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THE CONNECTIONS BETWEEN LYAPUNOV FUNCTIONS FOR3

SOME OPTIMIZATION ALGORITHMS AND DIFFERENTIAL4

EQUATIONS.\ast 5
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Abstract. In this manuscript we study the properties of a family of a second-order differential7

equations with damping, its discretizations, and their connections with accelerated optimization8

algorithms for m-strongly convex and L-smooth functions. In particular, using the linear matrix9

inequality (LMI) framework developed by Fazlyab et. al. (2018), we derive analytically a (discrete)10

Lyapunov function for a two-parameter family of Nesterov optimization methods, which allows for the11

complete characterization of their convergence rate. In the appropriate limit, this family of methods12

may be seen as a discretization of a family of second-order ODEs for which we construct (continuous)13

Lyapunov functions by means of the LMI framework. The continuous Lyapunov functions may14

alternatively be obtained by studying the limiting behavior of their discrete counterparts. Finally,15

we show that the majority of typical discretizations of the of the family of ODEs, such as the heavy16

ball method, do not possess Lyapunov functions with properties similar to those of the Lyapunov17

function constructed here for the Nesterov method.18
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1. Introduction. This paper studies Lyapunov functions for differential equa-23

tions with damping, their discretizations, and optimization algorithms.24

The simplest algorithm for solving25

min
x\in \BbbR d

f(x)26

is the gradient descent (GD) method27

xk+1 = xk  - \alpha k\nabla f(xk),28

which is of course the result of applying Euler's rule, with step-size \alpha k > 0, to the29

gradient system30

dx

dt
=  - \nabla f(x), x(0) = x0.31

The value of f decreases along solutions x(t) of this system, and, correspondingly, it32

may be hoped that, for GD, f(xk+1) \leq f(xk) for sufficiently small \alpha k. In fact, that33

is the case for \alpha k < 2/L if f is L-smooth; i.e., if \nabla f(x) is L-Lipschitz continuous.34
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In this paper we are mainly interested in problems where f belongs the set \scrF m,L of35

m-strongly convex and L-smooth functions, a class that plays an important role in36

optimization [19]. For f in this class and the constant step-size \alpha = 2/(m + L), GD37

has a bound [19, Theorem 2.1.15]38

(1.1) f(xk) - f(x \star ) \leq L

2

\biggl( 
1 - 1/\kappa 

1 + 1/\kappa 

\biggr) 2k

\| x0  - x \star \| 2,39

where x \star is the (unique) minimizer of f and \kappa = L/m \geq 1 is the condition number of40

f .41

The 1 - \scrO (1/\kappa ) rate of decay in f in the preceding bound is unsatisfactory because42

in many applications of interest one has \kappa \gg 1. It is possible to improve on GD by43

resorting to accelerated algorithms with rates 1  - \scrO (1/
\surd 
\kappa ); for instance, for the44

method45

xk+1 = yk  - 1

L
\nabla f(yk),(1.2a)46

yk = xk +
1 - 

\sqrt{} 
1/\kappa 

1 +
\sqrt{} 
1/\kappa 

(xk  - xk - 1),(1.2b)47

48

introduced by Nesterov, it may be shown [19, Theorem 2.2.3] that, if y0 = x0,49

(1.3) f(xk) - f(x \star ) \leq 
\Bigl( 
1 - 

\sqrt{} 
1/\kappa 

\Bigr) k \Bigl( 
f(x0) - f(x \star ) +

m

2
\| x0  - x \star \| 2

\Bigr) 
.50

The factor 1  - 
\sqrt{} 
1/\kappa here is close to the optimal possible factor (1  - 

\sqrt{} 
1/\kappa )2/(1 +51 \sqrt{} 

1/\kappa )2 one can achieve for minimization algorithms when f \in \scrF m,L [19, Theorem52

2.1.13]. The algorithm (1.2) is also related to ODEs, because it may be seen as a53

discretization of of the Polyak damped oscillator equation [21]54

(1.4) \"x+ 2
\surd 
m \.x+\nabla f(x) = 0,55

whose solutions x(t) approach x \star as t\rightarrow \infty if f is m-strongly convex [32, Proposition56

3].57

In recent years, there has been a revived interest, beginning with [30], in the con-58

nections between differential equations and optimization algorithms (see also [27]). In59

particular, there has been several papers (see, e.g., [31, 13]) that proposed accelerated60

algorithms, both in Euclidean and non-Euclidean geometry, based on discretizations61

of second-order dissipative ODEs. The structure of these ODEs and the fact that they62

can been viewed as describing Hamiltonian systems with dissipation led to a number63

of research works that tried to construct or explain optimization algorithms using64

concepts such as shadowing [20], symplecticity [2, 4, 17, 18, 29], discrete gradients [7],65

and backward error analysis [9].66

A common feature of the analysis presented in many of the papers mentioned67

above was the construction of a discrete Lyapunov function that was used in order to68

deduce the convergence rate of the underlying algorithm. In [32] a general analysis69

of optimization methods based on the derivation of Lyapunov functions that mimic70

ODE Lyapunov functions was carried out; that paper presents a Lyapunov function71

for (1.4). A Lyapunov function for (1.2) may be seen in [14], where it was also used to72

study stochastic versions of the algorithm. The paper [28], among other contributions,73

constructs a Lyapunov function for a one-parameter family of optimization algorithms74
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that includes (1.2) as a particular case. Outside the field of optimization, Lyapunov75

functions are important in establishing ergodicity of random dynamical systems [24],76

as well as ergodicity of Markov Chain Monte Carlo algorithms; see, for example,77

[16, 3]. The construction of Lyapunov functions for optimization algorithms from the78

perspective of control theory was the subject of study in [8]. The authors extend the79

work in [15] and derive linear matrix inequalities (LMIs) that guarantee the existence80

of suitable Lyapunov functions that may be used to establish the convergence rate of81

the algorithm under study. In addition, [8] develops an LMI framework to construct82

Lyapunov functions for systems of ODEs. Typically, the LMIs that appear in this83

context have been solved numerically in the literature.84

In this work,85

1. For f \in \scrF m,L, we use the LMI framework from [8] to derive analytically Lya-86

punov functions for a two-parameter family of Nesterov optimization methods87

(see (3.1) below); this family includes the one-parameter family of algorithms88

in [28]. In this way we find, as a function of the two parameters in (3.1), a89

convergence rate for the methods in the family. It turns out that the best90

convergence rate is achieved when the parameters are chosen as in (1.2). The91

relation between the Lyapunov function constructed in the present work and92

its counterpart in [28] is discussed in Remark 3.5.93

2. By taking an appropriate limit of the parameters as in, e.g., [26, 2, 28, 4, 17,94

18, 29, 9] the optimization algorithms in the family may be seen as discretiza-95

tions of second-order ODEs of the form96

(1.5) \"x+\=b
\surd 
m \.x+\nabla f(x) = 0,97

where \=b > 0 is a friction parameter. We obtain analytically Lyapunov func-98

tions for (1.5) and determine, as a function of \=b, a convergence rate of f to99

f(x \star ) along solutions x(t). We prove that the value \=b = 2 in the Polyak ODE100

(1.4) yields the optimal convergence rate if f is m-strongly convex. Addition-101

ally we show that if one is to take explicitly into account the value of L into102

this calculation, the optimal value of \=b becomes strictly larger than 2 and103

yields slightly better convergence rates.104

3. We show that, in the limit where the optimization algorithms approximate105

the ODEs, the discrete Lyapunov functions converge to the ODE Lyapunov106

function. Using this correspondence we show, by means of the heavy ball107

method [21] and other examples that typically optimization algorithms that108

are discretizations of (1.5) do not possess discrete Lyapunov functions that109

mimic the Lyapunov function of the differential equation in item 2 above and110

lead to acceleration. This emphasizes the well-known fact that, when design-111

ing optimization methods, it is not sufficient to ensure that the algorithm may112

be seen as a consistent discretization of a well-behaved ODE. Unfortunately,113

discretizations do not necessarily inherit the good long-time properties of the114

differential equation, as seen, for example, in the case of discretization of115

gradient flows [25], and Hamiltonian problems [23].116

The rest of the paper is organized as follows. In section 2 we briefly review117

the approach in [8] that provides a basis for our constructions. In section 3 we find118

analytically Lyapunov functions/rates of convergence for a two-parameter family of119

optimization methods that contains (1.2) as a particular case. Section 4 analyzes the120

ODE (1.5), and section 5 studies the connection between the discrete and continuous121

Lyapunov functions. The heavy ball method and other methods that do not possess122

suitable Lyapunov functions are discussed in section 6. Finally, we present in the123
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appendix the calculations that allows us to deduce that while the choice \=b = 2 in124

(1.5) is optimal if f is only assumed to be m-strongly convex, slightly better rates of125

convergence may be achieved for f \in \scrF m,L by taking \=b > 2.126

2. Preliminaries. We will now briefly describe the framework introduced in [8]127

for the construction of Lyapunov functions of optimization methods and differential128

equations. The presentation here is adapted from the material in [8] to suit our specific129

needs.130

Remark 2.1. The following material is limited to results needed to study strongly131

convex optimization. However the LMI approach in [8] also works in convex optimiza-132

tion.133

2.1. Optimization methods. Optimization algorithms can often be represented134

as linear dynamical systems interacting with one or more static nonlinearities (see135

[15]). In this paper we will consider first-order algorithms that have the following136

state-space representation:137

\xi k+1 = A\xi k +Buk,(2.1a)138

uk = \nabla f(yk),(2.1b)139

yk = C\xi k,(2.1c)140

xk = E\xi k,(2.1d)141
142

where \xi k \in \BbbR n is the state, uk \in \BbbR d is the input (d \leq n), yk \in \BbbR d is the feedback143

output that is mapped to uk by the nonlinear map \nabla f . From the perspective of the144

optimization, xk is the approximation to the mimimizer x \star .145

As example, consider algorithms of the well-known form ([15, 8])146

xk+1 = xk + \beta (xk  - xk - 1) - \alpha \nabla f(yk),(2.2a)147

yk = xk + \gamma (xk  - xk - 1),(2.2b)148
149

where \alpha > 0, \beta , \gamma are scalar parameters that specify the algorithm within the family.150

For \beta = \gamma = 0 we recover GD. For \beta = \gamma , we have Nesterov's method; (1.2) corre-151

sponds to a particular choice of \alpha and \beta . The heavy ball method has \gamma = 0, \beta \not = 0.152

By defining the state vector \xi k = [xTk - 1, x
T
k ]

T \in \BbbR 2d we can represent (2.2) in the form153

(2.1) with the matrices A,B,C,E given by154

A =

\biggl[ 
0 Id

 - \beta Id (\beta + 1)Id

\biggr] 
, B =

\biggl[ 
0

 - \alpha Id

\biggr] 
, C =

\bigl[ 
 - \gamma Id (\gamma + 1)Id

\bigr] 
, E =

\bigl[ 
0 Id

\bigr] 
.155

Fixed points of (2.1) satisfy156

\xi  \star = A\xi  \star +Bu \star , y \star = C\xi  \star , u \star = \nabla f(y \star ), x \star = E\xi  \star ;157

in the optimization context u \star = 0, and y \star = x \star is the minimizer sought.158

To study the convergence rate of optimization algorithms, [8] considers functions159

of the form160

(2.3) Vk(\xi ) = \rho  - 2k
\bigl( 
a0(f(x) - f(x \star )) + (\xi  - \xi  \star )TP (\xi  - \xi  \star )

\bigr) 
,161

where a0 > 0 and P is positive semidefinite (denoted by P \succeq 0). If along the162

trajectories of (2.1)163

(2.4) Vk+1(\xi k+1) \leq Vk(\xi k),164
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we can conclude that \rho  - 2ka0(f(xk) - f(x \star )) \leq Vk(\xi k) \leq V0(\xi 0) or165

f(xk) - f(x \star ) \leq \rho 2k
V0(\xi 0)

a0
.166

If \rho < 1, we have found a convergence rate for f(xk) towards the optimal value167

f(x \star ). The following theorem defines an LMI that, when f \in \scrF m,L, guarantees that168

the property (2.4) holds, and therefore (2.3) provides a Lyapunov function for the169

system.170

Theorem 2.2 (see [8, Theorem 3.2]). Suppose that, for (2.1), there exist a0 >171

0, P \succeq 0, \ell > 0, and \rho \in [0, 1) such that172

(2.5) T =M (0) + a0\rho 
2M (1) + a0(1 - \rho 2)M (2) + \ell M (3) \preceq 0,173

where174

M (0) =

\biggl[ 
ATPA - \rho 2P ATPB

BTPA BTPB

\biggr] 
,175

and176

M (1) = N (1) +N (2), M (2) = N (1) +N (3), M (3) = N (4),177

with178

N (1) =

\biggl[ 
EA - C EB

0 Id

\biggr] T \biggl[ 
L
2 Id

1
2Id

1
2Id 0

\biggr] \biggl[ 
EA - C EB

0 Id

\biggr] 
,179

N (2) =

\biggl[ 
C  - E 0

0 Id

\biggr] T \biggl[ 
 - m

2 Id
1
2Id

1
2Id 0

\biggr] \biggl[ 
C  - E 0

0 Id

\biggr] 
,180

N (3) =

\biggl[ 
CT 0
0 Id

\biggr] \biggl[ 
 - m

2 Id
1
2Id

1
2Id 0

\biggr] \biggl[ 
C 0
0 Id

\biggr] 
,181

N (4) =

\biggl[ 
CT 0
0 Id

\biggr] \biggl[ 
 - mL

m+LId
1
2Id

1
2Id  - 1

m+LId

\biggr] \biggl[ 
C 0
0 Id

\biggr] 
.182

183

Then, for f \in \scrF m,L, the sequence \{ xk\} satisfies184

f(xk) - f(x \star ) \leq a0(f(x0) - f(x \star )) + (\xi 0  - \xi  \star )TP (\xi 0  - \xi  \star )

a0
\rho 2k.185

2.2. Continuous-time systems. We also consider continuous-time dynamical186

systems in state space form (throughout the paper we often use a bar over symbols187

related to ODEs)188

(2.6) \.\xi (t) = \=A\xi (t) + \=Bu(t), y(t) = \=C\xi (t), u(t) = \nabla f(y(t)) for all t \geq 0,189

where \xi (t) \in \BbbR n is the state, y(t) \in \BbbR d(d \leq n) the output, and u(t) = \nabla f(y(t)) the190

continuous feedback input. Fixed points of (2.6) satisfy191

0 = \=A\xi  \star , y \star = \=C\xi  \star , u \star = \nabla f(y \star );192

in our context u \star = 0 and y \star = x \star . We can replicate the convergence analysis of the193

discrete case using now functions of the form194

(2.7) \=V (\xi (t)) = e\lambda t
\bigl( 
f(y(t)) - f(y \star ) + (\xi (t) - \xi  \star )T \=P (\xi (t) - \xi  \star )

\bigr) 
,195
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where \lambda > 0. If \=P \succeq 0 and, along solutions, (d/dt) \=V (\xi (t)) \leq 0, then we have196

\=V (\xi (t)) \leq \=V (\xi (0)) which in turns implies197

f(y(t)) - f(y \star ) \leq e - \lambda t \=V (\xi (0)).198

The following theorem similarly to the discrete time case, formulates an LMI that199

guarantees the existence of such a Lyapunov function.200

Theorem 2.3. Suppose that, for (2.6), there exist \lambda > 0, \=P \succeq 0, and \sigma \geq 0 that201

satisfy202

(2.8) \=T = \=M (0) + \=M (1) + \lambda \=M (2) + \sigma \=M (3) \preceq 0,203

where204

\=M (0) =

\biggl[ 
\=P \=A+ \=AT \=P + \lambda \=P \=P \=B

\=BT \=P 0

\biggr] 
,205

\=M (1) =
1

2

\biggl[ 
0 ( \=C \=A)T

\=C \=A \=C \=B + \=BT \=CT

\biggr] 
,206

\=M (2) =

\biggl[ 
\=CT 0
0 Id

\biggr] \biggl[ 
 - m

2 Id
1
2Id

1
2Id 0

\biggr] \biggl[ 
\=C 0
0 Id

\biggr] 
,207

\=M (3) =

\biggl[ 
\=CT 0
0 Id

\biggr] \biggl[ 
 - mL

m+LId
1
2Id,

1
2Id  - 1

m+LId

\biggr] \biggl[ 
\=C 0
0 Id

\biggr] 
.208

209

Then the following inequality holds for f \in \scrF m,L, t \geq 0,210

f(y(t)) - f(y \star ) \leq e - \lambda t
\bigl( 
f(y(0)) - f(y \star ) + (\xi (0) - \xi  \star )T \=P (\xi (0) - \xi  \star )

\bigr) 
.211

3. A Lyapunov function for Nesterov's optimization algorithm. We212

study the optimization method (cf. (2.2))213

xk+1 = xk + \beta (xk  - xk - 1) - \alpha \nabla f(yk),(3.1a)214

yk = xk + \beta (xk  - xk - 1),(3.1b)215
216

k = 0, 1, . . ., with parameters \alpha > 0 and \beta . As noted before, the choice \beta = 0 gives217

GD, and \beta \not = 0 corresponds to Nesterov's accelerated algorithm.218

3.1. The construction. After introducing219

\delta =
\surd 
m\alpha ,220

and the divided difference, k = 0, 1, . . .,221

(3.2) dk =
1

\delta 
(xk  - xk - 1),222

the recursion (3.1) may be rewritten (k = 0, 1, . . .)223

dk+1 = \beta dk  - \alpha 

\delta 
\nabla f(yk),(3.3a)224

xk+1 = xk + \delta \beta dk  - \alpha \nabla f(yk),(3.3b)225

yk = xk + \delta \beta dk.(3.3c)226
227
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Remark 3.1. For future reference, it is useful to observe that, from a dimensional228

analysis point of view, m, L, and 1/\alpha have the dimensions of the quotient f/\| x\| 2.229

Therefore \delta is a nondimensional version of
\surd 
\alpha . The parameter \beta is nondimensional.230

The divided difference (3.2) shares the dimensions of x.231

Equation (3.3) can now be written in the form (2.1) with \xi k = [dTk , x
T
k ]

T \in \BbbR 2d
232

and233

(3.4) A =

\biggl[ 
\beta Id 0
\delta \beta Id Id

\biggr] 
, B =

\biggl[ 
 - (\alpha /\delta )Id
 - \alpha Id

\biggr] 
, C =

\bigl[ 
\delta \beta Id Id

\bigr] 
, E =

\bigl[ 
0 Id

\bigr] 
.234

In the preceding section, as in [8], the state \xi k was taken to be [xTk - 1, x
T
k ]

T rather235

than [dTk , x
T
k ]

T. While both choices are of course mathematically equivalent, the new236

\xi k is more convenient for our purposes. In addition, when looking numerically for237

Lyapunov functions by solving LMIs, it leads to problems that are better conditioned238

for large condition numbers \kappa .239

Remark 3.2. For \beta = 0 (gradient descent), the first equation in (3.3) is a refor-240

mulation of the second: It would be more natural to use the simpler state \xi k = xk.241

According to Theorem 2.2, in order to find a Lyapunov function of the form (2.3),242

it is sufficient to find a matrix P \succeq 0 and numbers a0 > 0, 0 < \rho < 1, \ell \geq 0, such243

that the matrix T in (2.5) is negative semidefinite. At the outset, we choose \ell = 0 in244

order to simplify the subsequent analysis. As we will discuss in the Appendix, this245

simplification does not have a significant impact on the value of the convergence rate246

\rho that results from the analysis. With \ell = 0, (2.5) is homogeneous in P and a0, and247

we may divide accross by a0. In other words, without loss of generality, we may take248

a0 = 1. Then T is a function of P and \rho (and the method parameters \beta and \delta ).249

The matrix A in (3.4) is a Kronecker product of a 2\times 2 matrix and Id,250

A =

\biggl[ 
\beta 0
\delta \beta 1

\biggr] 
\otimes Id;251

the factor Id originates from the dimensionality of the decision variable x and the252

2 \times 2 factor is independent of d and arises from the optimization algorithm. The253

matrices B, C, and E have a similar Kronecker product structure. It is then natural254

to consider symmetric matrices P of the form255

(3.5) P = \widehat P \otimes Id, \widehat P =

\biggl[ 
p11 p12
p12 p22

\biggr] 
,256

and then T will also have a Kronecker product structure257

(3.6) T = \widehat T \otimes Id, \widehat T =

\left[  t11 t12 t13
t12 t22 t23
t13 t23 t33

\right]  ,258

where the tij are explicitly given by the following complicated expressions obtained259

from (3.4) and the recipes for M (0), M (1), and M (2) in Theorem 2.2:260

t11 = \beta 2p11 + 2\delta \beta 2p12 + \delta 2\beta 2p22  - \rho 2p11  - \delta 2\beta 2m/2,(3.7a)261

t12 = \beta p12 + \delta \beta p22  - \rho 2p12  - \delta \beta m/2 + \rho 2\delta \beta m/2,(3.7b)262

t13 =  - \delta  - 1\alpha \beta p11  - 2\alpha \beta p12  - \delta \alpha \beta p22 + \delta \beta /2,(3.7c)263
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t22 = p22  - \rho 2p22  - m/2 + \rho 2m/2,(3.7d)264

t23 =  - \delta  - 1\alpha p12  - \alpha p22 + 1/2 - \rho 2/2,(3.7e)265

t33 = \delta  - 2\alpha 2p11 + 2\delta  - 1\alpha 2p12 + \alpha 2p22 + \alpha 2L/2 - \alpha .(3.7f)266
267

Our task is to find \rho \in [0, 1), p11, p12, and p22 that lead to \widehat T \preceq 0 and \widehat P \succeq 0268

(which imply T \preceq 0 and P \succeq 0 ). The algebra becomes simpler if we represent \beta and269

\rho 2 as270

(3.8) \beta = 1 - b\delta , \rho 2 = 1 - r\delta .271

Note that we are interested in r \in (0, 1/\delta ] so as to get \rho 2 \in [0, 1). We proceed in steps272

as follows.273

First step. Impose the condition t23 = 0. This leads to274

(3.9) p12 =
m

2
r  - \delta p22.275

Second step. Impose the condition t13 = 0. This results in276

p11 =
m

2
 - 2\delta p12  - \delta 2p22,277

which in tandem with (3.9) yields278

(3.10) p11 =
m

2
 - mr\delta + \delta 2p22.279

Third step. Impose the condition det( \widehat P ) = p11p22  - p212 = 0. Using (3.9) and280

(3.10), we have a linear equation for p22 with solution281

p22 =
m

2
r2.282

We now take this value to (3.9) and (3.10) and get283

(3.11) \widehat P =

\biggl[ 
p11 p12
p12 p22

\biggr] 
=
m

2

\biggl[ 
(1 - r\delta )2 r(1 - r\delta )
r(1 - r\delta ) r2

\biggr] 
,284

a matrix that is positive semidefinite (but not positive definite).285

Fourth step. Impose t33 \leq 0. After using (3.11) in the expression for t33 in (3.7),286

this condition is seen to be equivalent to \alpha 2L - \alpha \leq 0 or287

\alpha \leq 1

L
288

(for \alpha = 1/L, t33 actually vanishes). In what follows we assume that this bound on289

\alpha holds; note that then \delta =
\surd 
m\alpha \leq 

\sqrt{} 
m/L < 1.290

Fifth step. We impose t22 \leq 0. This may be written as (p22  - m/2)r\delta \leq 0, which291

leads to p22 \leq m/2. From (3.11)292

r \leq 1,293

which sets a lower limit \rho 2 \leq 1 - \delta for the rate of convergence. For r2 < 1, t22 < 0.294

Sixth step. Impose t11t22  - t212 = 0. From (3.11) and (3.7), some algebra yields295

t11t22  - t212 =  - m
3

4
r(1 - r\delta ) \Xi 296
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with297

(3.12) \Xi = \Xi \delta (r, b) = (r + \delta )(1 - \delta 2)b2  - 2(1 + r2)(1 - \delta 2)b+ (r3  - 3r2\delta + 3r  - \delta ).298

Since \delta < 1 and, after step five, r \in (0, 1], we must have \Xi = 0. For fixed \delta \in (0, 1),299

the condition \Xi \delta = 0 establishes a relation between the values of r and b or, in other300

words, the rate of convergence \rho 2 and the parameter \beta in (3.1). In order to study this301

relation, we now make a digression and describe, for fixed \delta \in (0, 1), the algebraic302

curve of equation \Xi \delta (r, b) = 0 in the real plane (r, b); in this description we allow303

arbitrary real values of r and b (even though in our problem r \in (0, 1]).304

The formula for the roots of a quadratic equation yields305

(3.13) b\pm =
(1 + r2)(1 - \delta 2)\pm (1 - r\delta )

\sqrt{} 
(1 - r2)(1 - \delta 2)

(r + \delta )(1 - \delta 2)
.306

For r2 \not = 1 and r \not =  - \delta there are two distinct real roots b+ and b - . For r = \pm 1 there307

is a double root b = 2/(r + \delta ). As r \downarrow  - \delta , we have b+ \uparrow +\infty and b - \downarrow  - 2\delta /(1 - \delta 2).308

By using (3.13) it is not difficult to prove that \Xi \delta (r, b) = 0 defines r as a single-valued309

function of the variable b \in \BbbR . (We could find an explicit expression for r in terms of310

b by means of the formula for the roots of a cubic equation, but this is not necessary311

for our purposes.) Figure 3.1 provides a plot of the curve \Xi \delta (r, b) = 0 when \delta = 1/2.312

We now return to the construction of T . Recall that for our purposes, we need313

r > 0 (so as to have \rho < 1); this requirement holds for b \in (bmin, bmax), where314

bmin =
1 - \delta 2  - 

\surd 
1 - \delta 2

\delta (1 - \delta 2)
< 0, bmax =

1 - \delta 2 +
\surd 
1 - \delta 2

\delta (1 - \delta 2)
> 0315

are the intersections of the curve \Xi \delta = 0 with the vertical axis. As \delta \downarrow 0,316

(3.14) bmin \uparrow 0, bmax \uparrow +\infty .317

The limits on b just found are equivalent to318

(3.15)  - 
\sqrt{} 
1 - \delta 2 < \beta < +

\sqrt{} 
1 - \delta 2.319

For the maximum value r = 1 found in step five above, (3.13) gives the double root320

b = 2/(1 + \delta ) or \beta = (1  - \delta )/(1 + \delta ). Values r \in (0, 1) correspond to two different321

choices of b \in (bmin, bmax).322

We are now ready to present the following result.331

Theorem 3.3. Consider the minimization algorithm (3.1) (or (3.3)) with param-332

eters subject to333

\alpha \leq 1/L,  - 
\surd 
1 - m\alpha \leq \beta \leq 

\surd 
1 - m\alpha .334

Set \delta =
\surd 
m\alpha , and let r > 0 be the value determined by \Xi \delta (r, b) = 0 (see (3.12)); set335

\rho 2 = 1  - r\delta < 1, and define the positive semidefinite matrix P by (3.5) and (3.11).336

Then the matrix T in (3.6)--(3.7) is negative semidefinite.337

As a result, for any x - 1, x0, the sequence338

(3.16) \rho  - 2k
\Bigl( 
f(xk) - f(x \star ) + [dTk , x

T
k  - xT \star ]P [dTk , x

T
k  - xT \star ]

T
\Bigr) 

339

decreases monotonically, which, in particular, implies340

f(xk) - f(x \star ) \leq C\rho 2k341
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Fig. 3.1. The solid curve corresponds to the equation \Xi \delta (r, b) = 0 when \delta = 1/2. It has a
vertical asymptote at r =  - \delta (not shown). To each real b there corresponds a single value of r. For
b \in (bmin, bmax), we have 0 < r \leq 1 that corresponds to 1 > \rho 2 \geq 1 - \delta . The best rate \rho 2 = 1 - \delta is
achieved for b = 2\delta /(1 + \delta ); i.e., \beta = (1  - \delta )/(1 + \delta ). The discontinuous curve corresponds to the
equation \Xi \delta (r, b) = 0 in the limit \delta \rightarrow 0; again to each real b there corresponds a single value of r.
This curve is symmetric with respect to the origin (changing b into  - b changes r into  - r) and has
a vertical asymptote at r = 0. Positive values of b correspond to positive values of r. The maximum
value r = 1 is achieved when b = 2.

323

324

325

326

327

328

329

330

with342

C = f(x0) - f(x \star ) +
m

2

\bigm\| \bigm\| \bigm\| \bigm\| 1 - r\delta 

\delta 
(x0  - x - 1) + r(x0  - x \star )

\bigm\| \bigm\| \bigm\| \bigm\| 2 .343

Proof. Using Theorem 2.2, we only have to prove that \widehat T \preceq 0. The second, first,344

and fourth steps of our construction, respectively, ensure that t13 = t23 = 0 and345

t33 \leq 0, and therefore we are left with the task of checking that the 2\times 2 matrix \widehat T 12
346

obtained by suppressing the last row and last column of \widehat T is \preceq 0. If r < 1, we know347

from step five that t22 < 0 and from step six that the determinant of \widehat T 12 vanishes,348

and therefore \widehat T 12 \preceq 0. For r = 1, t22 = 0, but again \widehat T 12 \preceq 0, because in this case349

t11 =  - (m/2)\delta (1 - \delta )3/(1 + \delta ) < 0.350

For fixed \alpha \leq 1/L, as noted above, \rho 2 is minimized by the choice351

\beta = (1 - 
\surd 
m\alpha )/(1 +

\surd 
m\alpha );352

then353

\rho 2 = 1 - 
\surd 
m\alpha .354

When \alpha is allowed to vary in the interval (0, 1/L], increasing \alpha results in an im-355

provement of \rho 2, so that the best rate \rho 2 = 1  - 
\sqrt{} 
m/L = 1  - 

\sqrt{} 
1/\kappa is obtained by356

setting \alpha = 1/L, and then (3.1) coincides with (1.2). The parameter values \alpha = 1/L,357

\beta = (1  - 
\sqrt{} 
1/\kappa )/(1 +

\sqrt{} 
1/\kappa ) in (1.2) are of course the ``standard"" choice for Nes-358

terov's algorithm (see, e.g., [15, Proposition 12]). For this choice of parameters and359
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x - 1 = x0, the bound in Theorem 3.3 exactly coincides (including the value of C)360

with that in (1.3), which is derived in [19, Theorem 2.2.3] without using Lyapunov361

functions. Numerical experiments in [15] show that for \kappa  - 1 = m/L small the rate of362

convergence \rho 2 = 1 - 
\sqrt{} 

1/\kappa is essentially the best that the algorithm achieves.363

The theorem may also be applied to the GD algorithm with \beta = 0 and b = 1/\delta ,364

even though (see Remark 3.2) in this case the preceding treatment is unnatural. One365

finds r = \delta , so that the decay per step in f(xk)  - f(x \star ) provided by Theorem 3.3366

is \rho 2 = 1  - \delta 2 = 1  - m\alpha for \alpha \leq 1/L. When \alpha = 2/(m + L), the decay per step367

guaranteed by Theorem 3.3 is \rho 2 = 1 - 1/\kappa /1 + 1/\kappa ; this is worse than the bound in368

(1.1) valid for the same value of \alpha .369

Remark 3.4. The decay rate \rho 2 provided by the theorem is a nondimensional370

quantity that only depends on the nondimensional variables b and \delta . The bound371

\alpha \leq 1/L may be rewritten in the nondimensional form as \delta 2 \leq m/L = 1/\kappa . These372

facts guarantee that the theorem is equivariant with respect to changes in scale of f373

and x. The Lyapunov function in (3.16) has the dimensions of f because, according374

to (3.11), P has the dimensions of m, i.e., those of f/\| x\| 2.375

Remark 3.5. For the particular choice of \alpha and \beta leading to (1.2), the Lyapunov376

function in the theorem above was derived in [14] by means of an alternative technique377

(see Remark 5.2). In [28] a Lyapunov function that contains the gradient \nabla f(x) is378

constructed analytically for the situation where the learning rate \alpha in (3.1) is a free379

parameter and the momentum parameter is fixed as \beta = (1  - 
\surd 
m\alpha )/(1 +

\surd 
m\alpha )380

(i.e., at the value that according to the analysis above optimizes \rho 2). The analysis in381

[28] requires (see Lemma 3.4 in that reference) \alpha \leq 1/(4L), while here \alpha \leq 1/L. In382

addition for \alpha = 1/(4L), [28, Theorem 3] proves a rate 1/(1 + (1/12)
\sqrt{} 
m/L) which,383

while establishing acceleration, compares unfavourably with the value 1 - (1/2)
\sqrt{} 
m/L384

provided by Theorem 3.3.385

3.2. Optimality. The path leading to Theorem 3.3 has a degree of arbitrariness,386

and it may be asked whether, by following an alternative construction, it is possible387

to determine the parameters \rho , p11, p12, p22, and in such a way that \widehat T \preceq 0, \widehat P \succeq 0388

and the value of \rho is larger than the value provided in Theorem 3.3. We conclude389

this section by presenting a result in this direction. We fix the parameters in the390

algorithm at the standard choices, i.e., \alpha = 1/L, \beta = (1  - \delta )/(1 + \delta ), \delta =
\sqrt{} 
m/L,391

and denote by \rho  \star =
\surd 
1 - \delta , p \star 11 = (m/2)(1 - \delta )2, p \star 12 = (m/2)(1 - \delta ), p \star 22 = m/2 the392

values yielded by Theorem 3.3. In the space of the decision variables \rho , p11, p22, p33393

we pose the convex optimization problem of minimizing \rho subject to the constraints394 \widehat T \preceq 0, \widehat P \succeq 0. We then have the following result that shows that the rate provided395

in Theorem 3.3 cannot be improved with an alternative choice of \widehat P .396

Theorem 3.6. With the notation just described, the unique solution of the min-397

imization problem is (\rho  \star , p \star 11, p
 \star 
12, p

 \star 
22).398

Proof. We use the notation \sigma = \rho 2, \sigma  \star = (\rho  \star )2 and write \sigma = \sigma  \star + \widetilde \sigma , p11 =399

p \star 11 + \widetilde p11, p12 = p \star 12 + \widetilde p12, p22 = p \star 22 + \widetilde p22. Since the minimization problem is convex,400

it is sufficient to show that \rho  \star , p \star 11, p
 \star 
12, p

 \star 
22 provide a local minimum; i.e., that if the401

increments \widetilde \sigma \leq 0, \widetilde p11, \widetilde p12, \widetilde p22 are of sufficiently small magnitude and (\sigma , p11, p12, p22)402

is feasible, then \sigma = \sigma  \star , p11 = p \star 11, p12 = p \star 12, p22 = p \star 22.403

We study three requirements that feasibility imposes on \widetilde \sigma , \widetilde p11, \widetilde p12, \widetilde p22.404

(1) First, the constraint \widehat P \succeq 0 implies that p11p22  - p212 \geq 0 or405

p \star 22\widetilde p11  - 2p \star 12\widetilde p12 + p \star 11\widetilde p22 + \widetilde p11\widetilde p22  - (\widetilde p12)2 \geq 0.406
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Because we are carrying a local study, we replace the constraint by its linearization407

p \star 22\widetilde p11  - 2p \star 12\widetilde p12 + p \star 11\widetilde p22 \geq 0,408

or, after using the known values of the symbols with a star,409

(3.17) \widetilde p11  - 2(1 - \delta )\widetilde p12 + (1 - \delta )2\widetilde p22 \geq 0.410

(2) Then, the constraint \widehat T \preceq 0 implies t22t33  - t223 \geq 0 or, using (3.7),411

 - 
\Bigl( 1
2
\widetilde \sigma +

\delta 

m
\widetilde p12 + \delta 2

m
\widetilde p22\Bigr) 2

+
\delta 3

m2
\widetilde p22\bigl( \widetilde p11 + 2\delta \widetilde p12 + \delta 2\widetilde p22\bigr) 412

 - \delta 2

m2
\widetilde \sigma \widetilde p22\bigl( \widetilde p11 + 2\delta \widetilde p12 + \delta 2\widetilde p22\bigr) \geq 0.413

414

This time the leading terms in the right-hand side are quadratic in the increments,415

and we discard the cubic terms to get416

(3.18)  - 
\Bigl( m
2
\widetilde \sigma + \delta \widetilde p12 + \delta 2\widetilde p22\Bigr) 2

+ \delta 3\widetilde p22\bigl( \widetilde p11 + 2\delta \widetilde p12 + \delta 2\widetilde p22\bigr) \geq 0.417

By completing the square in the quadratic form, this may be equivalently rewritten418

as419

(3.19)
\Bigl( m
2
\widetilde \sigma + \delta \widetilde p12 + \delta 2\widetilde p22\Bigr) 2

+ \delta 
\Bigl( 1
2
\widetilde p11 + \delta \widetilde p12\Bigr) 2

\leq \delta 
\Bigl( 1
2
\widetilde p11 + \delta \widetilde p12 + \delta 2\widetilde p22\Bigr) 2

.420

(3) Finally \widehat T \preceq 0 requires t22 \leq 0 or \widetilde p22(\delta  - \widetilde \sigma ) \leq 0; discarding the quadratic421

term, we get422

(3.20) \widetilde p22 \leq 0.423

The proof concludes by applying the lemma below.424

Lemma 3.7. If the increments \widetilde \sigma \leq 0, \widetilde p11, \widetilde p12, \widetilde p22 satisfy the constraints (3.17)--425

(3.20), then \widetilde \sigma = 0, \widetilde p11 = 0, \widetilde p12 = 0, \widetilde p22 = 0.426

Proof. The relation (3.19) obviously implies427 \Bigl( 1
2
\widetilde p11 + \delta \widetilde p12\Bigr) 2

\leq 
\Bigl( 1
2
\widetilde p11 + \delta \widetilde p12 + \delta 2\widetilde p22\Bigr) 2

,428

and therefore, in view of (3.20),429

(3.21)
1

2
\widetilde p11 + \delta \widetilde p12 \leq 0.430

We combine this inequality with (3.17) to get431

0 \leq  - 2\widetilde p12 + (1 - \delta )2\widetilde p22432

so that433

(3.22) \widetilde p12 \leq 0.434

Since the three quantities being added in the first bracket in (3.19) are now known435

to be \leq 0, it is enough to consider hereafter the worst case \widetilde \sigma = 0:436 \Bigl( 
\delta \widetilde p12 + \delta 2\widetilde p22\Bigr) 2

\leq \delta 
\Bigl( 1
2
\widetilde p11 + \delta \widetilde p12 + \delta 2\widetilde p22\Bigr) 2

.437
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Since \delta \widetilde p12 + \delta 2\widetilde p22 \leq 0, we must have438

(3.23) \widetilde p11 \leq 0.439

From (3.17)440 \widetilde p11 + 2\delta \widetilde p12 + \delta 2\widetilde p22 \geq 2\widetilde p12 + ( - 1 + 2\delta )\widetilde p22,441

which implies (see (3.20), (3.22), (3.23))442

\widetilde p22(\widetilde p11 + 2\delta \widetilde p12 + \delta 2\widetilde p22) \leq 2\widetilde p12\widetilde p22 + ( - 1 + 2\delta )\widetilde p222.443

By combining this inequality and (3.18) (with \widetilde \sigma = 0), we obtain a relation444

\delta 2\widetilde p212 + \delta 3(1 - \delta )\widetilde p222 \leq 0445

that shows that \widetilde p12 = 0. Then comparing (3.17), (3.20), and (3.23), we conclude that446 \widetilde p11 = \widetilde p22 = 0, which in turn concludes the proof.447

4. The differential equation. Let us now set h =
\surd 
\alpha (so that \delta =

\surd 
mh) and448

assume that in (3.1) the parameter \beta = \beta h changes smoothly with h in such a way449

that, for some constant \=b \in \BbbR , \beta h = 1  - \=b
\surd 
mh + o(h) as h \downarrow 0. Then, (3.1) may be450

written as451

1

h2
(xk+1  - 2xk + xk - 1) +

1 - \beta h\surd 
mh

\surd 
m

1

h
(xk  - xk - 1) +\nabla f(yk) = 0,452

which, if xk is seen as an approximation to x(kh), provides a consistent discretization453

of the differential equation (1.5). An example is provided by the choice \beta = (1  - 454

\delta )/(1 + \delta ) = (1 - 
\surd 
mh)/(1 +

\surd 
mh), where \=b = 2 and (1.5) is the equation (1.4) used455

by Polyak.456

Remark 4.1. In general, this two-step discretization is not a linear multistep for-457

mula. Note the following:458

\bullet \nabla f is evaluated at yk, a linear combination of xk and xk - 1. In this regard,459

(3.1) is similar to the one-leg methods introduced by Dahlquist in his study of460

the long-time properties of multistep methods applied to nonlinear differential461

equations (see, e.g., [6, 5, 12])462

\bullet The unconventional factor (1 - \beta h)/(
\surd 
mh) that converges to \=b as h \downarrow 0. From463

the point of view of discretization methods for ODEs having \=b instead of this464

factor, or equivalently having \beta = 1  - \=b
\surd 
mh, would be more natural. But465

note that, when \beta = (1  - 
\surd 
mh)/(1 +

\surd 
mh), the algorithm (3.1) becomes466

GD for h = 1/
\surd 
L and \kappa = 1; the choice \beta = 1  - \=b

\surd 
mh does not share this467

favorable property.468

4.1. The construction. We now define469

v =
1\surd 
m

\.x470

and rewrite (1.5) as a first-order system471
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\.v =  - \=b
\surd 
mv  - 1\surd 

m
\nabla f(x),(4.1a)472

\.x =
\surd 
mv.(4.1b)473

474

Remark 4.2. In a dimensional analysis as in Remarks 3.1 and 3.4, h has the same475

units as t. It is then a dimensional time-step, to be comparable with the nondimen-476

sional \delta . The units of v are those of x. Of course, the divided difference (3.2) is a477

discrete version of v = \.x/
\surd 
m.478

If we set \xi = [vT, xT]T, then (4.1) is of the form (2.6) with479

\=A =

\biggl[ 
 - \=b

\surd 
mId 0d\surd 
mId 0d

\biggr] 
, \=B =

\biggl[ 
 - (1/

\surd 
m)Id

0d

\biggr] 
, \=C =

\bigl[ 
0d Id

\bigr] 
.480

Now according to Theorem 2.3, in order to find a Lyapunov function of the form481

(2.7) it is sufficient to find a matrix \=P \succeq 0 and parameters \lambda > 0, \sigma \geq 0 such that482

the matrix \=T in (2.8) is negative semidefinite. Similarly to the discrete case, we will483

simplify the subsequent analysis by considering the case \sigma = 0. (The case \sigma > 0 is484

studied in the Appendix.) The Lipschitz constant L only enters T in Theorem 2.3485

through \=M (3); under the assumption \sigma = 0, \=T is independent of L. This has an486

important implication: The analysis in this section applies to f strongly m-convex487

but not necessarily L-smooth.488

We look for \=P of the form489

(4.2) \=P = \widehat \=P \otimes Id,
\widehat \=P =

\biggl[ 
\=p11 \=p12
\=p12 \=p22

\biggr] 
,490

and then \=T is found to be491

(4.3) \=T = \widehat \=T \otimes Id,
\widehat \=T =

\left[  \=t11 \=t12 \=t13
\=t12 \=t22 \=t23
\=t13 \=t23 \=t33

\right]  ,492

where the \=tij have the following expressions:493

\=t11 =  - 2\=b\=p11 + 2
\surd 
m\=p12 + \lambda \=p11,494

\=t12 =  - \=b
\surd 
m\=p12 +

\surd 
m\=p22 + \lambda \=p12,495

\=t13 =  - (1/
\surd 
m)\=p11 +

\surd 
m/2,496

\=t22 = \lambda \=p22  - (m/2)\lambda ,497

\=t23 =  - (1/
\surd 
m)\=p12 + \lambda /2,498

\=t33 = 0.499
500

We now determine \lambda and \widehat \=P . The algebra is simplified if we set \lambda =
\surd 
m \=r.501

First step. Since \=t33 = 0, the requirement \widehat \=T \preceq 0 implies \=t13 = 0 and \=t23 = 0 and502

accordingly503

(4.4) \=p11 = m/2, \=p12 = (m/2)\=r.504

Second step. We choose \=p22 to ensure det(\widehat \=P ) = \=p11\=p22  - \=p212 = 0. This yields505

\=p22 = (m/2)\=r2506
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and leads to507

(4.5) \widehat \=P =
m

2

\biggl[ 
1 \=r
\=r \=r2

\biggr] 
,508

a matrix that is positive semidefinite (but not positive definite).509

Third step. Since, \widehat \=T \preceq 0 implies \=t22 \leq 0, we may write 0 \geq \=p22  - m/2 =510

(m/2)(\=r2  - 1), and therefore we have511

\=r \leq 1;512

this imposes a bound \lambda \leq 
\surd 
m on the convergence rate.513

Fourth step. We impose the condition \=t11\=t22 - \=t212 = 0. This results in an equation514

\=\Xi = 0,515

(4.6) \=\Xi (\=r,\=b) = \=rb2  - 2(\=r2 + 1)b+ \=r3 + 3\=r,516

that relates \=r (or equivalently the rate \lambda ) and the parameter \=b in the differential517

equation (1.5).518

We observe that the polynomial \=\Xi is the limit as \delta \downarrow 0 of the polynomial \Xi \delta in519

(3.12) (except of course for the symbols used to denote the variables: r and b for \Xi \delta 520

and \=r and \=b for \=\Xi ). As a consequence, the discontinuous line in Figure 3.1, presented521

there as a limit of curves \Xi \delta = 0, also describes the curve \=\Xi = 0 (again after renaming522

the variables).523

The curve of equation \=\Xi (\=r,\=b) = 0 in the (\=r,\=b) plane is invariant with respect to524

the symmetry (\=r,\=b) \mapsto \rightarrow ( - \=r, - \=b) (this is a consequence of the fact that changing \=b525

into  - \=b in the differential equation is equivalent to reversing the sign of independent526

variable t).1 The formula for the roots of a quadratic equation gives527

\=b\pm =
1 + \=r2 \pm 

\surd 
1 - \=r2

\=r
.528

From here one may prove that to each real \=b there corresponds a unique \=r such that529

\=\Xi (\=r,\=b) = 0. The maximum value \=r = 1 (\lambda =
\surd 
m) is achieved only for \=b = 2 (i.e., for530

Polyak's (1.4)), and values \=r \in (0, 1) correspond to two different real values of \=b.531

We now have the following result that is proved as in the discrete case.532

Theorem 4.3. Consider the differential equation (1.5) (or the equivalent system533

(4.1)) with parameter \=b > 0, and assume that f is m-strongly convex. Let \lambda =
\surd 
m\=r,534

where \=r > 0 is the value determined by the relation \=\Xi (\=r,\=b) = 0 (see (4.6)), and define535

the positive semidefinite matrix \=P by (4.2) and (4.5). Then the matrix \=T in (4.3) is536

negative semidefinite.537

As a result, if x(t) is a solution of (1.5), the function538

(4.7) exp(\lambda t)
\Bigl( 
f(x(t)) - f(x \star ) + [v(t)T, x(t)T  - xT \star ] \=P [v(t)T, x(t)T  - xT \star ]

T
\Bigr) 

539

decreases monotonically as t increases, which implies540

f(x(t)) - f(x \star ) \leq \=C exp( - \lambda t)541

1The curves \Xi \delta (r, b) = 0, \delta > 0 do not possess any symmetry because in the discrete algorithm
(3.1), xk+1 and xk - 1 do not play a symmetric role (or in the terminology of differential equation
integrators we are not dealing with time-symmetric algorithms).
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with542

\=C = f(x(0)) - f(x \star ) +
m

2

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
m

\.x(0) + \=r(x(0) - x \star )

\bigm\| \bigm\| \bigm\| \bigm\| 2 .543

Remark 4.4. For \=b = 0, the construction leading to the theorem yields r = 0, i.e.,544

\lambda = 0, and,545

(\xi (t) - \xi  \star )
T \=P (\xi (t) - \xi  \star ) =

m

2
\| v\| 2.546

In addition, \=T = 0, and therefore the factor in round brackets in (4.7) is an invariant547

of motion. In this case the system (4.1) is Hamiltonian, and the invariant we have548

found equals
\surd 
m times the corresponding Hamiltonian function.549

Remark 4.5. The value \=b = 2, in addition to maximizing the decay rate in f(x(t))550

in Theorem 4.3 for arbitrary m-strongly convex f , has another optimality property in551

the simple one-dimensional case with f(x) = mx2/2, when (1.5) or (4.1) describe a552

damped harmonic oscillator. An elementary computation (see, e.g., [33]) shows that553

\=b = 2 is the value of the friction coefficient that ensures the fastest dissipation of the554

energy ( \.x)2/2 +mx2/2.555

It will be proved in the Appendix that if f , in addition to being strongly convex556

has Lipschitz continuous gradient, then better decay rates in f(x(t)) may be obtained557

by choosing \=b to be larger than 2. Therefore ( \.x)2/2+mx2/2 is not the best Lyapunov558

function to study the rate of decay of f(x) in the damped harmonic oscillator. This559

is in agreement with Theorem 4.6 below.560

Reference [22] gives a Lyapunov function for (1.5) or (4.1) that includes a cross-561

term vT\nabla f(x) and does not require the strong convexity of f . However, the presence562

of the gradient in the Lyapunov function makes it necessary that f be demanded to563

be twice-differentiable (the Hessian of f appears when differentiating the Lyapunov564

function with respect to t).565

4.2. Optimality. Steps 2 and 4 in the construction above imply a degree of566

arbitrariness and it is of interest to ask whether there are alternative choices of \lambda 567

and \widehat \=P \succeq 0 that, while ensuring \widehat \=T \preceq 0, furnish better decay rates. We conclude this568

section by proving that this is not the case.569

In the theorem below we use the notation \=r \star and \widehat \=P  \star 
for the values obtained,570

for given \=b > 0, in the construction leading to Theorem 4.3. (These are functions571

\=r \star = \=r \star (b) and \widehat \=P  \star 
= \widehat \=P  \star 

(b), but the dependence on \=b will be dropped from the572

notation.) In particular, \=p \star 22 = m\=r \star 2/2 and \=\Xi (\=r \star ,\=b) = 0. The symbols \lambda and \widehat \=P573

are used in the theorem to refer to an arbitrary real number and an arbitrary 2 \times 2574

symmetric matrix. Finally, we set \lambda  \star =
\surd 
m \=r \star and \lambda =

\surd 
m \=r.575

Theorem 4.6. With the notation as described, for each fixed \=b > 0, \lambda  \star = max \lambda ,576

subject to the constraints \widehat \=T (\lambda , \widehat \=P ) \preceq 0, \widehat \=P \succeq 0.577

Proof. Since we are solving a convex optimization problem, it is sufficient to show578

that (\lambda  \star , \widehat \=P  \star 
) provides a local maximum.579

We observed in step 1 above that \widehat \=T \preceq 0 determines the values of \=p11, \=p12 as in580

(4.4). This leaves us with \lambda (or equivalently \=r) and \=p22 as decision variables. For581

simplicity we hereafter omit the subindices in \=p22.582

The constraint \widehat \=P \succeq 0 implies det(\widehat \=P ) \geq 0 or (after using the values of \=p11, \=p12)583

\=p \geq (m/2)\=r2. The constraint \widehat \=T \preceq 0 implies \=t11\=t22  - \=t212 \geq 0. We use (4.4) to write584

\=t11\=t22  - \=t212 \geq 0 as a function \Delta (\=r, \=p); tedious algebra leads to the expression:585
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\Delta (\=r, \=p) =  - m
3

2
\=r4 +

\=bm3

2
\=r3 +

\biggl( 
m2\=p

2
 - 3m3 +\=b2m3

4

\biggr) 
\=r2 +

bm3

2
\=r  - m\=p2.586

We will be done if we prove that the pair (\=r \star , \=p \star ) is a local maximum for the587

problem588

max \=r subject to \=p - m\=r2/2 \geq 0, \Delta (\=r, \=p) \geq 0.589

At the point (\=r \star , \=p \star ) both constraints are active (in fact they were chosen to be590

so at steps 2 and 4). If we define the Lagrangian591

\scrL (\=r, \=p) = \=r + \zeta 1 (\=p - m\=r2/2) + \zeta 2 \Delta (\=r, \=p),592

where \zeta 1, \zeta 2 are the multipliers, the proof concludes by showing that the gradient of593

\scrL at (\=r \star , \=p \star ) may be annihilated for a suitable choice of positive multipliers.594

We impose the requirements595

0 =
\partial 

\partial \=r
\scrL 
\bigm| \bigm| \bigm| \bigm|  \star = 1 - \zeta 1m\=r \star + \zeta 2

\partial 

\partial \=r
\Delta 

\bigm| \bigm| \bigm| \bigm|  \star 596

(|  \star means evaluation at at (\=r \star , \=p \star )) and597

0 =
\partial 

\partial \=p
\scrL 
\bigm| \bigm| \bigm| \bigm|  \star = \zeta 1 + \zeta 2

\biggl( 
m2

2
\=r \star 2  - 2m\=p \star 

\biggr) 
= \zeta 1  - \zeta 2

m2

2
\=r \star 2,598

(which implies that \zeta 1 and \zeta 2 have the same sign) and eliminate \zeta 1 to get599

1 + \zeta 2

\biggl( 
m3

2
\=r \star 3 +

\partial 

\partial \=r
\Delta 

\bigm| \bigm| \bigm| \bigm|  \star \biggr) = 0.600

In this way we are left with the task of proving that601

m3

2
\=r \star 3 +

\partial 

\partial \=r
\Delta 

\bigm| \bigm| \bigm| \bigm|  \star < 0,602

or, after using the expression for \Delta and some simplification,603

 - 2\=r \star 3 + 3\=b\=r \star 2  - (3 + \=b2)\=r \star +\=b < 0.604

Let us denote by \Lambda = \Lambda (\=r \star ,\=b) the left-hand side of this inequality. When \=b = 2 and605

\=r \star = 1, we have \Lambda =  - 1. On the other hand, we know that606

\=\Xi = \=b2\=r  - 2(\=r \star 2 + 1)\=b+ \=r \star 3 + 3\=r \star = 0,607

and this relation makes it impossible for \Lambda to change sign as \=b > 0 and the corre-608

sponding \=r \star (b) \in (0, 1] vary. In fact, if \Lambda were to vanish, we would have609

\Lambda + \=\Xi =
\bigl( 
\=r \star 2  - 1

\bigr) 
\=b - \=r \star 3 = 0,610

something that cannot happen because \=r \star < 1 for \=b \not = 2.611
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5. Connecting the differential equations with optimization algorithms.612

The second-order differential equation (1.5) provides a limit for the algorithm (3.1)613

when \beta changes smoothly with h =
\surd 
\alpha in such a way that \beta h = 1  - \=b

\surd 
mh + o(h)614

as h \downarrow 0. In this section we study this limit when \=b > 0. As in (3.8) write \beta h =615

1  - bh\delta = 1  - bh
\surd 
mh. Clearly, bh \rightarrow \=b and, in addition, for h sufficiently small616

bh \in (bhmin, b
h
max) (see (3.14)). The application of Theorem 3.3 then gives a rate617

\rho 2h = 1  - rh\delta = 1  - rh
\surd 
mh. As noted before, the polynomial \=\Xi in (4.6) is the limit618

of \Xi \delta in (3.12) as h (or \delta ) approaches zero, and, accordingly, rh \rightarrow \=r, where \=r solves619

\=\Xi (\=r,\=b) = 0. Then Theorem 3.3 guarantees that, over one step k \mapsto \rightarrow k + 1 of the620

algorithm, f(xk) - f(x \star ) decays by a factor \rho 2h = 1 - 
\surd 
m\=rh+ o(h). Over k steps the621

decay factor will be (1 - 
\surd 
m\=rh+o(h))k, a quantity that in the limit kh\rightarrow t converges622

to exp( - 
\surd 
m\=rt) = exp( - \lambda t). This is exactly the decay guaranteed by Theorem 4.3623

for f(x(t)) - f(x \star ) over an interval of length t.624

In addition, the matrices Ph in the discrete Lyapunov function converge to the625

matrix \widehat P in the differential equation, because from the expression for the entries in626

(3.11) and (4.5)627

ph11 \rightarrow \=p11, ph12 \rightarrow \=p12, ph22 \rightarrow \=p22.628

The above discussion and standard results on the convergence of discretizations629

of ODEs imply the following result.630

Theorem 5.1. Fix the parameter \=b > 0 and the initial conditions x(0), \.x(0) for631

the differential equation (1.5). For small h > 0, consider the optimization algorithm632

(3.1) with parameters \alpha = h2 and \beta = \beta h = 1 - \=b
\surd 
mh+o(h). Assume that the initial633

points x - 1, x0 are such that, as h \downarrow 0, x0 \rightarrow x(0) and (1/h)(x0 - x - 1) \rightarrow \.x(0). Then,634

in the limit kh\rightarrow t,635

1. xk \rightarrow x(t) and (1/h)(xk+1  - xk) \rightarrow \.x(t).636

2. The discrete Lyapunov function in (3.16) converges to the Lyapunov function637

in (4.7).638

Remark 5.2. As a consequence of this theorem, the Lyapunov function of the639

differential equation could have been derived alternatively by first finding the Lya-640

punov function for the discrete optimization algorithm and then taking limits. In641

our research we first investigated the discrete case and then studied the differential642

equations; in hindsight we saw it would have been easier to first deal with the dif-643

ferential equation and then carry out the analysis of the algorithm by mimicking the644

treatment of the continuous case. References [28, 29, 14] find Lyapunov functions for645

different optimization algorithms by first constructing Lyapunov functions for suit-646

able so-called high-resolution differential equations. In our context, this would mean647

perturbing (4.1) with suitable h-dependent terms so as to obtain an (h-dependent)648

differential equation for which the algorithm has a high order of consistency. The idea649

behind those high-resolution equations is very old in the numerical analysis of ordi-650

nary and partial differential equations, where they are known as modified equations;651

see, e.g., [11] or [23, Chapter 10] and, for the stochastic case, [34].652

6. Heavy ball and other methods. The paper [30] has given rise to a number653

of contributions that aim to understand the behavior of optimization methods by654

seeing them as discretizations of differential equations. However it is well known that655

the long-time properties of a differential equation are not automatically inherited by656

their discretizations, regardless of the value of the step-size chosen. A very simple657

example is provided by the application of Euler's rule to the harmonic oscillator:658

For all step-sizes the discrete trajectories grow while the continuous solutions stay659
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bounded. A more relevant example in an optimization context may be seen in [25].660

On the other hand properties of the discretizations may often be extrapolated to the661

continuous limit; a general discussion of these points in different settings may be seen662

in [1].663

In the setting of the preceding section, it is not true that discretizing a dissipative664

differential equation with a known a Lyapunov function will always yield an optimiza-665

tion algorithm with a ``suitable"" Lyapunov function. We now illustrate this fact by666

means of the heavy ball algorithm obtained by choosing \gamma = 0 and \beta \not = 0 in (2.2).667

We proceed as in section 3: rewrite the algorithm in terms of dk and xk and668

then cast it in the general format (2.1). We will presently prove that a discrete669

Lyapunov with properties similar to the Lyapunov function for Nesterov's method in670

Theorem 3.3 does not exist. We argue by contradiction. With the notation as in671

section 3, we consider672

\bullet pij = m\phi ij(\beta , \delta ), (i, j) = (1, 1), (1, 2), (2, 2) such that \widehat P \succeq 0,673

\bullet r = \psi (\beta , \delta ) > 0,674

\bullet c > 0675

and suppose that the corresponding T (\lambda , P ) is \preceq 0 for each \delta < c/
\surd 
\kappa . As in Re-676

mark 3.4 to ensure equivariance with respect to changes of scale, the number c and677

functions \phi ij and \psi are assumed to be independent of the constants m and L associ-678

ated with f and the values of the parameters \alpha and \beta in the heavy ball algorithm.679

For future reference, the element t11 is found to have the expression680

t11 = (\beta 2  - \rho 2)p11 + 2\delta \beta 2p12 + \delta 2\beta 2p22 + \delta 2(L - m)\beta 2/2.681

This has to be \leq 0 for \delta < c/
\surd 
\kappa .682

Next, as in the preceding section, we assume that \beta changes smoothly with h in683

such a way that, for some \=b > 0, \beta = \beta h = 1 - \=b\delta + o(h) = 1 - \=b
\surd 
mh+ o(h). Clearly684

the algorithm is then a consistent discretization of the differential equation (1.5), and685

we assume that rh, p
h
ij converge to their differential equation counterparts \=r and \=pij .

2
686

In this situation687

0 \geq \delta  - 1th11 =
\beta 2
h  - \rho 2h
\delta 

ph11 + 2\beta 2
hp

h
12 + \delta \beta 2

hp
h
22 +

c

2

\sqrt{} 
m

L
(L - m)\beta 2

h,688

and, taking limits,689

(6.1) 0 \geq  - 2
\=b - \lambda \surd 
m

\=p11 + 2\=p12 +
c

2

\sqrt{} 
m

L
(L - m).690

This cannot happen because L may be arbitrarily large.691

Remark 6.1. The heavy ball algorithm is a ``more natural"" discretization of (1.5)692

than Nesterov's, in that, as conventional linear multistep methods, it does not evaluate693

\nabla f at a linear combination of xk, xk - 1 (cf. Remark 4.1).694

Remark 6.2. The contradiction in (6.1) arises because we insisted on T being \preceq 0695

for ``large"" nondimensional stepsizes \delta =
\surd 
mh < c/

\surd 
\kappa . For optimization algorithms696

that, in the limit h \downarrow 0, approximate a differential equation with decay exp( - \lambda h) =697

exp( - \=r\delta ) in a time-interval of length h, such large stepsizes seem to be necessary to698

achieve accelerated rates 1 - \scrO (
\surd 
\kappa ) rather than rates 1 - \scrO (\kappa ).699

2This hypothesis is not necessarily in the argument that follows. It is enough to suppose that
rh, p

h
ij have finite limits.
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The reference [28] constructs a Lyapunov function for the heavy ball method, but700

it only operates for \delta = \scrO (1/\kappa ) and, while useful in showing convergence, does not701

provide acceleration. For an additional convergence proof of the heavy ball algorithm702

see [10]; again this reference does not prove acceleration.703

The three-parameter family of methods (2.2) contains algorithms, like Nesterov's,704

that ``inherit"" the ODE Lyapunov function for stepsizes \delta < c/
\surd 
\kappa and algorithms,705

like the heavy ball, that do not. In fact the situation for the heavy ball is arguably706

the rule rather than the exception. For (2.2),707

t11 = (\beta 2  - \rho 2)p11 + 2\delta \beta 2p12 + \delta 2\beta 2p22 + \delta 2(L - m)(\beta  - \gamma )2/2 - m\gamma 2\delta 2/2,708

where we observe the unwelcome presence of the factor L  - m that created the dif-709

ficulties in the analysis of the heavy ball algorithm. If we look at a situation where710

\beta changes with h as above and in addition \gamma is also allowed to change with h and711

approaches a limit, a Lyapunov function that has the form envisaged and works for712

\delta < c/
\surd 
\kappa may only exist if \beta h  - \gamma h vanishes (at least in the limit h \downarrow 0) to offset the713

factor, i.e., if the algorithm is not far away from Nesterov's.714

Appendix. In Theorem 4.6 we proved that, for each \=b > 0, the rate of decay715

\lambda provided by Theorem 4.3 is the best one may obtain by using Theorem 2.3 if one716

chooses \sigma = 0. In this appendix we investigate whether \lambda may be improved by a717

suitable choice of \sigma > 0. Since for \sigma \not = 0, the matrix \=M (3) that contains the constant718

L contributes to T , the following results require that f , in addition to beingm-strongly719

convex (as in Theorem 4.3) is L-smooth; i.e., they hold for f \in \scrF m,L.720

When \sigma \not = 0 the expressions for the tij in section 4 have to be replaced by721

\=t11 =  - 2\=b\=p11 + 2
\surd 
m\=p12 + \lambda \=p11,722

\=t12 =  - \=b
\surd 
m\=p12 +

\surd 
m\=p22 + \lambda \=p12,723

\=t13 =  - (1/
\surd 
m)\=p11 +

\surd 
m/2,724

\=t22 = \lambda \=p22  - (m/2)\lambda  - \sigma mL/(m+ L),725

\=t23 =  - (1/
\surd 
m)\=p12 + \lambda /2 + \sigma /2,726

\=t33 =  - \sigma /(m+ L).727
728

As in section 4, we set \lambda =
\surd 
m \=r and, in addition, \sigma = m\=s (the variable \=s is, as \=r,729

nondimensional). We shall show that it is possible, for given m and L, to find values730

of the six parameters \=p11, \=p12, \=p22, \=b, \=s, \=r, in such a way that the constraints \widehat \=T \preceq 0,731 \widehat \=P \succeq 0, \=s \geq 0 are satisfied and, at the same time, \=r > 1, so that by using the matrix732

\=M (3) it is possible to improve on the best value \=r = 1 (associated with \=b = 2 and733

leading to \lambda =
\surd 
m) that may be achieved in Theorem 4.3.734

For given m and L, we determine the values of the six parameters as follows.735

First step. We impose \=t22 = 0, a requirement that leads to the relation736

\=p22
m

=
1

2
+

\=s

\=r

\kappa 

\kappa + 1
.737

Second step. We impose \=t23 = 0 and get738

\=p12
m

=
\=r + \=s

2
.739
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Third step. We require det(\widehat \=P ) = 0. Therefore740

\=p11
m

=
(\=p12/m)2

\=p22/m
.741

Note that for \=r, \=s \geq 0 we have \=p22 > 0, and thus the third step guarantees that \widehat \=P \succeq 0.742

Fourth step. We next demand that \=t12 = 0 and obtain743

\=b = \=r +
\=p22/m

\=p12/m
.744

The four preceding displayed formulas allow us to express the parameters \=p12, \=p22,745

and \=b as known functions of \=s and \=r.746

Fifth step. At this stage, we have ensublue that \=t12, \=t22, \=t23 vanish. As a result,747

the condition \widehat \=T \preceq 0 is equivalent to \widehat \=T 13
\preceq 0 where \widehat \=T 13

is the 2\times 2 matrix obtained748

by suppressing from \widehat \=T its second row and column. Furthermore \=t33 < 0 for \=s > 0 and749

then we shall have \widehat \=T 13
\preceq 0 if we impose that det(\widehat \=T 13

) = 0, or750

\=t11\=t33  - \=t213 = 0.751

By using the displayed formulas above, the last equation becomes a relation F (\=r, \=s) =752

0, between \=r and \=s, with753

F =
\=r2\=s(\=r + \=s)2

2(\kappa + 1)\=r + 4\kappa \=s
 - 1

4

\biggl( 
(\kappa + 1)\=r(\=r + \=s)2

(\kappa + 1)\=r + 2\kappa \=s
 - 1

\biggr) 2

.754

We next show that the rational curve F (\=r, \=s) = 0 in the (\=r, \=s) real plane has points755

with \=s > 0 and \=r > 1.756

It is easily checked that the point \=r = 1, \=s = 0 lies on the curve F = 0 and has757

\=b = 0. This could have been anticipated because, if \=s = 0 and \=b = 2, the construction758

in this appendix just reproduces the construction in section 4, which yields \=r = 1.759

By removing the denominator in the rational function F so as to have a polynomial760

equation for the curve and looking at the Newton diagram at \=r = 1, \=s = 0, one sees761

that in the neighborhood of this point the curve consists of a single branch that may762

be parameterized by \=r. A Taylor expansion reveals that763

\=s = 2(\kappa + 1)(\=r  - 1)2 +\scrO ((\=r  - 1)3).764

In this way, choosing a sufficiently small value of the parameter \=s > 0, there are two765

possible values of the rate \=r766

\=r \approx 1\pm 
\sqrt{} 

\=s

2(\kappa + 1)
,767

one of which is > 1. In conclusion we have proved analytically that the introduction768

of \sigma and \=M (3) in T makes it possible to achieve rates \=r > 1 (or \lambda >
\surd 
m).769

We next determined the value of \=s that leads to the largest possible \=r on the curve774

F = 0. In view of the involved expression of F , we proceeded numerically and found775

this largest value by continuation along the curve, starting from \=r = 1, \=s = 0. The776

results, for different values of \kappa , are given in Table 6.1. For the small condition number777

\kappa = 10, the table shows that it is possible to achieve a decay \approx exp( - 1.086
\surd 
mt) by778

fixing the dissipation coefficient at the value \=b \approx 2.35 rather than at \=b = 2 as in779
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Table 6.1770

Value of the dissipation parameter \=b in the differential equation that leads to the best rate of
decay \=r for different choices of the condition number \kappa . The table also gives the values of the

parameters to construct the matrices \widehat \=T \preceq 0, \widehat \=P \succeq 0.

771

772

773

\kappa \=b - 2 \=r  - 1 \=s \=p11
m

 - 1
2

\=p12
m

 - 1
2

\=p22
m

 - 1
2

101 3.5(-1) 8.6(-2) 4.1(-1) 1.6(-1) 2.5(-1) 3.4(-1)
102 2.2(-1) 1.8(-2) 1.3(-1) 2.7(-2) 7.6(-2) 1.3(-1)
103 1.0(-1) 3.9(-3) 5.5(-2) 5.2(-3) 2.9(-2) 5.5(-2)
104 4.7(-2) 8.2(-4) 2.4(-2) 1.1(-3) 1.3(-2) 2.4(-2)
105 2.1(-2) 1.8(-4) 1.1(-2) 2.3(-4) 5.5(-3) 1.1(-2)
106 9.9(-3) 3.8(-5) 5.0(-3) 5.0(-5) 2.5(-3) 5.0(-3)
107 4.6(-3) 8.1(-6) 2.3(-3) 1.1(-5) 1.2(-3) 2.3(-3)
108 2.2(-3) 1.7(-6) 1.1(-3) 2.3(-6) 5.4(-4) 1.1(-3)
109 9.9(-4) 3.8(-7) 5.0(-4) 5.0(-7) 2.5(-4) 5.0(-4)

Polyak's (1.4)---this is a marginal improvement on the best decay exp( - 
\surd 
mt) that780

one may insure without using \=M (3). In addition the improvement quickly decreases as781

the condition number grows: for \kappa = 103 the decay is exp( - 1.0039
\surd 
mt). In fact, we782

observe in the table that, as \kappa \uparrow \infty , \=r \approx 1+0.38\kappa  - 2/3. Of course as \kappa increases, \=r and783

\=b approach the values 1 and 2 that correspond to the situation studied in section 4,784

where f is not assumed to possess Lipschitz gradients. A similar convergence obtains785

for the matrix \widehat \=P \succeq 0. Also note that \=s \approx 0.50\kappa  - 1/3: As the condition number786

increases the parameter \sigma =
\surd 
m\=s that multiplies \=M (3) decreases, as it may have787

been expected.788

The results in the appendix and the connection between discrete and continuous789

Lyapunov functions strongly suggest that there would have been no substantial gain790

in the rate \rho 2 found in section 3 if we had allowed \ell \not = 0 there.791
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