing new variables

x = X − cos(tω), y = Y + ω sin(tω)+ cos(tω), v = V + 1
2
cos(tω), (5)

chosen to ensure that in the transformed system

dX

dt
= Y + cos(tω), (6)

dY

dt
= −X

4
− X3

2
− Y + V

20
+ A cos

(
t

10

)

+
(
3X2

2
− 11

10

)

cos(tω)− 3
4
X cos(2tω)+ 1

8
cos(3tω),

dV

dt
= − V

100
− Y

2
− 101

200
cos(tω),

the highly oscillatory terms have amplitudes of size O(1) as ω → ∞. Suppression
of the terms that oscillate with high frequency then results in the averaged system

dX

dt
= Y,

dY

dt
= −X

4
− X3

2
− Y + V

20
+ A cos

(
t

10

)
,

dV

dt
= − V

100
− Y

2
,
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whose solutions approximate the solution (X(t), Y (t), V (t)) of (6) with errors
of size O(1/ω) in bounded intervals 0 ≤ t ≤ T < ∞. Approximations with
O(1/ω) errors (first-order averaging) to the original state variables x, y v, are
then obtained from (5). Approximations to x, y v, with errors O(1/ω2) (second-
order averaging) may be obtained by changing variables in (6) so as to reduce the
amplitude of the highly oscillatory terms from O(1) to O(1/ω) and then discarding
the highly oscillatory terms. The iteration of the procedure leads successively to
approximations with errors O(1/ωn) for n = 3, 4, . . . (high-order averaging).

The averaged systems found in this way are nonautonomous since the low-
frequency forcing is not averaged out. In order to deal with autonomous averaged
problems we introduce two additional real-valued state variables C, S satisfying

dC

dt
= − S

10
,

dS

dt
= C

10

and with initial conditions C(0) = 1, S(0) = 1, so that C(t) = cos(t/10), and write
problem (6) as

dX

dt
= Y + cos(tω), (7)

dY

dt
= −X

4
− X3

2
− Y + V

20
+ AC

+
(
3X2

2
− 11

10

)
cos(tω)− 3

4
X cos(2tω)+ 1

8
cos(3tω),

dV

dt
= − V

100
− Y

2
− 101

200
cos(tω),

dC

dt
= − S

10
,

dS

dt
= C

10
.

Note that this system in R5 is of the form (1) with

f (x, t) = fa(x)+ cos(tω) fb(x)+ cos(2tω)(x) fc + cos(3tω) fd(x).

It is trivial to write down the derivations Fa , . . . , Fd , associated with fa , . . . , fd . For
instance:

Fa =Y ∂X+
(
−X

4
− X3

2
− Y + V

20
+ AC

)
∂Y+

(
− V

100
− Y

2

)
∂V−

S

10
∂C+

C

10
∂S.
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Then the derivation corresponding to f (x, t) is, for each t ,

Fa + cos(tω) Fb + cos(2tω) Fc + cos(3tω) Fd. (8)

3.2 Solving the Oscillatory Problem with Word Series

We now introduce the alphabet A = {a, b, c, d}, the corresponding (infinite) set W
of all words a, . . . , d , aa, ab, . . . , dd , aaa, . . . (including the empty word 1) and
the free associative algebraR⟨A ⟩ consisting of all the linear combinations of words
with real coefficients. Multiplication ⋆ in R⟨A ⟩ is defined by concatenating words
[34], which implies that 1 is the unit of this (noncommutative) algebra.

Furthermore we consider again the vector space of linear combinations of words
but now endow it with the (commutative) shuffle product and denote by H the
resulting (shuffle) algebra. Actually H is a Hopf algebra for the deconcatenation
coproduct. This algebra is graded; its graded component of degree n, n = 0, 1, . . .,
consists of the linear combinations of words with n letters. The dual vector space
H∗ may be identified with the set of all formal series α of the form

∑
W cww for real

cw ∈ R so that the image ⟨α, w⟩ of the wordw by the linear form α is the coefficient
cw. ThusH∗ is a much larger space than R⟨A ⟩. Note that the concatenation product
⋆ may be extended from R⟨A ⟩ to H∗ in an obvious way. We denote by G ⊂ H∗

the group of characters of H consisting of the elements γ ∈ H∗ that satisfy
the shuffle relations: ⟨γ , w w′⟩ = ⟨γ , w⟩⟨γ , w′⟩ for all words w, w′. The Lie
algebra of infinitesimal characters g ⊂ H∗ consists of those β ∈ H∗ such that
⟨β, w w′⟩ = ⟨β, w⟩⟨1, w′⟩+ ⟨1, w⟩⟨β, w′⟩ for each pair of words. Characters and
infinitesimal characters are related through the relations G = exp(g), g = log(G),
i.e. each element γ in the group is the exponential 1+ β + (1/2)β ⋆ β + · · · of the
element β = (γ − 1)− (1/2)(γ − 1) ⋆ (γ − 1)+ · · · See [27, Sec. 6.1] for a review
of the constructions above.

To solve (7), we associate with each letter in A the corresponding derivation in
the expression (8), i.e. we set

Ψ (a) = Fa, Ψ (b) = Fb, Ψ (c) = Fc, Ψ (d) = Fd, (9)

and extend the mapping Ψ to an algebra morphism from R⟨A ⟩ to the algebra
EndR(C ), D = 5, by setting Ψ (aa) = FaFa , Ψ (ab) = FaFb, etc. The free Lie
algebra L(A ) is the linear subspace of R⟨A ⟩ consisting of linear combinations of
iterated commutators such as [a, b] = ab − ba, [a, [a, b]] = a[a, b]− b[a, b] =
aab − aba − bab + bba, . . . (the letters a, . . . , b are seen as iterated commutators
of order n = 1). This Lie algebra is graded; its graded component of degree n,
n = 1, 2, . . ., consists of the linear combinations of iterated commutators involving
words with n letters. The restriction of Ψ to L(A ) is a Lie algebra morphism
L(A ) → DerR(C ) ⊂ EndR(C ). Note that, for fixed t , (8) is the image under
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Ψ of the element

β(t) = a + cos(tω) b + cos(2tω) c+ cos(3tω) d ∈ L(A ). (10)

The ‘abstract’ initial value problem

d

dt
α(t) = α(t) ⋆ β(t), α(0) = 1, (11)

where at the outset α(t) is sought as a curve in R⟨A ⟩ is such that the mapping Ψ

transforms it into the operator initial value problem (3) corresponding to (7). We
shall solve (11), and then the application of Ψ will lead to a solution of (7).

We recall that for integrable1 curves β(t) in g ⊃ L(A ) (and in particular for
β(t) in (10)), the problem (11) possesses a unique formal solution α(t) that for each
t lies in the space of formal series H∗ ⊃ R⟨A ⟩. This solution may be found by a
Picard iteration and is given by a Chen series [34]

α(t) =
∑

w∈W
⟨α(t), w⟩ w,

where for each w ∈ W the coefficient, ⟨α(t), w⟩ has a known expression as an
iterated integral (see e.g. [27, Sec. 2.1], [28, Sec. 2.1] for details). Furthermore,
for each t , α(t) satisfies the shuffle relations and therefore belongs to the group of
characters G ⊂ H∗. In other words, when seen as a nonautonomous initial value
problem to determine a curve α(t) in the group G given a curve β(t) in the algebra
g, (11) is uniquely solvable (see e.g. [27, Sec 2.2.4]). For each fixed t , Ψ (α(t)) (Ψ
is applied in the obvious term by term way) is a formal series whose terms belong to
End(C) (they are actually differential operators). Furthermore the fact that α(t) ∈ G
implies (see e.g. [27, Sec. 6.1.3]) that the formal series Ψ (α(t)) satisfies (2), i.e. it is
formally an automorphism, and by proceeding as in the preceding section we then
find that the solutions of our problem in R5 may be represented as formal series

x(t) =
∑

w∈W
⟨α(t), w⟩fw(x(0)), x(0) ∈ R5,

where the mappings fw : R5 → R5 are the so-called word basis functions [27]; the
i-th component of fw is obtained by applying to the i-coordinate function χ i the
endomorphism Ψ (w). Series of this form are called word series [1, 26–28, 37].

1More precisely it is sufficient to ask that, for each word, the real-valued function ⟨β(t), w⟩ be
locally integrable.



Hopf Algebra Techniques to Handle Dynamical Systems and Numerical Integrators 637

3.3 Averaging with Word Series

We now average (7) by first averaging its abstract version (10) and (11). We seek a
2π/ω-periodic map κ : R→ G and a (time-independent) β̄ ∈ g such that

d

dt
κ(t) = κ(t) ⋆ β(t)− β̄ ⋆ κ(t). (12)

It is easily checked that then α(t) = exp(β̄ t) ⋆ κ(t); in this way the formal solution
α(t) of the periodic problem (10) and (11) is obtained, via the periodic map κ(t),
from the solution ᾱ(t) = exp(β̄ t) of the linear autonomous problem (d/dt)ᾱ =
ᾱ(t) ⋆ β̄, ᾱ(0) = 1 (the averaged problem).

There is some freedom when solving (12). In stroboscopic averaging one
imposes the additional condition κ(0) = 1, so that the averaged solution ᾱ(t)

coincides with α(t) at all stroboscopic times tk = k(2π/ω), k ∈ Z [8]. Alternatively,
it is also possible to impose the zero-mean condition

∫ 2π/ω

0
log(κ(t))dt = 0. (13)

(Note that the stroboscopic condition demands that log(κ(t)) vanishes at t = 0
rather than on average over a period as in (13).)

By proceeding recursively with respect to the number of letters in the words
involved, the stroboscopic condition (respectively the zero-mean condition) and (12)
uniquely determine all the coefficients of the formal series β̄ and κ(t).2 We have
implemented the corresponding recursions in a symbolic manipulation package. As
an example, when truncating the series for β̄ so as to only keep words with three or
less letters, we find, in the zero-mean case:

β̄[3] = a + 1
ω2

(
1
4 abb− 1

2 bab+ 1
4 bba + 1

16 acc− 1
8 cac+ 1

16 cca

+ 1
36 add − 1

18 dad + 1
36 dda − 1

8 bbc+ 1
4 bcb− 1

8 cbb

− 1
12 bcd + 1

8 bdc− 1
24 cbd + 1

8 cdb − 1
24 dbc− 1

12 dcb
)
∈ g.

The corresponding result under the stroboscopic condition is similar but includes
more terms (40 rather than 19).

Now that the problem (10) and (11) has been averaged, we apply the transfor-
mation Ψ to average our problem in the Euclidean space R5. From β̄ we obtain the

2For stroboscopic averaging, the recursions that allow the simple computation of the coefficients
of β̄ and κ(t)may be seen in [8] or [28], but in those references β̄ and κ(t) are found with the help
of an auxiliary transport equation rather than via (12).
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formal vector field given by the word-series

f̄ (x) =
∑

w∈W
⟨β̄, w⟩fw(x),

and from κ(t) we construct the formal periodic change of variables given by the
word-series

U(x, t) =
∑

w∈W
⟨κ(t), w⟩fw(x),

such that the solutions x(t) of (7) are formally given as x(t) = U(x̄(t), t) with
(d/dt)x̄ = f̄ (x̄).

To deal with bona fide vector fields and changes of variables, one has to truncate
the corresponding formal series. In our example, the truncation β̄[3] found above
leads to a vector field in R5 which after eliminating the auxiliary variables C and S,
reduces to the following time-dependent vector field in R3:

Y ∂X +
(

−X

4
− X3

2
− Y + V

20
+ A cos(

t

10
)

)

∂Y −
(

V

100
+ Y

2

)
∂V

+ 1
ω2

⎛

⎝3X
4

∂X +
(

−9X3

4
+ 51X

640
− 3Y

4

)

∂Y −
3X
8

∂V

⎞

⎠ .

With the help of a truncated change of variables, the solutions of the corresponding
differential system provides O(1/ω3) approximations to X(t) , Y (t), V (t) in (7).
Truncations of this kind and their accuracy are discussed in detail in [9] and [10].

It is important to emphasize that the construction above is universal: β̄ and κ(t)

would not change if the expressions for the vector fields fa , . . . , fd in R5 considered
above were replaced by another set of four vector fields in RD with arbitrary D.
There is a price to be paid for this generality: in our case there are 4n words with
n letters and accordingly the complexity of the computations grows very quickly
as n increases. In a laptop computer our computations had to be limited to n ≤ 8.
In what follows we show how to replace the shuffle Hopf algebra H by alternative
Hopf algebras which may lead to simpler computations.

4 General Hopf Algebras

In preceding section we studied the operator initial value problem (3) with the help
of a mapping Ψ whose restriction to the free Lie algebra L(A ) is a Lie algebra
morphism into the algebra of derivations Der(C). We now study the more general
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situation whereL(A ) is replaced by a graded Lie algebra

g̃ =
⊕

n≥1
gn, (14)

with finite-dimensional homogeneous subspaces gn,3 and there are a Lie algebra
homomorphismΨ : g̃→ Der(C) and a curve β : R→ g̃ such that Ψ (β(t)) = F(t)

for all t ∈ R.
Note that Ψ can be uniquely extended to an associative algebra homomorphism

from the universal enveloping algebra U(g̃) of g̃ to End(C), which we denote with
the same symbol Ψ . We shall use the symbol ⋆ to denote the (associative) product
in U(g̃) such that [G1,G2] = G1 ⋆ G2 − G2 ⋆ G1 for all G1,G2 ∈ U(g̃). In the
particular case where (14) is the free Lie algebra generated by a finite alphabet A ,
U(g̃) coincides with R⟨A ⟩ and ⋆ is the concatenation product.

4.1 Solving the Operator Initial Value Problem

We denote by

{Gi : i ∈ I} (15)

a homogeneous basis of the graded Lie algebra (14), whereI is some set of indices,
I = ⋃

n≥1In, and {Gi : i ∈ In} is a basis of gn for each n ≥ 1. If β(t) =∑
i∈I λi (t)Gi , we rewrite (4) as

X(t) = I +
∑

i∈I

∫ t

0
λi (t)X(t)Ψ (Gi) dt,

an equation that may be solved by the following Picard iteration,

X[0](t) = I

X[1](t) = I +
∑

i∈I

∫ t

0
λi (t)X

[0](t)Ψ (Gi) dt = I +
∑

i∈I

(∫ t

0
λi (t) dt

)

Ψ (Gi),

X[2](t) = I +
∑

i∈I

∫ t

0
λi (t)X

[1](t)Ψ (Gi) dt

· · · = · · ·

3It is not essential to assume that each gn is finite dimesional. The arguments below may be readily
adapted to cover the general case under the proviso that the summation in (23) is well defined (cf.
second paragraph after (24)).
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In this way, one may construct a formal solution X(t) of (3) of the form

X(t) = I +
∑

m≥1

∑

(i1,...,im)∈Im

ai1,...,im (t)Ψ (Gi1) · · ·Ψ (Gim). (16)

Unfortunately, this series is unnecessarily complicated as there are many linear
dependencies among the endomorphisms of the form Ψ (Gi1) · · ·Ψ (Gim). For
instance, Ψ (Gi1)Ψ (Gi2) − Ψ (Gi2)Ψ (Gi1) has to coincide with Ψ ([Gi1,Gi2 ]) and
therefore must be a linear combination of endomorphisms Ψ (Gi), i ∈ I.4

If < denotes a total order relation in I, the Poincaré-Birkhoff-Witt (PBW)
theorem ensures that the products

{Gi1 ⋆ · · · ⋆Gim : i1 ≤ · · · ≤ im} (17)

(including the empty product equal to the unit element 1) provide a basis of U(g̃).
Therefore, it is possible to simplify (16) by removing the linear dependencies in the
right-hand side so as to end up with a formal series that only uses endomorphisms
of the form Ψ (Gi1) · · ·Ψ (Gim) with i1 ≤ · · · ≤ im. However the basis of U(g̃)
given by the PBW theorem may not be the most convenient in practice5 and in what
follows we shall work with an arbitrary homogeneous basis of U(g̃)

{Zj : j ∈J}, J =
⋃

n≥0
Jn (18)

whereJ is some set of indices and {Zi : i ∈Jn} is, for each n ≥ 0, a basis of the
graded component of degree n. Note that the structure constants λii′,i′′ of the basis
{Gi : i ∈ I} of the Lie algebra g̃,

[Gi′ ,Gi′′ ] =
∑

i

λii′,i′′Gi, i ′, i ′′ ∈ I,

uniquely determine (see Sect. 4.5) the structure constants µj
j ′,j ′′ of the basis {Zj :

i ∈J} of U(g̃),

Zj ′ ⋆ Zj ′′ =
∑

j

µ
j
j ′,j ′′Zj , j ′, j ′′ ∈J. (19)

4In the case where (14) is the free Lie algebra generated by a finite alphabet A , we saw that it
is possible to write the solution X(t) as a series constructed from endomorphisms of the form
Ψ (Ga1 ) · · ·Ψ (Gam), with the ai ∈ A; this is far more compact than (16), which involves terms
Ψ (Gi1) · · ·Ψ (Gim) made of arbitrary elements Gi of the basis.
5This was illustrated in the preceding section, where we used the basis of R⟨A ⟩ consisting of
words.
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4.2 Constructing the Hopf Algebra

We now construct a Hopf algebra H which will play in the present circumstances
the role that the shuffle Hopf algebra had in the preceding section. The presentation
that follows uses explicitly the choice of basis in (18); this is convenient for the
computational purposes we have in mind. However the Hopf algebraH that we shall
construct is in fact independent of the choice of basis, as shown in Sect. 4.5 below. In
the particular case where g̃ is freely generated by the elements of a finite alphabetA,
the construction below results in the shuffle Hopf algebra of the preceding section.

For each j ∈J we consider the linear form uj on U(g̃) that takes the value 1 at
the element Zj and vanishes at each Zj ′ , j ′ ̸= j and set H equal to the graded dual⊕

n≥0Hn of U(g̃), i.e. each Hn is the subspace of the linear dual U(g̃)∗ of U(g̃)
spanned by the uj , j ∈Jn.

We define a product in H as follows. The algebra U(g̃) possesses a canonical
coalgebra structure whose coproduct ∆ : U(g̃) → U(g̃) ⊗ U(g̃) is uniquely
determined by requiring that

• ∆(β) = 1⊗ β + β ⊗ 1, for all β ∈ g̃,
• ∆ be an algebra homomorphism.

This coproduct is by construction cocommutative, i.e. if, for each j ∈J,

∆(Zj ) =
∑

j ′,j ′′∈J
η
j
j ′,j ′′ Zj ′ ⊗ Zj ′′ .

then η
j
j ′,j ′′ = η

j
j ′′,j ′ . Through the duality between the vector spaces U(g̃) andH, ∆

induces the following commutative multiplication operation inH :

uj ′uj ′′ =
∑

j∈J
η
j
j ′,j ′′ uj =

∑

j∈J
⟨∆(Zj ), uj ′ ⊗ uj ′′ ⟩uj .

Similarly, the product ⋆ in U(g̃) with structure constants given in (19) induces by
duality a coproduct∆ : H→H⊗H given by

∆(uj ) =
∑

j ′,j ′′∈J
µ
j
j ′,j ′′ uj ′ ⊗ uj ′′ , j ∈J (20)

(our hypotheses ensure that the summation in (20) has finitely-many non-zero terms
and is therefore well defined). In this way H is a connected, commutative, graded
Hopf algebra.

We now turn to the dual vector space H∗. Each element γ ∈ H∗ may be
represented as a formal series

γ =
∑

j∈J
⟨γ , uj ⟩Zj ,
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where ⟨γ , uj ⟩ is the image of uj ∈ H by the linear form γ . Thus H∗ may be
seen as a superspace of U(g̃). The associative algebra structure of U(g̃) may be
extended naturally to H∗: for γ ′, γ ′′ ∈ H∗, the series that represents their product
γ = γ ′ ⋆ γ ′′ ∈H∗ is given by

∑

j∈J
⟨γ , uj ⟩Zj =

⎛

⎜⎝
∑

j ′∈J
⟨γ ′, uj ′ ⟩Zj ′

⎞

⎟⎠ ⋆

⎛

⎜⎝
∑

j ′′∈J
⟨γ ′′, uj ′′ ⟩Zj ′′

⎞

⎟⎠

=
∑

j ′,j ′′∈J
⟨γ ′, uj ′ ⟩ ⟨γ ′′, uj ′′ ⟩Zj ′ ⋆ Zj ′′

=
∑

j ′,j ′′∈J
⟨γ ′, uj ′ ⟩ ⟨γ ′′, uj ′′ ⟩

∑

j∈J
µ
j
j ′,j ′′Zj

=
∑

j∈J

⎛

⎜⎝
∑

j ′,j ′′∈J
µ
j
j ′,j ′′ ⟨γ ′, uj ′ ⟩ ⟨γ ′′, uj ′′ ⟩

⎞

⎟⎠ Zj .

In other words

⟨γ , uj ⟩ =
∑

j ′,j ′′∈J
µ
j
j ′,j ′′ ⟨γ ′, uj ′ ⟩ ⟨γ ′′, uj ′′ ⟩

i.e. the product ⋆ in H∗ corresponds via duality to the coproduct (20) in H. The
group of characters ofH and the Lie algebra of infinitesimal characters are

G =
{
γ ∈H∗ : ⟨γ , uj ′uj ′′ ⟩ = ⟨γ , uj ′ ⟩ ⟨γ , uj ′′ ⟩

}
,

and

g = {
γ ∈H∗ : ⟨γ , uj ′uj ′′ ⟩ = ⟨γ , uj ′ ⟩ ⟨1, uj ′′ ⟩+ ⟨1, uj ′ ⟩ ⟨γ , uj ′′ ⟩

}
,

respectively. These are related by a bijection exp : g → G, as we saw in the
particular case considered in the preceding section.

The abstract initial value problem

d

dt
α(t) = α(t) ∗ β(t), α(0) = 1, (21)

with β(t) any given integrable curve in g possesses a solution that for each t is an
element of G. This solution may be computed by finding its coefficients by recursion
with respect to the grading. In particular this is so for the curve such that Ψ (β(t)) =
F(t) for all t ∈ R, whose existence we assumed at the beginning of this section. We
next translate this result into a result for the operator problem.
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4.3 Back to the Operator Initial Value Problem

The mapping Ψ may be defined on H∗ ⊃ U(g̃) as an algebra map from H∗ to the
direct product algebra

∏
n≥0 End(C) sending each γ ∈H∗ to

Ψ (γ ) =
∑

n≥0

∑

j ′∈Jn

⟨γ , uj ⟩Ψ (Zj) =
∑

j∈J
⟨γ , uj ⟩Ψ (Zj).

For the product of two formal series of endomorphisms we have

⎛

⎜⎝
∑

j ′∈J
⟨γ ′, uj ′ ⟩Ψ (Zj ′)

⎞

⎟⎠

⎛

⎜⎝
∑

j ′′∈J
⟨γ ′′, uj ′′ ⟩Ψ (Zj ′′)

⎞

⎟⎠ =
∑

j∈J
⟨γ , uj ⟩Ψ (Zj ),

where γ = γ ′ ⋆ γ ′′ ∈H∗.
The solution α(t) of the abstract initial value problem leads to the following

formal solution of (3) (a compact alternative to (16))

X(t) =
∑

j∈J
⟨α(t), uj ⟩Ψ (Zj ),

and we shall check presently that (2) is formally satisfied in order to obtain a formal
solution of the initial value problem (1).

From the definition of ∆, for arbitrary χ1,χ2 ∈ C,

Ψ (Zj )(χ1χ2) =
∑

j ′,j ′′∈J
η
j
j ′,j ′′ (Ψ (Zj ′)χ1) (Ψ (Zj ′′)χ2)

and it follows by duality that, for each γ ∈H∗,

∑

j∈J
⟨γ , uj ⟩Ψ (Zj )(χ1χ2) =

∑

j ′,j ′′∈J
⟨γ , uj ′uj ′′ ⟩ (Ψ (Zj ′)χ1) (Ψ (Zj ′′)χ2).

If, in particular, γ ∈ G, then the right-hand side of the last equality coincides with

⎛

⎜⎝
∑

j ′∈J
⟨γ , uj ′ ⟩Ψ (Zj ′)χ1

⎞

⎟⎠

⎛

⎜⎝
∑

j ′′∈J
⟨γ , uj ′′ ⟩Ψ (Zj ′′)χ2

⎞

⎟⎠ ,

i.e. the formal series
∑

j∈J⟨γ , uj ⟩Ψ (Zj ) is formally an automorphism. This is in
particular true, for each t , for the series X(t) above, since we know that α(t) ∈ G.
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4.4 Averaging with More General Hopf Algebras

An abstract problem of the form (21) with β(t) 2π/ω-periodic with values in gmay
be averaged with the help of Eq. (12) exactly as we saw in the case of the shuffle
Hopf algebra. The result may be then transferred, via the morphism Ψ , to average
periodically forced systems (1) .

4.4.1 Averaging with Decorated Rooted Trees

As an illustration we take up again the task of averaging (7) but this time we work
with the Grossman–Larson graded Lie algebra of rooted trees [17] with vertices
decorated by letters of the alphabet A = {a, b, c, d}. We use once more (9) and
extend Ψ to a Lie algebra morphism from the Grossman-Larson Lie algebra to
the Lie algebra of derivations Der(C). In the construction above, H is the Connes-
Kreimer Hopf algebra of rooted trees and the group of characters G is the Butcher
group.

As an example we find, under the zero-mean condition and truncating the
contributions of trees with four or more vertices:

β̄[3] = a + 1
ω2

(
1
4 a[b[b]]− 1

4 b[ab]+ 1
4 b[b[a]] + 1

4 a[b2]− 1
2 b[a[b]]

− 1
8 c[a[c]]+ 1

16 a[c2]− 1
16 c[ac] + 1

16 a[c[c]] + 1
16 c[c[a]]

+ 1
36 a[d[d]] + 1

36 d[d[a]]− 1
36 d[ad] + 1

36 a[(d)2]− 1
18 d[a[d]]

− 1
8 b[b[c]] + 1

8 b[bc]− 1
8 c[b[b]] + 1

4 b[c[b]]− 1
8 c[(b)2]− 1

8 c[b[b]]
+ 1

4 b[c[b]]− 1
8 c[(b)2]− 1

12 b[c[d]] + 1
12 c[bd]− 1

12 d[c[b]]

+ 1
8 b[d[c]] + 1

8 c[d[b]]− 1
8 d[bc]− 1

24 c[b[d]] + 1
24 b[cd] − 1

24 d[b[c]]
)
.

Here the notation for rooted trees is as follows:

• a denotes the one-vertex rooted tree where the root is decorated with the symbol
a,

• d[b[c]] denotes the ‘tall’ rooted tree where the decoration d corresponds to the
root, the vertex decorated by b is linked to the root, and the vertex decorated with
c is linked to the vertex decorated with b,

• d[bc] denotes the ‘bushy’ rooted tree where d is the decoration of the root and
the vertices with decoration b and c are linked to the root, etc.

As in the case of words, results on the abstract problem are transferred to
Euclidean space with the help of Ψ . We again find a system (d/dt)x̄ = f̄ (x̄),
where f̄ is a formal series of vector fields in R5 and a 2π/ω-periodic formal change
of variables x = U(x̄, t) such that solutions x(t) of (7) are formally given as
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x(t) = U(x̄(t), t). Now the formal series are indexed by rooted trees rather than
by words, i.e. they are B-series [7, 8, 37].

What is the advantage of using rooted trees rather than words? The expression
for β̄[3] displayed above, with 33 rooted trees, is obviously more involved than its
counterpart with words involving 19 words. However the images by Ψ of many
trees vanish. For instance, in the display above only the five rooted trees underlined
have a nonzero image. This may be exploited by working in the quotient by ker(Ψ )

of the Lie algebra of rooted trees, thereby decreasing the dimension of the graded
components, which allows symbolic manipulation packages to take the expansions
to higher order. A further reduction may be achieved by noting that β̄ has to be a
Lie element, i.e. it must be expressible in terms of commutators. We may then work
in the Lie subalgebra generated by a,. . . , d of the previous quotient subalgebra. For
instance for the display above we find the compact expression

a + 1
ω2

(
1
4 [b, [b, a]]− 1

8 [c, [a, c]]
)
.

4.4.2 Averaging in a Lie Algebra Generated by Monomial Vector Fields

We have just seen how to work in a Lie algebra better suited to the concrete example
at hand than the Lie algebra corresponding to words. Another possibility in this
direction is to use a graded Lie algebra generated by monomial vector fields. In
our example, we consider the graded Lie algebra g̃ = ⊕

n≥1 gn of vector fields
generated by the monomial vector fields

U ∂Y , U ∂Z, V ∂V , V ∂Y ,X
3 ∂Y ,X

2 ∂Y ,X ∂Y , Y ∂V , Y ∂X, Y ∂Y , Z ∂U , ∂V , ∂X, ∂Y ,

each of them belonging to g1. That is, we may multiply each of the monomial
vector fields above by a bookkeeping parameter ϵ, so that monomial vector fields
affected by a n-th power of ϵ belongs to gn. In that case, the map Ψ : g̃ → Der(C)
corresponds to replacing ϵ by 1. With the help of this graded Lie algebra a symbolic
package in a laptop computer may carry the computations necessary to perform n-
order averaging up to n = 16, while, as mentioned above, with words we could not
go beyond n = 8.

4.4.3 Summary

The technique in [8] or [28] summarized in Sect. 3 averages oscillatory differential
systems like (7) by first reformulating them in an abstract form (11) that is integrated
in the group of characters G of the shuffle Hopf algebra. The solution of the abstract
problem is then averaged and the result transferred back to the original system.
While the technique is completely general, its computational complexity grows
very quickly with the required accuracy. We have just seen that, by working with
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alternative Hopf algebras, it is possible to diminish the computational cost and
achieve substantially higher orders of accuracy in a given computing environment.

4.5 Explicit Construction of the Coproduct ∆

In this subsection, we focus on determining, in a form suitable for actual compu-
tations, the coproduct ∆ of the Hopf algebra constructed in Sect. 4.2 from a given
graded Lie algebra g̃.

In the particular case where g̃ is the free Lie algebra generated by an alphabet
A, U(g̃) is isomorphic to the algebra R⟨A⟩. It therefore possesses a basis (18) with
J given by the set of words on the alphabet A (the operation ⋆ corresponds to the
concatenation of words). The coproduct∆ ofH expressed in that basis indexed by
words is then the deconcatenation coproduct, which has a particularly simple form.

For an arbitrary graded Lie algebra g̃, the coproduct ∆ : H → H ×H can be
uniquely determined from the structure constants λii′,i′′ of a basis (15) of g̃. Recall
that the Poincaré-Birkhoff-Witt (PBW) basis of U(g̃) is a basis (18) indexed by the
set

J = {e} ∪ {(i1, . . . , im) ∈ Im : m ≥ 1, i1 ≤ · · · ≤ im}, (22)

where, as above, I is the set of indices for the homogeneous basis of the graded
Lie algebra g̃ and Im is the product I × · · · × I (m-times). The empty index e

is associated with the unit 1 of U(g̃), that is Ze = 1. For j = (i1, . . . , im) ∈ J,
the elements Zj are defined by (17) scaled by the inverse of the product of some
factorials. More precisely, Zj = 1/j !Gi1 ⋆ · · · ⋆ Gim , where j ! = m! if i1 = i2 =
· · · = im, and j ! = k!(ik+1, . . . , im)! if i1 = · · · = ik < ik+1. It is well known [3]
that the basis {uj : j ∈ J} of H dual to the PWB basis of U(g̃) satisfies that
uj = vi1 · · · vim for j = (i1, . . . , im) ∈ J, where vi := u(i) for each i ∈ I.
We thus have that, as an algebra, H is a polynomial algebra on the commuting
indeterminates {vi : i ∈ I}, that is, the symmetric algebra S(V ) over the vector
space V spanned by {vi : i ∈ I}.

Since ∆ : H → H ⊗ H is an algebra map, it is enough to determine
∆(vi) ∈ H ⊗H for i ∈ I from the structure constants λii′,i′′ . However, existing
algorithms for that task are rather involved. Fortunately, there are bases of U(g̃)
that are computationally more convenient than the PWB basis for our purposes.
This may be illustrated for the Grossman-Larson graded Lie algebra g̃ considered
in Sect. 4.4: it has a basis (15) indexed by the set I := T of rooted trees decorated
by the letters of the alphabet A = {a, b, c, d} providing a simple description of
the Lie bracket in terms of grafting of rooted trees [17]. In that case, the index
set (22) can be identified with the set F of forest of rooted trees over A. As noted
before, the corresponding commutative Hopf algebra H is the Connes-Kreimer
Hopf algebra over the alphabetA. The construction of H described above in terms
of the PWB basis of U(g̃) realizes the Hopf algebra H as the polynomial algebra
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on the commuting indeterminates {vi : i ∈ T} ⊂ U(g̃)∗. However, the expresions
of ∆(vi) for i ∈ T in that representation of H is rather cumbersome, and fails to
reflect the nice combinatorial nature of the coproduct of the Connes-Kreimer Hopf
algebra.

The task of determining the commutative graded Hopf algebra H from the
structure constants λii′,i′′ of a basis (15) of g̃ can be reformulated in terms of a graded
Lie coalgebra [21] structure (V, δ) related to the graded Lie algebra g̃ as follows. Let
V = ⊕

n≥1 Vn be a graded vector space with a homogeneous basis {vi : i ∈ I},
and consider the graded linear map δ : V → V ⊗ V defined by

δ(vi) =
∑

i′,i′′∈I
λii′,i′′ vi′ ⊗ vi′′ , for i ∈ I. (23)

Since the coefficients λii′,i′′ are the structure constants with respect to a basis (15) of
the graded Lie algebra g̃, (V, δ) is by construction a graded Lie coalgebra. The dual
map δ∗ : V ∗ ⊗ V ∗ → V ∗ endows the linear dual V ∗ with a structure of Lie algebra
such that g̃ is isomorphic to a Lie subalgebra of the Lie algebra V ∗.

Now, our original task can be formulated as follows: find an algebra map ∆ :
S(V )→ S(V )⊗ S(V ) satisfying the following two conditions:

• the coproduct ∆ endows the symmetric algebra S(V ) with a graded connected
Hopf algebra structureH,

• the linear map δ̂ : V → V ⊗ V such that, for each v ∈ V , δ̂(v) is the projection
of ∆(v) onto V ⊗ V satisfies the relation

δ = δ̂ − τ ◦ δ̂, (24)

where τ : V ⊗ V → V ⊗ V is defined by τ (v ⊗ v′) = v′ ⊗ v.

Such an algebra map ∆ is not unique, but the corresponding coalgebra structure on
S(V ) is unique up to isomorphisms.6

Observe that here there is no need to assume that the homogeneous vector
subspaces g̃n are finite dimensional. One only needs to assume that the Lie
coproduct (i.e. Lie cobracket) δ is well defined, or in other words, that the structure
constants λii′,i′′ of the Lie bracket with respect to a basis (15) are such that, for each
i ∈ I, the sum in (23) is well defined.

Notice also that the choice of the basis for V plays no role in this formulation in
terms of the Lie coalgebra (V, δ). It can be shown that, for a given basis (15) of the
Lie algebra g̃, each choice of∆ gives rise, after dualization, to a different basis (18)
(indexed by the set (22)) of U(g̃).

We will next make use of the concept of pre-Lie algebra. (We refer to [19] for
a survey on pre-Lie algebras.) Assume now that there exists a graded linear map
δ̂ : V → V ⊗ V satisfying (24). According to Proposition 3.5.2. in [16] (see also

6It is actually the universal coenvelopping coalgebra [21] of the Lie coalgebra V .
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Theorem 5.8 in [18]), if (V, δ̂) is a graded pre-Lie coalgebra (that is, (V ∗, δ̂∗) is a
pre-Lie algebra) then there exists a graded algebra map ∆ : S(V )→ S(V )⊗ S(V )

satisfying the following conditions:

• the coproduct ∆ endows the symmetric algebra S(V ) with a graded connected
Hopf algebra structureH,

• for each v ∈ V , ∆(v)− 1⊗ v − v ⊗ 1 ∈ S(V )⊗ V ,
• for each v ∈ V , δ̂(v) is the projection to V ⊗ V of ∆(v).

(Actually, the converse also holds [16].) Furthermore such an algebra map ∆ is
uniquely determined by δ̂. In [16], a recursive procedure to determine∆(v) for each
v ∈ S(V ) in terms of the pre-Lie coproduct δ̂ is presented. In Theorem 1 below, we
suggest an alternative recursive procedure.

It is worth mentioning that the dual basis of the basis of monomials vi1 · · · vim of
S(V ) corresponding to the coproduct ∆ uniquely determined by δ̂ is precisely the
basis of the universal enveloping algebra U(g̃) of the pre-Lie algebra g̃ considered
in [30].

Coming back to the Grossman-Larson graded Lie algebra g̃ of rooted trees over
an alphabet A, it is known that it is the free pre-Lie algebra over the set A [6]. The
Lie algebra morphism Ψ : g̃ → Der(C) considered in Sect. 4.4.1 is actually the
unique extension of (9) to a pre-Lie algebra morphism from the Grossman-Larson
Lie algebra over the alphabet {a, b, c, d} to the Lie algebra of derivations Der(C).
The corresponding pre-Lie coproduct δ̂ : V → V ⊗ V can be nicely described in
terms of all the splittings of the rooted tree in two parts by successively removing
each of the edges. The coproduct ∆ : V → S(V ) ⊗ S(V ) uniquely determined in
Proposition 3.5.2 of [16] coincides with the Connes-Kreimer coproduct defined in
terms of the so called admissible cuts of rooted trees and forests.

This construction of the Hopf algebra H from a pre-Lie coalgebra structure
(V, δ̂) may seem rather restrictive. However, any graded Lie coalgebra V =⊕

n≥1 Vn with Lie coproduct δ admits at least one pre-Lie coproduct δ̂ satisfy-
ing (24), as we will show later on.

Let H = S(V ) be the graded connected commutative Hopf algebra uniquely
determined by a given pre-Lie coalgebra (V, δ̂), with coproduct∆ : H→ H⊗H
and antipode S : H → H. We define the grading operator ρ : H → H given by
ρ(u) = n v if u belongs to the graded componentHn. Furthermore, we define the
derivation ∂ : H∗ → H∗ as the dual map of ρ, i.e. ⟨∂(γ ), u⟩ = ⟨γ ,ρ(u)⟩ for each
γ ∈H∗ and each u ∈H.

We also use the (generalized) Dynkin operator D as considered in [12, 23]
for graded connected commutative Hopf algebras. (See [20, 31] and references
therein for the generalized Dynkin operator in the cocommutative case.) The Dynkin
operator D : S(V ) → V of H = S(V ) is the convolution D := ρ ∗ S (in the
references above, D is actually defined as S ∗ ρ) of the antipode and the grading
operator, that is,

D := µH ◦ (ρ ⊗ S) ◦∆,
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where µH : H⊗H→H is the multiplication map of the algebraH = S(V ). It is
not difficult to check that the convolution ofD with the identity idH inH coincides
with ρ, that is,

ρ = µH ◦ (D ⊗ idH) ◦∆. (25)

The Dynkin operator has the property that

D(u) = 0 for all u ∈ V 2S(V ), (26)

and we thus have that, for each v ∈ V ,

(D ⊗ idH) ◦∆(v) = D(v) ⊗ 1+ (D ⊗ idV ) ◦ δ̂(v). (27)

This in turn implies, together with (25) the following result, which allows to
inductively determineD(v) for each v ∈ V in terms of the pre-Lie coproduct δ̂.

Lemma 1 For each v ∈ V ,

D(v) = ρ(v) − µH ◦ (D ⊗ idV ) ◦ δ̂(v). (28)

Theorem 1 Let (V, δ̂) be a graded pre-Lie coalgebra, and consider the linear map
D : S(V ) → V determined by (26) and (28). The symmetric algebra H = S(V )

becomes a graded connected Hopf algebra with the coproduct∆ determined as the
unique graded algebra map ∆ : H→H⊗H such that

∆(v) = 1⊗ v + v ⊗ 1+ ∆̄(v), v ∈ V, (29)

where the linear map ∆̄ : V →H⊗ V is uniquely determined by the identity

(ρ ⊗ idV ) ◦ ∆̄ = (D − ρ)⊗ 1+ (µH ⊗ idV ) ◦ (D ⊗∆) ◦ δ̂.

Proof From (29) one has that

(ρ ⊗ idV ) ◦ ∆̄ = −(ρ(v)⊗ 1)+ (ρ ⊗ idV ) ◦∆

Application of (25), the coassociativity of ∆, and (27) lead to

(ρ ⊗ idV ) ◦∆ = (µH ⊗ idV ) ◦ (((D ⊗ idH) ◦∆)⊗ idV ) ◦∆(v)

= (µH ⊗ idV ) ◦ (D ⊗ idH ⊗ idH) ◦ (∆⊗ idV ) ◦∆(v)

= (µH ⊗ idV ) ◦ (D ⊗ idH ⊗ idH) ◦ (idH ⊗∆) ◦∆(v)

= (µH ⊗ idV ) ◦ (idV ⊗∆) ◦ (D ⊗ idH) ◦∆(v)
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= (µH ⊗ idV ) ◦ (idV ⊗∆) ◦ (D(v) ⊗ 1+ (D ⊗ idV ) ◦ δ̂(v))

= (µH ⊗ idV ) ◦ (D(v) ⊗ 1⊗ 1)+ (µH ⊗ idV ) ◦ (D ⊗∆) ◦ δ̂(v)
= (D(v) ⊗ 1)+ (µH ⊗ idV ) ◦ (D ⊗∆) ◦ δ̂(v).

⊓6
Given a graded Lie coalgebra (V, δ), consider the graded linear map δ̂ : V →

V ⊗ V determined in terms of δ by

ρ ◦ δ̂ = (idV ⊗ ρ) ◦ δ, (30)

that is,

δ̂(vi) =
∑

i′,i′′∈I

|i ′′|
|i| λ

i
i′,i′′ vi′ ⊗ vi′′ , for i ∈ I.

Clearly, (24) holds, and it is not difficult to check that (V, δ̂) is a pre-Lie coalgebra,
or equivalently, that the binary operation◃ : V ∗ ⊗V ∗ → V ∗ obtained by dualizing
the coproduct δ̂ endows V ∗ with a structure of graded pre-Lie algebra. Indeed, for
each β ′,β ′′ ∈ V ∗,

β ′ ◃ β ′′ = ∂−1[∂(β ′),β ′′], β ′,β ′′ ∈ g̃,

where ∂−1 denotes the inverse of the restriction to V ∗ of ∂ , so that [β ′,β ′′] =
β ′ ◃ β ′′ − β ′′ ◃ β ′.

Theorem 2 Let (V, δ) be a graded Lie coalgebra. The symmetric algebra H =
S(V ) becomes a graded connected Hopf algebra with the coproduct ∆ determined
as the unique graded algebra map ∆ : H → H ⊗H such that (29) holds and the
linear map ∆̄ : V →H⊗ V is uniquely determined by the relation

(ρ ⊗ idV ) ◦ ∆̄ = (µH ⊗ idV ) ◦ (ρ ⊗∆) ◦ δ̂,

where δ̂ : V → V ⊗ V is determined by (30).

Proof The definition (30) of δ̂ and the assumption of (V, δ) being a Lie coalgebra
implies that the identity (28) holds withD(v) := ρ(v). The result then follows from
Theorem 1. ⊓6

Finally, we provide the dual basis (18) (indexed by the set (22)) of the basis of
monomials vi1 · · · vim of S(V ) corresponding to the graded connected commutive
Hopf algebra structure on S(V ) determined in Theorem 2.

We first need some notation.

• Given i ∈ I, we write |i| = n if i ∈ In. For j = (i1, . . . , im) ∈ J, we set
|j | = |i1| + · · · + |im|. We also write |e| = 0.
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• Given j = (i1, . . . , im) ∈J and i ∈ I, we write i ∈ j if i ∈ {i1, . . . , im}, and,
in that case, we denote as (j\i) the element of J obtained by removing from
j = (i1, . . . , im) one occurrence of i. In particular, if j = (i), then (j\i) = e.

For j = (i1, . . . , im) ∈J, we set:

Zj = |i|
|j |

∑

i∈j
Gi ⋆ Z(j\i). (31)

Observe that Z(i) = Gi for all i ∈ I.

Theorem 3 The set (18) of elements of U(g̃) given by (31) is a basis of U(g̃) dual
to the basis of monomials uj = vi1 · · · vim for j = (i1, . . . , im) ∈ J of the Hopf
algebra determined in Theorem 2.

Proof For each character α ∈ G ofH, it holds [23]

⟨∂(α) ⋆ α−1, u⟩ = ⟨α,D(u)⟩ for all u ∈H.

Since D(v) = ρ(v) for all v ∈ V ,

⟨∂(α) ⋆ α−1, v⟩ = ⟨α,ρ(v)⟩.

The later is equivalent to

∂

⎛

⎜⎝
∑

j∈J
⟨α, uj ⟩Zj

⎞

⎟⎠ = ∂

⎛

⎝
∑

i∈I
⟨α, vi ⟩Gi

⎞

⎠ ⋆

⎛

⎜⎝
∑

j∈J
⟨α, uj ⟩Zj

⎞

⎟⎠ .

One finally arrives to (31) by expanding the right-hand side of that identity and
equating terms. ⊓6

5 Perturbed Problems

As we saw in Sect. 3, the use of the shuffle Hopf algebra to average oscillatory
problems in Euclidean space leads to word series expansions.Extended word series,
introduced in [27], are a generalization of word series which appear in a natural way
when solving some problems by means of the techniques we are studying. These
include the reduction to normal form of continuous or discrete dynamical systems
[26, 27], the analysis of splitting algorithms of perturbed integrable problems
[27], the computation of formal invariants of perturbed Hamiltonian problems [26]
and averaging of perturbed problems [28]. We now study the extension of these
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techniques to scenarios where the shuffle Hopf algebra is replaced by other Hopf
algebras.

We consider the situation where in the initial value problem (3), F(t) is a
perturbation F(t) = F 0 + F̃ (t) of a derivation F 0 ∈ Der(C) with a well defined
exponential curve exp(t F 0) in Aut(C). If the solution X(t) of the given problem

d

dt
X(t) = X(t)(F0 + F̃ (t)), X(0) = I, (32)

exists, then it may be written as X(t) = Y (t) exp(t F0), where the curve Y : R →
Aut(C) is the solution of the initial value problem

d

dt
Y (t) = Y (t) exp(t F0)F̃ (t) exp(−t F0), Y (0) = I. (33)

5.1 Algebraic Framework for Perturbed Problems

We assume that there exist a graded Lie algebra

⊕

n≥0
gn (34)

with finite-dimensional homogeneous subspaces gn, and a Lie group G0 with Lie
algebra g0 such that the exponential map exp : g0 → G0 is bijective; we observe
that g0 and

g̃ =
⊕

n≥1
gn,

are respectively a Lie subalgebra and a Lie ideal of (34).
Under such assumptions, one can prove that there exists an action · of the group

G0 on the Lie algebra g̃ that is homogeneous of degree 0 (i.e. its restriction to each
gn is an action on gn), and such that, for arbitrary β̃ ∈ ⊕

n≥1 gn and β0 ∈ g0,
α0(t) = exp(t β0),

d

dt

(
α0(t) · β̃

)
= [β0,α0(t) · β̃]. (35)

We consider the commutative graded connected Hopf algebra H = ⊕
n≥0 Hn

associated with the graded Lie algebra g̃, its group of characters G ⊂ H∗, and its
Lie algebra of infinitesimal characters g ⊂H∗.
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For β ∈ g0, adβ = [β, ·] is a derivation of (homogeneous degree 0 of) the graded
Lie algebra (34). Its restriction to g̃ is also a derivation of the Lie subalgebra g̃.
This derivation can be extended to a derivation of the Lie algebra g of infinitesimal
characters ofH. Hence, one can construct the semidirect sum Lie algebra

ḡ := g⊕S g0 ⊃
⊕

n≥0
gn.

More specifically, given β̄ = β0 + β ∈ ḡ and β̄ ′ = β ′0 + β ′ ∈ ḡ (where β0,β ′0 ∈ g0
and β,β ′ ∈ g̃), then

[β̄, β̄ ′] = [β0,β ′0] + (adβ0β
′ − adβ ′0β + [β,β ′]),

The action of G0 on g̃ can be extended to an action of G0 on U(g̃) and from that
to an action onH∗. In particular, this defines an action of G0 on G, which allows us
to consider the semidirect product group

Ḡ := G! G0.

More specifically, let (α,α0), (α′,α′0) ∈ Ḡ (where α0,α′0 ∈ G0 and α,α′ ∈ G), then
the product law ◦ in Ḡ is defined in terms of the action · and the product laws ◦ and
⋆ of G0 and G respectively as

(α,α0) ◦ (α′,α′0) = (α ⋆ (α0 · α),α0 ◦ α′0).

We identify (1,G0) with G0, and (G, id0) with G (here id0 denotes the neutral
element in the Lie group G0); then we write the elements (α,α0) ∈ Ḡ as α ◦ α0.
In particular, α0 · α = α0 ◦ α ◦ α−10 . We denote as id the identity element in Ḡ.

Given a smooth curve ᾱ : R→ Ḡ such that ᾱ(0) = id, its derivative at t = 0 is

d

dt
ᾱ(t)

∣∣∣∣
t=0

:= d

dt
α(t)

∣∣∣∣
t=0

+ d

dt
α0(t)

∣∣∣∣
t=0

,

with ᾱ(t) = α(t)◦α0(t), where for all t ∈ R, α(t) ∈ G, α0(t) ∈ G0. This can be used
to define the adjoint representation Ad : Ḡ → Aut(ḡ). In particular, for α0 ∈ G0,
β ∈ g, Adα0β = α0 · β.

The exponential map exp : ḡ→ Ḡ is defined as follows: given β̄ = β0 + β ∈ ḡ,
then exp(β0 + β) := α(1) ◦ exp(β0), where α(t) ∈ G is the solution of (21) with
β(t) replaced by exp(tβ0) · β. With this definition, {exp(t (β0 + β)) : t ∈ R} is a
one-parameter subgroup of Ḡ, and (d/dt) exp(t (β0 + β))

∣∣
t=0 = β0 + β.

In general exp : ḡ→ Ḡ is not surjective [26]. Given ᾱ = α ◦ exp(β0) ∈ Ḡ, there
exists β ∈ g such that ᾱ = exp(β0 + β) if, for each n ≥ 1, the restriction to gn of∫ 1
0 Adexp(tβ0)dt is invertible. (The importance of this hypothesis will be illustrated
in Sect. 5.3 below.)
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5.2 Back to Perturbed Differential Equations

We now consider a perturbed operator differential equation (32), and assume that
there exist a Lie algebra homomorphism

Ψ :
⊕

n≥0
gn → Der(C),

an element β0 ∈ g0 and a curve β̃(t) in g̃ with Ψ (β0) = F0 and Ψ (β̃(t)) = F̃ (t).
This together with (35) implies that

Ψ (exp(t β0) · β̃(t)) = exp(F 0)F̃ (t) exp(−F 0).

Equation (33) now reads

d

dt
Y (t) = Y (t)Ψ (α0(t) · β̃(t)), Y (0) = I, (36)

where α0(t) = exp(tβ0). The problem (36) can be formally solved with the
techniques in the preceding section as

Y (t) =
∑

j∈J
⟨α(t), uj ⟩Ψ (Zj ),

where α : R→ G is the solution of

d

dt
α(t) = α(t) ⋆ (α0(t) · β̃(t)), α(0) = 1.

Hence, a formal solution X(t) of (32) is given by

X(t) =

⎛

⎜⎝
∑

j∈J
⟨α(t), uj ⟩Ψ (Zj )

⎞

⎟⎠ exp(t Ψ (β0)).

As expected, the map that sends each ᾱ = α ◦ exp(β0) ∈ Ḡ to the formal
automorphism

⎛

⎜⎝
∑

j∈J
⟨α, uj ⟩Ψ (Zj )

⎞

⎟⎠ exp(t Ψ (β0))
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behaves as a group homomorphism. Similarly, the map that sends each β̄ = β0+β ∈
ḡ to the formal derivation Ψ (β0) +

∑
j∈J⟨β, uj ⟩Ψ (Zj ) behaves as a Lie algebra

homomorphism. In addition, if exp(β0 + β) = α ◦ exp(β0), then

exp

⎛

⎜⎝Ψ (β0)+
∑

j∈J
⟨β, uj ⟩Ψ (Zj )

⎞

⎟⎠ =

⎛

⎜⎝
∑

j∈J
⟨α, uj ⟩Ψ (Zj )

⎞

⎟⎠ exp(t Ψ (β0).

The adjoint representation Ad : Ḡ→ Aut(ḡ) also translates as expected through the
map Ψ , so that it can be used to apply changes of variables in operator differential
equations of the form (32).

5.3 Application: Modified Equations for Splitting Methods

The material just presented may be applied to analyze numerical integrators of
differential equations. We refer to [27] for a detailed study of the application of
splitting integrators to the solution of perturbations of integrable problem; that study
is based on the use of the shuffle Hopf algebra/extended word series. Here we show
how to proceed when the word series scenario is replaced by the more general
framework developed in this section. For simplicity the attention is restricted to
the well-known Strang splitting formula.

Assume that F̃ (t) is independent of t , and that exp(t F̃ ) exists. Then, it is well
known that the solution operator X(t) = exp(t (F0 + F̃ )) can be approximated at
t = τ, 2τ, 3τ, . . .(τ is the time step) by X(k τ ) ≈ Xk ∈ Aut(C), where X0 = I and

Xk = Xk−1 exp(
τ

2
F0) exp(τ F̃ ) exp(

τ

2
F0), k = 1, 2, 3, . . . (37)

If F0 = Ψ (β0), F̃ = Ψ (β̃) with β0 ∈ g0 and β̃ ∈ g̃, then

Xk = Xk−1

⎛

⎜⎝
∑

j∈J
⟨ατ , uj ⟩Ψ (Zj),

⎞

⎟⎠ ,

where

ατ = exp( τ2 β0) ◦ exp(τ β̃) ◦ exp( τ2 β0) = exp(τ β̂τ ) ◦ exp(τ β0),

β̂τ = exp( τ2 β0) · β̃.
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Let us assume that, for each n ≥ 1, the restriction to gn of
∫ τ
0 Adexp(t β0)dt is

invertible.7 In that case, there exists βτ ∈ g such that ατ = exp(τ (β0+βτ )), which
back to operators, implies thatXk ∈ Aut(C) formally coincides withXτ (kτ ), where
Xτ (t) is the formal solution with Xτ (0) = I of the modified equation

d

dt
Xτ (t) = Xτ (t)

⎛

⎝F0 +
∑

i∈I
⟨βτ , vi⟩Ψ (Gi)

⎞

⎠ .

Modified equations are of course a powerful tool to analyze the performance of
numerical integrators, see e.g. [36].

5.4 Hopf Algebraic Framework

To conclude the paper we shall briefly show how to cast the product group and
product Lie algebra constructed in Sect. 5.1 as the group of characters and Lie
algebra of infinitesimal characters of a suitable Hopf algebra. As in Sect. 4.5 we
consider a (graded) subspace V of the commutative graded connected Hopf algebra
H = ⊕

n≥0 Hn associated with the graded Lie algebra g̃ = ⊕
n≥1 gn. Recall that V

has a Lie coalgebra structure such that the Lie algebra g of infinitesimal characters
ofH is isomorphic to the Lie algebra V ∗ dual to the Lie coalgebra V .

In addition to the hypotheses in Sect. 5.1, we assume that:

• G0 is an affine algebraic group with Lie algebra g0. That is, G0 (respectively g0)
is the group of characters (respectively Lie algebra of infinitesimal characters) of
a finitely generated commutative Hopf algebra H̄0.

• The action · of the group G0 on g can be obtained by dualizing a comodule map
∆̂0 : V → H̄0 ⊗ V . That is, given α0 ∈ G0, β ∈ g,

⟨α0 · β, u⟩ = ⟨α0 ⊗ β, ∆̂0(u)⟩,

for each u ∈H.

Then, H̄ := H̄0 ⊕H1 ⊕H2 ⊕ · · · can be endowed with a commutative graded
Hopf algebra structure in such a way that the resulting group of characters is the
semidirect product group Ḡ, and the resulting Lie algebra of infinitesimal characters
is the semidirect sum Lie algebra ḡ.

7In some cases, this assumption holds for most values of τ ∈ R, but fails for some particular values
which gives rise to so-called numerical resonances [27].
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