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Abstract In the first part of the present work we consider periodically or quasiperi-
odically forced systems of the form (d/dt)x = ε f (x, tω), where ε � 1, ω ∈ Rd

is a nonresonant vector of frequencies and f (x,θ) is 2π-periodic in each of the
d components of θ (i.e. θ ∈ Td). We describe in detail a technique for explicitly
finding a change of variables x = u(X ,θ ;ε) and an (autonomous) averaged system
(d/dt)X = εF(X ;ε) so that, formally, the solutions of the given system may be ex-
pressed in terms of the solutions of the averaged system by means of the relation
x(t)= u(X(t), tω;ε). Here u and F are found as series whose terms consist of vector-
valued maps weighted by suitable scalar coefficients. The maps are easily written
down by combining the Fourier coefficients of f and the coefficients are found with
the help of simple recursions. Furthermore these coefficients are universal in the
sense that they do not depend on the particular f under consideration. In the sec-
ond part of the contribution, we study problems of the form (d/dt)x = g(x)+ f (x),
where one knows how to integrate the ‘unperturbed’ problem (d/dt)x = g(x) and
f is a perturbation satisfying appropriate hypotheses. It is shown how to explic-
itly rewrite the system in the ‘normal form’ (d/dt)x = ḡ(x) + f̄ (x), where ḡ and
f̄ are commuting vector fields and the flow of (d/dt)x = ḡ(x) is conjugate to that
of the unperturbed (d/dt)x = g(x). In Hamiltonian problems the normal form di-
rectly leads to the explicit construction of formal invariants of motion. Again, ḡ, f̄
and the invariants are written as series consisting of known vector-valued maps and
universal scalar coefficients that may be found recursively.
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1 Introduction

In this article we illustrate how to use word series to manipulate systems of dif-
ferential equations. Specifically we deal with the questions of high-order averaging
of periodically or quasiperiodically forced systems and reduction to normal form
of perturbations of integrable systems. The manipulations require operations with
complex numbers rather than with vector fields.

Word series are patterned after B-series [10], a well-known tool to analyse nu-
merical integrators (see [18] for a summary of the uses of formal series in the numer-
ical analysis of differential equations). While B-series are parameterized by rooted
trees, word series [14] possess one term for each word w that may be composed
with the letters of a suitable alphabet A [15]. Each term δw fw of a word series is
the product of a scalar coefficient δw and a vector field fw. The vector fields fw may
be immediately constructed and depend on the differential system under consider-
ation. The coefficients δw are universal, in the sense that they do not change with
the particular differential system being studied. Series of differential operators pa-
rameterized by words (Chen-Fliess series) are very common, e.g. in control theory
[9] and dynamical systems [7] and have also been used in numerical analysis (see
[11] among others). As discussed in [14], word series are mathematically equiva-
lent to Chen-Fliess series, but being series of functions they are handled in a way
very similar to the way numerical analysts handle B-series. In the present work, as
in [3], [4], [5], [13], the formal series techniques originally introduced to analyze
numerical integrators are applied to the study of dynamical systems.

The structure of this article is as follows. The use of word series is briefly re-
viewed in Section 2. Section 3 addresses the problem of averaging periodically or
quasiperiodically forced systems. We find a change of variables that formally re-
duces the system to time-independent (averaged) form. Both the change of variables
and the averaged system are expressed by means of word series with universal coef-
ficients that may be computed by means of simple recursions. The averaged system
obtained in this way has favourable geometric properties. It is equivariant with re-
spect to arbitrary changes of variables, i.e., the operations of changing variables and
averaging commute. In addition averaging a Hamiltonian/divergence free/. . . system
results in a system that is also Hamiltonian/divergence free/. . . Sections 4 and 5 are
devoted to the reduction to normal form of general classes of perturbed problems.

Let us discuss the relation between this article and our earlier contributions. The
problems envisaged here have been considered in [4]. However the treatment in [4]
makes heavy use of B-series; word series results are derived, by means of the Hopf
algebra techniques of [11], as a byproduct of B-series results. Here the circuitous
derivations of [4] are avoided by working throughout with word series, without any
reference to B-series. One of our aims when writing this article has been to pro-
vide potential users of word series techniques in application problems with a more
focused, brief and clear guide than [4] provides. In addition, the class of perturbed
problems considered in Sections 4 and 5 below is much wider than that considered in
[4]. In [13] we have recently addressed the reduction of perturbed problems to nor-
mal forms. The treatment in [13] is based on the application of successive changes
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of variables; here the normal form is directly obtained in the originally given vari-
ables. An application of word series techniques to stochastic problems is provided
in [1]. The article [12] presents an application of the high-order averaging described
here to a problem arising in vibrational resonance.

All the developments in the article use formal series of smooth maps. To stream-
line the presentation the words ‘formal’ and ‘smooth’ are often omitted. By truncat-
ing the formal expansions obtained in this article it is possible to obtain nonformal
results, as in [5] or [6], but we shall not be concerned with such a task.

2 Word series

We begin by presenting the most important rules for handling word series. For
proofs and additional properties of word series, the reader is referred to [14].

2.1 Defining word series

Assume that A is a finite or infinite countable set of indices (the alphabet) and that
for each element (letter) ` ∈ A, f`(y) is a map f` : Cd → Cd . Associated with each
nonempty word `1 · · ·`n constructed with letters from the alphabet, there is a word
basis function. These are defined recursively by

f`1···`n(y) = f ′`2···`n
(y) f`1(y), n > 1,

where f ′`2···`n
(y) is the Jacobian matrix of f`2···`n(y). For the empty word, the corre-

sponding basis function is the identity map y 7→ y. The set of all words (including
the empty word /0) will be denoted by W and the symbol CW will be used to refer
to the vector space of all mappings δ : W → C. For δ ∈ CW and w ∈ W , δw is
the complex number that δ associates with w. To each δ ∈ CW there corresponds a
word series (relative to the mappings f`); this is the formal series

Wδ (y) = ∑
δ∈W

δw fw(y).

The numbers δw, w ∈W , are the coefficients of the series.
Let us present an example. If for each letter `∈A, λ`(t) is a scalar-valued function

of the real variable t, the solution of initial value problem

d
dt

y = ∑
`∈A

λ`(t) f`(y), y(t0) = y0 ∈ CD (1)

has a formal expansion in terms of word series given by
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y(t) =Wα(t;t0)(y0), (2)

where, for each t, t0, the coefficients αw(t; t0) are the iterated integrals

α`1···`n(t; t0) =
∫ t

t0
dtn λ`n(tn)

∫ tn

t0
dtn−1 λ`n−1(tn−1) · · ·

∫ t2

t0
dt1 λ`1(t1). (3)

This series representation, whose standard derivation may be seen in e.g. [5] or [14],
is essentially the Chen series used in control theory. (An alternative derivation is pre-
sented below.) Of much importance in what follows is the fact that the coefficients
αw(t; t0) depend only on the λ`(t) in (1) and do not change with the vector fields
f`(y); on the contrary, the word basis functions fw(y) depend on the f`(y) and do
not change with the λ`(t).

2.2 The convolution product

The convolution product δ ?δ ′ ∈ CW of two elements δ ,δ ′ ∈ CW is defined by

(δ ?δ
′)`1···`n = δ /0δ

′
`1···`n

+
n−1

∑
j=1

δ`1···` j δ
′
` j+1···`n

+δ`1···`nδ
′
/0, n≥ 1

((δ ?δ ′) /0 = δ /0δ ′/0). The operation ? is not commutative, but it is associative and has
a unit (the element 11 ∈ CW with 11 /0 = 1 and 11 w = 0 for w 6= /0).

If w and w′ are words, their shuffle product will be denoted by w�w′; this is the
formal sum of all words that may be formed by interleaving the letters of w with
those of w′ without altering the order in which those letters appear within w or w′

(e.g., `m�n = `mn+ `nm+n`m). The set G consists of those γ ∈ CW that satisfy
the following shuffle relations: γ /0 = 1 and, for each w,w′ ∈W ,

γwγw′ =
N

∑
j=1

γw j if w�w′ =
N

∑
j=1

w j.

This set is a group for the operation ?. For each t and t0 the element α(t; t0) ∈ CW

in (3) belongs to the group G .
For γ ∈ G , δ ∈ CW ,

Wδ

(
Wγ(x)

)
=Wγ?δ (x). (4)

In words: the substitution of Wγ(x) in an arbitrary word series Wδ (x) gives rise to a
new word series whose coefficients are given by the convolution product γ ? δ . We
emphasize that this result does not hold for arbitrary γ ∈ CW , the hypothesis γ ∈ G
is essential.

Another property of the word series Wγ(y) with γ ∈ G is its equivariance [18]
with respect to arbitrary changes of variables y = C(ȳ). If f̄`(ȳ) is the result (pull-
back) of changing variables in the field f`(y), i.e.,



Averaging and computing normal forms with word series algorithms 5

f̄`(ȳ) =C′(ȳ)−1 f`(C(ȳ)),

and W̄γ(ȳ) denotes the word series with coefficients γw constructed from the fields
f̄`(ȳ), then

C
(
W̄γ(ȳ)

)
=Wγ(C(ȳ)).

We denote by g the vector subspace of CW consisting of those β that satisfy the
following shuffle relations: β /0 = 0 and for each pair of nonempty words w,w′,

N

∑
j=1

βw j = 0 if w�w′ =
N

∑
j=1

w j.

It is easily proved that the elements β ∈ g are precisely the velocities (d/dt)γ(0)
at t = 0 of the smooth curves t 7→ γ(t) ∈ G with γ(0) = 11, i.e., if G is formally
viewed as a Lie group, then g is the corresponding Lie algebra. In fact, G and g are
the group of characters and the Lie algebra of infinitesimal characters of the shuffle
Hopf algebra (see [14] for details).

2.3 Universal formulations

Let us consider once more the differential system (1). Define, for fixed t, β (t)∈ g⊂
CW by β`(t) = λ`(t), for each ` ∈ A, and βw(t) = 0 if the word w is empty or has
≥ 2 letters. Then the right hand-side of (1) is simply the word series Wβ (t)(y). We
look for the solution y(t) in the word series form (2), with undetermined coefficients
αw(t; t0) that have to be determined and have to belong to the group G . By using the
formula (4), we may write

∂

∂ t
Wα(t;t0)(y0) =Wβ (t)

(
Wα(t;t0)(y0)

)
=Wα(t;t0)?β (t)(y0),

Wα(t0,t0)(y0) = y0 =W11 (y0),

and these equations will be satisfied if

∂

∂ t
α(t; t0) = α(t; t0)?β (t), α(t0, t0) = 11 . (5)

This is an initial value problem for the curve t 7→ α(t; t0) in the group G (t0 is
a parameter) and may be uniquely solved by successively determining the values
αw(t; t0) for words of increasing length. In fact, for the empty word, the requirement
α(t; t0) ∈ G implies α /0(t; t0) = 1. For words with one letter ` ∈ A, using β /0(t) = 0
and the definition of the convolution product ?, we have the conditions

∂

∂ t
α`(t; t0) = β`(t)α /0(t; t0) = λ`(t), α`(t0, t0) = 0,
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that lead to
α`(t; t0) =

∫ t

t0
dt1λ`(t1).

This procedure may be continued (see [14] for details) to determine uniquely
αw(t; t0) for all words w ∈W . In addition, for each t and t0, the element α(t; t0) ∈
CW found in this way belongs to G , as it was desired. Of course this element coin-
cides with that defined in (3).

In going from (1) to (5) we move from an initial value problem for the vector-
valued function y(t) to a seemingly more complicated initial value problem for the
function α(t) with values in G . However the abstract problem in G is linear and eas-
ily solvable. Of equal importance to us is the fact that (5) is universal in the sense
that, once it has been integrated, one readily writes, by changing the word basis
functions, the solution (2) of each problem obtained by replacing in (1) the map-
pings f`(y) by other choices. In particular the universal character of the formulation
implies that (5) is independent of the dimension D of (1).

3 Averaging of quasiperiodically forced systems

In this section, we consider the oscillatory initial value problem

d
dt

y = ε f (y, tω), y(t0) = y0 ∈ CD, (6)

in a long interval t0 ≤ t ≤ t0+L/ε . The vector field f (y,θ) is 2π-periodic in each of
the scalar components (angles) θ1,. . . , θd of θ (i.e., θ ∈Td) and ω is a constant vec-
tor of frequencies ω1,. . . ,ωd . These are assumed to be nonresonant i.e. k ·ω 6= 0 for
each multiindex k ∈ Zd , k 6= 0; resonant problems may be rewritten in nonresonant
form by reducing the number of frequencies. Thus the forcing in (6) is quasiperi-
odic if d > 1 and periodic if d = 1. Our aim is to find a time-dependent change
of variables y =U(Y, tω;ε) that formally brings the differential system (6) into au-
tonomous form [16]. Our approach is based on a universal formulation, analogous
to the one we used above to deal with (1).

3.1 The solution of the oscillatory problem

After Fourier expanding

f (y,θ) = ∑
k∈Zd

exp(ik ·θ) f̂k(y),

the problem (6) becomes a particular case of (1); each letter ` is a multiindex k∈Zd ,
f`(y) = fk(y) = ε f̂k(y), and
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λ`(t) = exp(ik ·ωt). (7)

Each word basis function fw(y) contains the factor εn if w has length n. The first
few coefficients (iterated integrals) αw(t; t0) in (3) are easily computed; here are a
few instances

α /0(t; t0) = 1,
α0(t; t0) = t− t0,

αk(t; t0) =
i
(

exp(ik ·ωt0)− exp(ik ·ωt)
)

k ·ω
, k 6= 0,

α00(t; t0) =
(t− t0)2

2
,

αkl(t; t0) =
i(t− t0)

k ·ω
+

1− exp(ik ·ωt)exp(−ik ·ωt0)
(k ·ω)2 , k 6= 0, l =−k. (8)

Note the oscillatory components present in some of the coefficients.
The following result shows how the coefficients αw(t; t0) can be determined re-

cursively without explicitly carrying out the integrations in (3).

Proposition 1. The coefficients (3) with the λ`(t) given by (7) are uniquely deter-
mined by the recursive formulas

αk(t; t0) =
i
(

exp(ik ·ωt0)− exp(ik ·ωt)
)

k ·ω
,

α0r(t; t0) = (t− t0)r/r!,

α0rk(t; t0) =
i

k ·ω
(α0r−1k(t; t0)−α0r(t; t0)eik·ωt),

αkl1···ls(t; t0) =
i

k ·ω
(eik·ωt0αl1···ls(t; t0)−α(k+l1)l2···ls(t; t0)),

α0rkl1···ls(t; t0) =
i

k ·ω
(α0r−1kl1···ls(t; t0)−α0r(k+l1)l2···ls(t; t0)),

(9)

where r ≥ 1, k ∈ Zd\{0}, and l1, . . . , ls ∈ Zd .

Proof. It is useful to point out that the formulas (9) are found by evaluating the
innermost integral in (3). To prove the proposition we show that the coefficients
αk1···kn(t; t0) uniquely determined by (9) coincide with those in (3). The latter sat-
isfy, for all words w = k1 · · ·kn,

d
dt

αk1···kn(t; t0) = exp(ikn ·ωt)αk1···kn−1(t; t0), αk1···kn(t0; t0) = 0. (10)

We prove by induction on n that the coefficients in (9) also satisfy (10). One can
trivially check the case n = 1. For each word w = k1 · · ·kn with n > 1, one arrives
at (10) by differentiating with respect to t both sides of the equality in (9) that
determines αk1···kn(t; t0) and applying the induction hypothesis. ut
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3.2 The transport equation

It follows from Proposition 1 that each αw(t; t0) is of the form

αw(t; t0) = Γw(t− t0,ωt;ωt0), (11)

where Γw(τ,θ ;θ0) is a suitable scalar-valued function, which is, as a function of
τ ∈ R, a polynomial and as a function of θ ∈ Td (or of θ0 ∈ Td) a trigonometric
polynomial. For instance, for k 6= 0, l =−k, (see (8)),

Γkl(τ,θ ;θ0) =
iτ

k ·ω
+

1− exp(ik ·θ)exp(−ik ·θ0)

(k ·ω)2 .

Of course the Γw can be found recursively by mimicking (9). The following result
summarizes this discussion.

Theorem 1. Define, for each w ∈W , Γw(τ,θ ;θ0) by means of the following recur-
sions. Γ/0(τ,θ ;θ0) = 1, and given r ≥ 1, k ∈ Zd−{0}, and l1, . . . , ls ∈ Zd ,

Γk(τ,θ ;θ0) =
i

k ·ω
(eik·θ0 − eik·θ ),

Γ0r(τ,θ ;θ0) = τ
r/r!,

Γ0rk(τ,θ ;θ0) =
i

k ·ω
(Γ0r−1k(τ,θ ;θ0)−Γ0r(τ,θ ;θ0)eik·θ ),

Γkl1···ls(τ,θ ;θ0) =
i

k ·ω
(eik·θ0Γl1···ls(τ,θ ;θ0)−Γ(k+l1)l2···ls(τ,θ ;θ0)),

Γ0rkl1···ls(τ,θ ;θ0) =
i

k ·ω
(Γ0r−1kl1···ls(τ,θ ;θ0)−Γ0r(k+l1)l2···ls(τ,θ ;θ0)).

(12)

Then, for each w ∈W , Γw(τ,θ ;θ0) is a polynomial in τ and a trigonometric poly-
nomial in θ and in θ0 and the coefficient αw(t; t0) of the oscillatory solution satisfies
(11).

Substituting (11) in the initial value problem (5) that characterizes α(t; t0), we
find, after using the chain rule,

∂

∂τ
Γ (t− t0, tω; t0ω)+ω ·∇θ Γ (t− t0, tω; t0ω) = Γ (t− t0, tω; t0ω)?B(tω),

Γ (0, t0ω; t0ω) = 11 ,

where B(θ) ∈ g is defined as Bk(θ) = exp(ik · θ), k ∈ Zd , and Bw(θ) = 0 if the
length of w is not 1. We thus have that for all (τ,θ ;θ0) of the form (t− t0, tω; t0ω),
the following equation is valid:

∂

∂τ
Γ (τ,θ ;θ0)+ω ·∇θ Γ (τ,θ ;θ0) = Γ (τ,θ ;θ0)?B(θ), Γ (0,θ0;θ0) = 11 . (13)
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Actually, it can be proved, by mimicking the proof of Proposition 1 (with d/dt
replaced by the operator ∂/∂τ +ω ·∇θ ), that (13) holds for arbitrary (τ,θ ;θ0) ∈
R×Td×Td .

We have thus found a transport equation for Γ as a function of τ and θ (θ0 plays
the role of a parameter).1 For this partial differential equation, a standard initial
condition would prescribe the value of Γ (0,θ ;θ0) as a function of θ ∈ Td (and
of the parameter θ0); in (13), Γ (0,θ ;θ0) is only given at the single point θ = θ0.
Therefore (13) may be expected to have many solutions; only one of them is such
that, for each w∈W , Γw(τ,θ ;θ0) depends polynomially on τ as we shall establish in
Proposition 2. We shall use an auxiliary result whose simple proof will be ommitted
(cf. Lemma 2.4 in [4]):

Lemma 1. Let the vector ω ∈Rd be nonresonant. If a smooth function z : R×Td→
C satisfies

∂

∂τ
z(τ,θ)+ω ·∇θ z(τ,θ) = 0, z(0,θ0) = 0,

and z(τ,θ) is polynomial in τ , then z(τ,θ) is identically zero.

Proposition 2. The function Γ (τ,θ ;θ0) given in Theorem 1 is the unique solution
of problem (13) such that each Γw(τ,θ ;θ0)), w ∈W , is smooth in θ and polynomial
in τ .

Proof. Let δ (τ,θ ;θ0) denote the difference of two solutions of (13). Then, for each
w ∈W , δw(0,θ0;θ0) = 0 and

∂

∂τ
δw(τ,θ ;θ0)+ω ·∇θ δw(τ,θ ;θ0)

vanishes provided that the value of δ (τ,θ ;θ0) at words with less letters than w
vanish identically. Lemma 1 then allows us to prove, by induction on the number of
letters, that δw(τ,θ ;θ0)≡ 0 for all w ∈W . See [4], Section 2.4 for a similar proof.
ut

The transport problem is used in the proof of the following two theorems, which
in turn play an important role in averaging.

Theorem 2. For each τ ∈R, θ ∈Td , θ0 ∈Td , the element Γ (τ,θ ;θ0)∈CW belongs
to G .

Proof. The proof is very similar to the proof given in Section 6.1.4 of [14] for
nonautonomous ordinary linear differential equations in G . We have to prove that

∑
j

Γw j(τ,θ ;θ0) = Γw(τ,θ ;θ0)Γw′(τ,θ ;θ0) (14)

1 The presence of this parameter is linked to the fact that the transport equation is nonautonomous
in the variable θ .
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for w,w′ ∈ W , with w�w′ = ∑ j w j. This is established by induction on the sum
of the number of letters of w and w′. Proceeding as in [14], by application of the
induction hypothesis one arrives at

(
∂

∂τ
+ω ·∇θ )

(
∑

j
Γw j(τ,θ ;θ0)−Γw(τ,θ ;θ0)Γw′(τ,θ ;θ0)

)
= 0.

Since (14) holds at (τ,θ) = (0,θ0), Lemma 1 implies that it does so for each value
of (τ,θ) ∈ R×Td . ut

Theorem 3. For arbitrary τ1,τ2 ∈ R and θ0,θ1,θ2 ∈ Td ,

Γ (τ1,θ1;θ0)?Γ (τ2,θ2;θ1) = Γ (τ1 + τ2,θ2;θ0).

Proof. One can check that both γ(τ,θ)=Γ (τ1,θ1;θ0)?Γ (τ−τ1,θ ;θ1) and γ(τ,θ)=
Γ (τ,θ ;θ0) satisfy the following three conditions:

• for each w ∈W , γw(τ,θ) is smooth in θ and depends polynomially on τ ,
• γ(τ1,θ1) = Γ (τ1,θ1;θ0), and
• for all τ ∈ R and all θ ∈ Td ,

∂

∂τ
γ(τ,θ)+ω ·∇θ γ(τ,θ) = γ(τ,θ)?B(θ).

Proceeding as in the proof of Proposition 2, one concludes that there is a unique
γ(τ,θ) satisfying the three conditions above. The required result is thus obtained by
setting τ = τ1 + τ2 and θ = θ2. ut

In particular

Γ (τ1,θ0;θ0)?Γ (τ2,θ0;θ0) = Γ (τ1 + τ2,θ0;θ0),

Γ (0,θ1;θ0)?Γ (0,θ2;θ1) = Γ (0,θ2;θ0),

for arbitrary τ1,τ2 ∈ R, θ0,θ1,θ2 ∈ Td . The first of these identities shows that, as
τ varies with θ0 fixed, the elements Γ (τ,θ0;θ0) form a one-parameter subgroup
of G . The second identity is similar to what is sometimes called two-parameter
group property of the solution operator of nonautonomous differential equations.
Of course these identities reflect the fact that the transport equation is autonomous
in τ and nonautonomous in θ .

3.3 The averaged system and the change of variables

Before we average the oscillatory problem (6), we shall do so with the corresponding
universal problem (5) in G , whose solution α has been represented in (11) by means
of the auxiliary function Γ (τ,θ ;θ0). Note that the oscillatory nature of α is caused
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by the second argument in Γ (each Γw, w ∈ W , is a polynomial τ). Consider then
the G -valued function of t defined by

ᾱ(t; t0) = Γ (t− t0, t0ω; t0ω), (15)

where the second argument in Γ has been frozen at its initial value. This satisfies
ᾱ(t0; t0) = Γ (0, t0ω; t0ω), or, from Proposition 2, ᾱ(t0; t0) = 11 so that ᾱ(t; t0) co-
incides with α(t; t0) at the initial time t = t0. Furthermore, due to the trigonometric
dependence on θ , if d = 1 (periodic case), ᾱ(t; t0) = Γ (t − t0, t0ω; t0ω) coincides
with α(t; t0) =Γ (t− t0, tω; t0ω) at all times of the form t = t0+2kπ/ω , k integer. If
d > 1 (quasiperiodic case), as t varies, the point tω ∈ Td never returns to the initial
position t0ω; however it returns infinitely often to the neighborhood of t0ω . To sum
up, the nonoscillatory ᾱ(t; t0) is a good description of the long-term evolution of
α(t; t0) and, in fact, we shall presently arrange things in such a way that ᾱ(t; t0) is
the solution of the averaged version of the problem (5).

Having identified the averaged solution, let us find the averaged problem. From
Theorem 3, for each τ1 and τ2,

ᾱ(t0 + τ1 + τ2; t0) = ᾱ(t0 + τ1; t0)? ᾱ(t0 + τ2; t0)

so that, as τ varies, the elements ᾱ(t0 + τ; t0) form a (commutative) one-parameter
group ⊂ G . Therefore ᾱ(t; t0) is the solution of the autonomous problem

d
dt

ᾱ(t; t0) = ᾱ(t; t0)? β̄ (t0), ᾱ(t0; t0) = 11 , (16)

with

β̄ (t0) =
d
dt

ᾱ(t; t0)
∣∣∣∣
t=t0

. (17)

For completeness we include here a proof of this fact, which is well known in the
theory of differential equations,

d
dt ′

ᾱ(t ′; t0) =
d
dt

ᾱ(t ′+ t− t0; t0)
∣∣∣∣
t=t0

=
d
dt

ᾱ(t ′; t0)? ᾱ(t; t0)
∣∣∣∣
t=t0

= ᾱ(t ′; t0)? β̄ (t0).

Note that (17) implies that β̄ (t0) ∈ g.
After having found the averaged problem (16), we invoke once more Theorem 3

and write

α(t; t0) = Γ (t− t0, tω; t0ω)

= Γ (t− t0, t0ω; t0ω)?Γ (0, tω; t0ω)

= ᾱ(t; t0)?Γ (0, tω; t0ω).

Thus, if we define
κ(θ ; t0) = Γ (0,θ ; t0ω), (18)
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then κ depends periodically on the components of θ and κ(tω; t0) relates the aver-
aged solution ᾱ and the oscillatory solution α in the following way:

α(t; t0) = ᾱ(t; t0)?κ(tω; t0). (19)

To sum up, we have proved:

Theorem 4. For θ ∈Td define κ(θ ; t0)∈G by (18). Then the solution of the problem
(5) has the representation (19), where ᾱ(t; t0) satisfies the autonomous (averaged)
initial value problem (16)–(17) with β̄ (t0) ∈ g. Furthermore ᾱ(t; t0) may be found
by means of (15).

By inserting the word basis functions to obtain the corresponding series and re-
calling that the operation ? for the coefficients represents the composition of the
series, we conclude:

Theorem 5. With the notation of the preceding theorem, the solution of (6) may be
represented as

y(t) =Wκ(tω;t0)(Y (t))

where Y (t) =Wᾱ(t;t0)(y0) solves the autonomous (averaged) initial value problem

d
dt

Y =W
β̄ (t0)

(Y ), Y (t0) = y0.

3.4 Geometric properties

Since β̄ (t0) is in the Lie algebra g, the Dynkin–Specht–Wever theorem [8], implies
that the word series for the averaged vector field may be rewritten in terms of iterated
Lie-Jacobi brackets

W
β̄ (t0)

(y) =
∞

∑
r=1

∑
k1,...,kr∈Zd

εr

r
βk1···kr(t0) [[· · · [[ fk1 , fk2 ], fk3 ] · · · ], fkr ](y). (20)

(The bracket is defined by [ f ,g](y) = g′(x) f (y)− f ′(y)g(y).)
It follows from (20) that if all the fk belong to a given Lie subalgebra of the

Lie algebra of all vector fields (e.g., if they are all Hamiltonian or all divergence
free), then the averaged vector field will also lie in that subalgebra (i.e., will be
Hamilonian or divergence free).

Additionally, the averaging procedure described above is equivariant with re-
spect to arbitrary changes of variables: changing variables y = C(ȳ) in the oscilla-
tory problem, followed by averaging, yields the same result as changing variables in
the averaged system. This is a consequence of the equivariance of word series with
coefficients in G .
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3.5 Finding the coefficients

From (15), (respectively (18)) the quantities ᾱw(t; t0) (respectively κw(θ ; t0)), w ∈
W , may be found recursively by setting τ = t−t0, θ = θ0 = t0ω (respectively τ = 0,
θ0 = t0ω) in the formulas for Γw(τ,θ ;θ0) provided in Theorem 1. The following
recurrences for β̄ (t0) are easily found via (17).

Theorem 6. Given r ≥ 1, k ∈ Zd\{0}, and l1, . . . , ls ∈ Zd ,

β̄k(t0) = 0,
β̄0(t0) = 1,

β̄0r+1(t0) = 0,

β̄0rk(t0) =
i

k ·ω
(β̄0r−1k(t0)− β̄0r(t0)eik·ωt0),

β̄kl1···ls(t0) =
i

k ·ω
(eik·ωt0 β̄l1···ls(t0)− β̄(k+l1)l2···ls(t0)),

β̄0rkl1···ls(t0) =
i

k ·ω
(β̄0r−1kl1···ls(t0)− β̄0r(k+l1)l2···ls(t0)).

In the particular case t0 = 0, after computing the coefficients β̄w(0) for words
with ≤ 3 letters by means of the formulas in the theorem, we obtain, with the help
of the Jacobi identity for the bracket and the shuffle relations, the following explicit
formula for the averaged system:

d
dt

Y = ε f0 + ε
2F2 + ε

3F3 +O(ε4),

where

F2 = ∑
k>−k

i
k ·ω

([ fk− f−k, f0]+ [ f−k, fk]),

F3 = ∑
k6=0

1
(k ·ω)2

(
[ f0, [ f0, fk]]+ [ fk, [ fk, f−k]]−

1
2
[ fk, [ fk, f−2k]]+ [ f−k, [ fk, f0]]

)
+ ∑

06=m6=−l 6=0

−1
(l ·ω)((m+ l) ·ω)

[ fm, [ fl, f0]]

+ ∑
−l>k<l, k6=0

1
(k ·ω)(l ·ω)

[ f−l, [ fl, fk]]

+ ∑
m>k<−k
m+k6=0

−1
(k ·ω)(m ·ω)

[ fm, [ f−k, fk]]

+ ∑
0 6=m6=±l 6=0
m>−m−l<l

−1
(m ·ω)((m+ l) ·ω)

[ fm, [ fl, f−m−l]].
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In these formulas < is some total ordering in the set of multi-indices Zd such that
k > 0 for k 6= 0.

3.6 Changing the initial time

There would have been no loss of generality if in (6) we had taken the initial time
t0 to be 0, as the general case may be reduced to the case where t0 = 0 by a change
of variables t → t ′+ t0. Here we give formulas that express Γ (τ,θ ;θ0) in terms of
Γ (τ,θ − θ0;0) and therefore allows one to express the coefficients α(t; t0), β̄ (t0),
. . . in terms of the coefficients α(t;0), β̄ (0), . . .

We introduce, for each θ ∈Td , the linear map Ξθ :CW →CW defined as follows:
given δ ∈ CW , (Ξθ δ ) /0 = δ /0, and for each word w = k1 · · ·kn with n > 0 letters,

(Ξθ δ )k1···kn = ei(k1+···+kn)·θ δk1···kn .

Note that Ξθ is actually an algebra automorphism, as it preserves the convolution
product: Ξθ (δ ?δ ′) = (Ξθ δ )? (Ξθ δ ′), if δ ,δ ′ ∈ CW . In addition it maps G into G .

The following result may be proved by induction on the number of letters using
the recursive formulas (12), or, alternatively, by using the transport equation.

Proposition 3. For each τ ∈ R and θ ,θ0 ∈ Td ,

Γ (τ,θ ;θ0) = Ξθ0Γ (τ,θ −θ0;0).

As a consequence we have (cf. Theorem 3):

Corollary 1. For arbitrary τ1,τ2 ∈ R and θ1,θ2 ∈ Td ,

Γ (τ1,θ1;0)?Ξθ1Γ (τ2,θ2;0) = Γ (τ1 + τ2,θ1 +θ2;0).

4 Autonomous problems

In this section consider a general class of perturbed autonomous problems. By build-
ing on the foundations laid down above we provide a method for reducing them to
normal form.

4.1 Perturbed problems

We now study initial value problems

d
dt

x = g(x)+ f (x), x(0) = x0, (21)
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where f ,g : CD → CD. In the situations we have in mind, this system is seen as
a perturbation of the system (d/dt)x = g(x) whose solutions are known. In what
follows we denote by g j, j = 1, . . . ,d, a family of linearly independent vector fields
that commute with each other (i.e. [g j,gk] = 0) and, for each u = [u1, · · · ,ud ] ∈ Cd ,
we set

gu =
d

∑
j=1

u j g j. (22)

We always work under the following hypotheses:

• f may be decomposed as
f (x) = ∑

`∈A
f`(x) (23)

for a set of indices A, referred to as the alphabet as in the preceding sections.
• For each j = 1, . . . ,d and each ` ∈ A, there is ν j,` ∈ C such that

[g j, f`] = ν j,` f`. (24)

• There is v ∈ Cd such that g = gv.
• The alphabet A is an additive monoid with neutral element 0,2 such that, for each

j = 1, . . . ,d and `,`′ ∈ A, ν j,`+`′ = ν j,`+ν j,`′ . In particular, ν j,0 = 0 for all j.
• The vector v = (v1, . . . ,vd) ∈ Cd is non-resonant, in the sense that, given ` ∈ A ,

v1ν1,`+ · · ·+ vdνd,` = 0 if and only if `= 0.

The following proposition, whose proof may be seen in [13], shows that (24)
may be reformulated in terms of the flows ϕu at time t = 1 of the vector fields gu,
u ∈ Cd . Here and later, we use the notation

ν
u
` = u1ν1,`+ · · ·+udνd,`.

Proposition 4. Equation (24) is equivalent to the requirement that for each x ∈RD,
u ∈ Cd , ` ∈ A,

ϕ
′
u(x)

−1 f`(ϕu(x)) = exp(νu
` ) f`(x). (25)

Before providing examples of systems that satisfy the hypotheses above, we shall
obtain a word series representation of the solution of (21). Use the ansatz x(t) =
ϕtv(z(t)) and invoke (25), to find that z(t) must be the solution of

d
dt

z = ∑
`∈A

exp(tνv
` ) f`(z), z(0) = x0.

Since this problem is of the form (1) with

λ`(t) = exp(t ν
v
` ), ` ∈ A, (26)

2 Recall that this means that A possesses a binary operation + that is commutative and associative
and such that 0+ `= ` for each ` ∈ A.
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we find that z(t) =Wα(t;0)(x0), where the coefficients α(t;0) ∈ G are given by (3).
In what follows, we will simply write α(t) = α(t;0). Thus the solution of (21) has
the representation

x(t) = ϕtv(Wα(t)(x0)). (27)

Note that the coefficients αw(t) depend on v and the ν j,` but are otherwise indepen-
dent of g and f`, ` ∈ A.

Systems that satisfy the assumptions include the following (additional examples
and further discussion may be seen in [13]):

Example 1. Consider systems of the form

d
dt

x = Lx+ f (x), (28)

where L is a diagonalizable D×D matrix and each component of f (x) is a power
series in the components of x. Let µ1, . . . , µd denote the distinct nonzero eigenvalues
of L, so that L may be uniquely decomposed as

L = µ1L1 + · · ·+µdLd ,

where the D×D matrices L1, . . . ,Ld are projectors (L2
j = L j) with L jLk = 0 if j 6=

k. Thus (22) holds for g j(x) = L jx, v j = µ j. Furthermore (see [13] for details) f
may be decomposed as f = ∑k fk, where the ‘letters’ k are elements of Zd , k =
[k1, . . . ,kd ], and, for each j and k, [L j, fk] = k j fk. Analytic systems of differential
equations having an equilibrium at the origin are of the form (28), provided that the
linearization at the origin is diagonalizable; the perturbation f then contains terms
of degree > 1 in the components of x.

As we shall point out later, Theorem 11 addresses the well-known problem,
which goes back to Poincaré and Birkhoff [2], of reducing (28) to normal form.

Example 2. Consider next real systems of the form

d
dt

[
y
θ

]
=

[
0
ω

]
+ f (y,θ), (29)

where y ∈RD−d , 0 < d ≤D, ω ∈Rd is a vector of frequencies ω j 6= 0, j = 1, . . . ,d,
and θ comprises d angles, so that f (y,θ) is 2π-periodic in each component of θ

with Fourier expansion

f (y,θ) = ∑
k∈Zd

exp(ik ·θ) f̂k(y).

After introducing the functions

fk(y,θ) = exp(ik ·θ) f̂k(y), y ∈ RD−d , θ ∈ Rd ,

the system takes the form (21) with x = (y,θ) and
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g(y,θ) =
[

0
ω

]
.

The decomposition (23) holds for the monoid A = Zd , and, if each g j(x) is taken
to be a constant unit vector, then g = gv, v j = ω j ( j = 1, . . . ,d). In addition, (24) is
satisfied with ν j,k = i k j, for each j = 1, . . . ,d and each k = (k1, . . . ,kd) ∈ A. Thus
the nonresonance condition above (i.e., v1ν1,`+ · · ·+vdνd,` = 0 if and only if `= 0)
now becomes the well-known requirement that k1ω1 + · · ·+ kdωd = 0 with integer
k j, j = 1, . . . ,d, only if all k j vanish

In the particular case where the last d components of f vanish identically, the
differential equations for θ yield θ = ωt +θ0, and (29) becomes a nonautonomous
system for y of the form (6). Thus, the format (21) is a wide generalization of the
format studied in the preceding section.

4.2 The transport equation. Normal forms

All the results obtained in Section 3.2 can be generalized to the case at hand. We
shall omit the proofs of the results that follow when they may be obtained by adapt-
ing the corresponding proofs in Section 3.

We first provide recurrences to find the coefficients required in (27).

Theorem 7. Given τ ∈R, u∈Cd , define, for each w∈W , γw(τ,u)∈C by means of
the following recursions. γ /0(τ,u) = 1, and for r≥ 1, `0 ∈ A\{0}, and `1, . . . , `n ∈ A,

γ`0(τ,u) =
1

νv
`0

(exp(νu
`0
)−1),

γ0r(τ,u) = τ
r/r!,

γ0r`0(τ,u) =
γ0r(τ,u)exp(νu

`0
)− γ0r−1`0

(τ,u)

νv
`0

,

γ`0`1···`n(τ,u) =
γ(`0+`1)`2···`n(τ,u)− γ`1···`n(τ,u)

νv
`0

,

γ0r`0`1···`n(τ,u) =
γ0r(`0+`1)`2···`n(τ,u)− γ0r−1`0`1···`n

(τ,u)

νv
`0

.

(30)

Then, for each w ∈W ,
αw(t) = γw(t, tv).

The transport problem (cf. (13)) is:

∂

∂τ
γ(τ,u)+ v ·∇uγ(τ,u) = γ(τ,u)?B(u), γ(0,0) = 11 . (31)
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where B(u) ∈ g is defined as B`(u) = exp(νu
` ), ` ∈ A, and Bw(u) = 0 if the length of

w ∈W is not 1.
Lemma 1 needs some adaptation to the present circumstances. We say that a

complex-valued function is polynomially smooth if it is a linear combination of
terms of the form τk exp(νu

` ), j = 1,2,3, . . ., ` ∈ A. For each w ∈ W , the function
γw : R×Cd → C in Theorem 7 is clearly polynomially smooth.

Lemma 2. Let the vector v ∈Cd be nonresonant. If a polynomially smooth function
z : R×Cd → C satisfies

∂

∂τ
z(τ,u)+ v ·∇uz(τ,u) = 0, z(0,0) = 0,

then z(τ,u) is identically zero.

Instead of Proposition 2 and Theorem 2, we now have the following result.

Theorem 8. The function γ(τ,u) given in Theorem 7 is the unique solution of prob-
lem (31) such that each γw : R×Cd →C, w ∈W , is polynomially smooth. Further-
more, for each τ ∈ R, u ∈ Cd , the element γ(τ,u) ∈ CW belongs to G .

Our next aim is to derive a result similar to Theorem 3. We need to introduce, for
each u ∈ Cd , the algebra map Ξu : CW → CW defined as follows: Given δ ∈ CW ,
(Ξuδ ) /0 = δ /0, and for each word w = `1 · · ·`n with n≥ 1 letters,

(Ξuδ )`1···`n = exp(νu
`1+···+`n

)δ`1···`n .

This generalizes the map Ξθ we used in Section 3.

Theorem 9. For arbitrary τ1,τ2 ∈ R and u1,u2 ∈ Cd ,

γ(τ,u)? (Ξuγ(τ ′,u′)) = γ(τ + τ
′,u+u′).

Let us provide an interpretation of the last result in terms of maps in CD (rather
than in terms of elements of G ). In [13], it is proved that, for arbitrary δ ∈ G and
u ∈ Cd

Wδ (ϕu(x)) = ϕu(WΞuδ (x)). (32)

If we denote, for each (τ,u) ∈ R×Cd ,

Φτ,u(x) = ϕu(Wγ(τ,u)(x)),

then, for arbitrary τ,τ ′ ∈ R and u,u′ ∈ Cd ,

Φτ,u(Φτ ′,u′(x)) = ϕu(Wγ(τ,u)(ϕu′(Wγ(τ ′,u′)(x))))

= ϕu(ϕu′(WΞuγ(τ,u)(Wγ(τ ′,u′)(x))))

= ϕu+u′(Wγ(τ+τ ′,u+u′)(x))

= Φτ+τ ′,u+u′(x).
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We have successively used the definition of Φ , equation (32), Theorem 9, equation
(4), and, again, the definition of Φ . To sum up, we have proved the following result,
which generalizes Proposition 5.3 in [4].

Theorem 10. For arbitrary τ,τ ′ ∈ R and u,u′ ∈ Cd ,

Φτ,u ◦Φτ ′,u′ = Φτ+τ ′,u+u′

Since, in view of (27), the solution x(t) may be written as x(t) = Φt,tv(x0), the
theorem implies the representations

x(t) = Φ0,tv(Φt,0(x0)) = Φt,0(Φ0,tv(x0)). (33)

The group property Φt,0 ◦Φt ′,0 = Φt+t ′,0 implies that Φt,0(x) = Wγ(t,0)(x) is the
t-flow of the autonomous system

d
dt

X =W
β̄
(X),

where β̄ ∈ g is given by

β̄ =
d
dt

γ(t,0)
∣∣∣∣
t=0

. (34)

Similarly, Φ0,tu◦Φ0,t ′u =Φ0,(t+t ′)u, implies that, for each fixed u∈Cd , Φ0,tu(x)=
ϕtu(Wγ(0,tu)(x)) is the t-flow of an autonomous system

d
dt

x = g̃u(x);

differentiation with respect to t of the flow at t = 0 reveals that

g̃u(x) = gu(x)+Wρ(u)(x), (35)

where ρ(u) ∈ g is given by

ρ(u) =
d
dt

γ(0, tu)
∣∣∣∣
t=0

.

Since, from Theorem 10, the flows Φt,0, Φ0,tu(x), Φ0,tu′(x), u,u′ ∈ Cd , commute
with one another, so do the corresponding vector fields W

β̄
(X), g̃u(x), g̃u′(x). After

invoking (33), we summarize our findings as follows.

Theorem 11. The system in the initial value problem (21) may be rewritten in the
form

d
dt

x = g(x)+ f (x) = g̃v(x)+W
β̄
(x),
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where g̃v(x) and β̄ are respectively given by (35) and (34). The vector fields g̃v(x)
and W

β̄
(x) commute with each other, with g(x)+ f (x) and with g̃u(x) for arbitrary

u ∈ Cd .

Note that the recursions defining γ(t,u) in Theorem 7 give rise to similar recur-
sions that allows us to conveniently compute the coefficients β̄ ,ρ(u) ∈ g.

In the particular case where A = Zd and the eigenvalues ν j,` lie on the imaginary
axis, Theorem 11 essentially coincides with Theorem 5.5 of [4]. The techniques
in [4] are similar to those used here, but use B-series rather than word series. The
general case of Theorem 11 was obtained by means of extended words series (see
Section 5) in [13], where in addition it is shown that the vector fields g̃u(x) are con-
jugate to gu(x) by a map of the form x 7→Wδ (x), where δ ∈G . The decomposition in
Theorem 11 may be regarded as providing a normal form, where the original vector
field is written as a vector field g̃v(x) that is conjugate to gv(x) perturbed by a vector
field W

β̄
(x) that commutes with g̃v(x).

Remark. For Hamiltonian problems, the commutation results in Theorem 11
allows us to write down explitly integrals of motion of the given problem. Details
may be seen in [4] and [13].

5 Further extensions

In this section we study generalizations of the perturbed system in (21). Extended
word series, introduced in [14], are a convenient auxiliary tool to study those gener-
alizations.

5.1 Extended word series

Just as the study of systems of the form (1) leads to the introduction of word series
via the representation (2), the expression (27) suggests the introduction of extended
word series. Given the commuting vector fields g j, j = 1, . . . ,d and the vector fields
f`, `∈A in the preceding section, to each (v,δ )∈Cd×CW we associate its extended
word series [14], [13]:

W (v,δ )(x) = ϕv(Wδ (x)).

With this terminology, the solution of (21) in (27) may be written as x(t) =
W (tv,α(t))(x0).

The symbol G denotes the set Cd×G . Thus, for each t, the solution coefficients
(tv,α(t)) provide an example of element of G . For (u,γ) ∈ G and (v,δ ) ∈Cd×CW

we set
(u,γ)F(v,δ ) = (v+δ /0u,γ ?Ξuδ ) ∈ Cd×CW .
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For this operation G is a noncommutative group, with unit 11 = (0, 11); (Cd , 11) and
(0,G ) are subgroups of G . (In fact G is an outer semidirect product of G and the
additive group Cd , as discussed in Section 3.2 of [14].)

By using (4) and (32), it is a simple exercise to check that the product F has
the following implication for the composition of the corresponding extended word
series

W (v,δ )
(
W (u,γ)(x)

)
=W (u,γ)F(v,δ )(x), γ,∈ G , δ ∈ CW , u,v ∈ Cd .

5.2 More general perturbed problems

We now generalize the problem (21), and allow a more general perturbation:

d
dt

x = g(x)+Wβ (x), x(0) = x0,

where β ∈ g. Clearly, the original problem (21) corresponds to the particular case
where β` = 1 for each ` ∈ A, and βw = 0 if the length of the word w is not 1. Other
choices of β are of interest [14] when analyzing numerical integrators by means of
the method of modified equations [17].

Proceding as in the derivation of (27), we find that the flow of (21) is given by

x(t) =W (tv,α(t))(x(0)),

where α(t) ∈ G is the solution of

d
dt

α(t) = α(t)?Ξtvβ , α(0) = 11 .

Moreover, α(t) = γ(t, tv), where γ(τ,u) is the unique polynomially smooth solution
of the transport problem

∂

∂τ
γ(τ,u)+ v ·∇γ(τ,u) = γ(τ,u)?Ξuβ , γ(0,0) = 11 ,

which clearly generalizes (31). For each (τ,u)∈R×Cd , the element γ(τ,u) belongs
to the group G . Note that the recursions (30) are not valid for general β .

In analogy with Theorem 9, we have that, for arbitrary τ,τ ′ ∈ R and u,u′ ∈Cd ,

(u,γ(τ,u))F(τ ′,γ(τ ′,u′)) = (u+u′,γ(τ + τ
′,u+u′)).

Theorems 10 and 11 hold true for general β ∈ g.
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