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1. Introduction

This paper surveys the relations between numerical integration and the
Hamiltonian (or Hybrid) Monte Carlo Method (HMC), an important and
widely used Markov Chain Monte Carlo algorithm (Diaconis 2009) for sam-
pling from probability distributions. It is written for a general audience
and requires no background on numerical algorithms for solving differential
equations. We hope that it will be useful to mathematicians, statisticians
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and scientists, especially because the efficiency of HMC is largely dependent
on the performance of the numerical integrator used in the algorithm.

Named one of the top ten algorithms of the twentieth century (Cipra
2000), MCMC originated in statistical mechanics (Allen and Tildesley
1987, Frenkel and Smit 2002, Krauth 2006, Lelievre, Rousset and Stoltz
2010, Tuckerman 2010, Landau and Binder 2014) and is now a corner-
stone in statistics (Geman and Geman 1984, Gelfand and Smith 1990, Geyer
1992, Tierney 1994); in fact Bayesian approaches only became widespread
once MCMC made it possible to sample from completely arbitrary dis-
tributions. In conjunction with Bayesian methodologies, MCMC has en-
abled applications of statistical inference to biostatistics (Jensen, Liu,
Zhou and Liu 2004), population modelling (Link and Barker 2009), reli-
ability/risk assessment/uncertainty quantification (Sullivan 2015), machine
learning (Andrieu, De Freitas, Doucet and Jordan 2003), inverse problems
(Stuart 2010), data assimilation (Chen 2003, Evensen 2009), pattern recog-
nition (Webb 2003, Bishop 2006), artificial intelligence (Ghahramani 2015),
and probabilistic robots (Thrun, Burgard and Fox 2005). In these ap-
plications, MCMC is used to evaluate the expected values necessary for
Bayesian statistical inference, in situations where other methods like nu-
merical quadrature, Laplace approximation, and Monte Carlo importance
sampling are impractical or inaccurate. Additionally, MCMC is used as
a tool to set the invariant distribution of numerical methods for first and
second-order Langevin stochastic differential equations (Kikuchi, Yoshida,
Maekawa and Watanabe 1991, Roberts and Tweedie 1996b, Roberts and
Tweedie 1996a, Bou-Rabee and Vanden-Eijnden 2010, Bou-Rabee and
Vanden-Eijnden 2012, Bou-Rabee and Hairer 2013, Bou-Rabee, Donev and
Vanden-Eijnden 2014, Bou-Rabee 2014, Fathi 2014, Fathi, Homman and
Stoltz 2015) and stochastic partial differential equations (Beskos, Roberts,
Stuart and Voss 2008, Bou-Rabee 2017). Even though MCMC algorithms
are often straightforward to program, there are numerous user-friendly,
general-purpose software packages available to carry out statistical anal-
ysis including BUGS (Lunn, Thomas, Best and Spiegelhalter 2000, Lunn,
Spiegelhalter, Thomas and Best 2009, Lunn, Jackson, Best, Thomas and
Spiegelhalter 2012), STAN (Carpenter, Gelman, Hoffman, Lee, Goodrich,
Betancourt, Brubaker, Guo, Li and Riddell 2016), MCMCPack (Martin,
Quinn and Park 2011), MCMCglmm (Hadfield 2010) and PyMC (Patil,
Huard and Fonnesbeck 2010).

HMC itself was invented in 1987 (Duane, Kennedy, Pendleton and
Roweth 1987) to study lattice models of quantum field theory, and about
a decade later popularized in data science (Liu 2008, Neal 2011). A sim-
ple introduction to this algorithm may be found in (Sanz-Serna 2014). A
key feature of HMC is that it offers the possibility of generating proposal
moves that, while being far away from the current state of the Markov
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chain, may be accepted with high probability, thus avoiding random walk
behaviour and reducing the correlation between samples. Such a possibility
exists because proposals are generated by numerically integrating a system
of Hamiltonian differential equations. The distance between the proposal
and the current state may in principle be large if the differential equations
are integrated over a suitably long time interval; the acceptance probability
of the proposals may be made arbitrarily close to 100% by carrying out the
integration with sufficient accuracy. Of particular significance for us is the
fact that HMC requires that the numerical integration be performed with
a volume-preserving, reversible method.

Since the computational cost of HMC mainly lies in the numerical inte-
grations, it is of much interest to perform these as efficiently as possible. At
present, the well-known velocity Verlet algorithm is the method of choice,
but, as it will be apparent, Verlet may not be the most efficient integrator
one could use. What does it take to design a good integrator for HMC? A
key point of this paper is that, due to the specificities of the situation, a
number of concepts traditionally used to analyze numerical integrators (in-
cluding the notions of order of consistency/converengence, error constants,
and others) are of limited value in our context. On the one hand and as
we have already mentioned, HMC requires methods that have the geomet-
ric properties of being volume-preserving and reversible and this limits the
number of integrators that may be applied. It is fortunate that, in the
last twenty-five years, the literature on the numerical solution of differential
equations has given much attention to the construction of integrators with
relevant geometric properties, to the point that geometric integration (a
term introduced in (Sanz-Serna 1997)) is by now a well-established subfield
of numerical analysis (Iserles and Quispel 2017). On the other hand, the
properties of preservation of volume and reversibility have important quan-
titative implications on the integration error (Theorem 6.1), which in turn
have an impact on the acceptance rate of proposals. As a consequence, it
turns out that, for HMC purposes, the order of the integrator is effectively
twice its nominal order; for instance the Verlet algorithm behaves, within
HMC, as a fourth order integrator. In addition, in HMC, integrators are
likely to be operated with large values of the step size, with the implication
that analyses that are only valid in the limit of vanishing step size may not
be very informative. One has rather to turn to studying the performance
of the integrator in well-chosen model problems.

Sections 2–5 provide the necessary background on differential equations,
numerical methods, geometric integration and Monte Carlo methods respec-
tively. The heart of the paper is in Section 6. Among the topics considered
there, we mention the investigation of the impact on the energy error of
the properties of preservation of volume and reversibility (Theorem 6.1)
and a detailed study of the behaviour of the integrators in the Gaussian
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model. Also presented in Section 6 is the construction of integrators more
efficient than the Verlet algorithm. Sections 7 and 8 consider, in two dif-
ferent scenarios, the behaviour of HMC as the dimensionality of the target
distribution increases. Section 7, based on (Beskos, Pillai, Roberts, Sanz-
Serna and Stuart 2013) studies the model problem where the target is a
product of many independent, identical copies. The case where the target
arises from discretization of an infinite-dimensional distribution is addressed
in Section 8; our treatment, while related to the material in (Beskos, Pin-
ski, Sanz-Serna and Stuart 2011), has some novel features because we have
avoided the functional analytic language employed in that reference. The
final Section 9 contains supplementary material.

2. Differential equations and their flows

In this section we introduce some notation and review background material
on differential equations, with special emphasis on the Hamiltonian and
reversible systems at the basis of HMC algorithms. The section ends with a
description of the Lie bracket which appears in the analysis of the integrators
to be used later.

2.1. Preliminaries

We are concerned with autonomous systems of differential equations in RD

d

dt
x = f(x); (2.1)

the function (vector field) f is assumed throughout to be defined in the
whole of RD and to be sufficiently smooth. An important role is played by
the particular case

d

dt
q = M−1p,

d

dt
p = F (q), (2.2)

where x = (q, p) ∈ RD, D = 2d, q ∈ Rd, p ∈ Rd and M is a constant,
invertible matrix, so that f = (M−1p, F (q)). By eliminating p, (2.2) is seen
to be equivalent to

M
d2

dt2
q = F (q);

this is not the most general autonomous system of second order differen-
tial equations in Rd because the derivative (d/dt)q does not appear in the
right-hand side. When the forces depend only on the positions, Newton’s
second law for a mechanical system gives rise to differential equations of the
form (2.2); then q, (d/dt)q, p, F are respectively the vectors of coordinates,
velocities, momenta, and forces, and M is the matrix of masses.

We denote by ϕt the t-flow of the system (2.1) under consideration. By
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definition, for fixed real t, ϕt : RD → RD is the map that associates with
each α ∈ RD the value at time t of the solution of (2.1) that at the initial
time 0 takes the initial value α.

Example 2.1. As a very simple but important example, we consider the
standard harmonic oscillator, the system in R2 of the special form (2.2)
given by

dq

dt
= p,

dp

dt
= −q. (2.3)

For future reference, we note that, with matrix notation, the solutions satisfy[
q(t)
p(t)

]
= Mt

[
q(0)
p(0)

]
, Mt =

[
cos t sin t
− sin t cos t

]
. (2.4)

Thus the flow has the expression

ϕt(ξ, η) = (ξ cos t+ η sin t, −ξ sin t+ η cos t). (2.5)

When α = (ξ, η) ∈ R2 is fixed and t varies, the right-hand side of (2.5)
yields the solution that at t = 0 takes the initial value (ξ, η). The notation
ϕt(ξ, η) emphasizes that, in the flow, it is the parameter t that is seen as
fixed, while (ξ, η) ∈ R2 is regarded as a variable. Geometrically, ϕt is the
clockwise rotation of angle t around the origin of the (q, p)-plane.

For a given system (2.1), it is well possible that for some choices of α
and t, the vector ϕt(α) ∈ RD is not defined; this will happen if t is outside
the interval in which the solution of (2.1) with initial value α exists. For
simplicity in the statements, we shall assume hereafter that ϕt(α) is always
defined.

Flows possess the group property: ϕ0 is the indentity map in RD and, for
arbitrary real s and t,

ϕt ◦ ϕs = ϕs+t. (2.6)

In particular, for each t,

(ϕt)
−1 = ϕ−t, (2.7)

i.e. ϕ−t is the inverse of the map ϕt. For the harmonic oscillator example,
the group property simply states that a rotation of angle s followed by a
rotation of angle t has the same effect as a rotation of angle s+ t.

2.2. Hamiltonian systems

The Hamiltonian formalism (Marsden and Ratiu 1999, Arnol’d 1989) is
essential to understand HMC algorithms.

Hamiltonian vector fields
Assume that the dimension D of (2.1) is even, D = 2d, and write x = (q, p)
with q, p ∈ Rd. Then the system (2.1) is said to be Hamiltonian if there is
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a function H : R2d → R such that, for i = 1, . . . , d, the scalar components
f i of f are given by

f i(q, p) = +
∂H

∂qi
(q, p), fd+i(q, p) = −∂H

∂pi
(q, p).

Thus, the system is

dqi

dt
= +

∂H

∂qi
(q, p),

dpi

dt
= −∂H

∂pi
(q, p),

or, in vector notation (Sanz-Serna and Calvo 1994),

d

dt

[
q
p

]
= J−1∇H(q, p), (2.8)

where

∇H =

[
∂H

∂q1
, . . . ,

∂H

∂qd
,
∂H

∂p1
, . . . ,

∂H

∂pd

]T
and

J =

[
0d×d −Id×d
Id×d 0d×d

]
.

The function H is called the Hamiltonian, R2d is the phase space, and d is
the number of degrees of freedom.

A system of the special form (2.2) is Hamiltonian if and only if F =
−∇U(q) for a suitable real-valued function U , i.e.

d

dt
q = M−1p,

d

dt
p = −∇U(q); (2.9)

when that is the case,

H(q, p) = T (p) + U(q), with T (p) =
1

2
pTM−1p. (2.10)

In applications to mechanics, T and U are respectively the potential and
kinetic energy and H represents the total energy in the system. The har-
monic oscillator (2.3) provides the simplest example; there T = (1/2)p2,
U = (1/2)q2.

Symplecticness and preservation of oriented volume
A mapping Φ : R2d → R2d is said to be symplectic or canonical if, at each
point (q, p) ∈ R2d,

Φ′(q, p)TJΦ′(q, p) = J (2.11)

(Φ′(q, p) denotes the 2d× 2d Jacobian matrix of Φ). The (analytic) condi-
tion (2.11) has a geometric interpretation in terms of preservation of two-
dimensional areas (Arnol’d 1989); such interpretation is not required to
understand the rest of the paper.



Geometric integrators and Hamiltonian Monte Carlo 7

When d = 1, if we set Φ(q, p) = (q∗, p∗), the condition (2.11), after
multiplying the matrices in the left-hand side, is seen to be equivalent to

∂q∗

∂q

∂p∗

∂p
− ∂q∗

∂p

∂p∗

∂q
= 1.

The left-hand side is the Jacobian determinant of Φ and therefore the trans-
formation Φ is symplectic if and only if the mapping (q, p) 7→ (q∗, p∗) pre-
serves oriented area in the (q, p) plane, i.e. for any domain D the oriented
area of the image Φ(D) ⊂ R2 coincides with the oriented area of D.1 For
instance, for each t, the rotation in (2.5) is a symplectic transformation in
R2.

For general d the following result holds (Arnol’d 1989, Section 38):

Proposition 2.1. For a symplectic transformation the determinant of Φ′

equals 1. Therefore symplectic transformations preserve the oriented volume
in R2d, i.e. Φ(D) and D have the same oriented volume for each domain
D ⊂ R2d.

For d > 1 preservation of oriented volume is a strictly weaker property
than symplecticness.

The proof of the following two results is easy using (2.11).

Proposition 2.2. The composition Φ1 ◦ Φ2 of two symplectic mappings
is itself symplectic.

Proposition 2.3. The change of variables (q, p) = Φ(q̄, p̄) with Φ sym-
plectic transforms the Hamiltonian system of differential equations (2.8)
into a system for (q̄, p̄) that is also Hamiltonian. Moreover, the Hamilto-
nian function H̄ of the transformed system is the result of changing variables
in H, i.e. H̄ = H ◦ Φ.

In view of the following important general result (Marsden and Ratiu
1999, Proposition 2.6.2) the symplecticness of the rotation (2.5) noted above
is a manifestation of the Hamiltonian character of the harmonic oscillator.

Theorem 2.1. Let D = 2d. The system (2.1) with flow ϕt is Hamiltonian
if and only if, for each real t, ϕt is a symplectic mapping.

Thus symplecticness is a characteristic property that allows us to decide
whether a differential system is Hamiltonian or otherwise in terms of its
flow, without knowing the vector field (right-hand side) f of the equation.

We recall that a flow preserves oriented volume if and only if the corre-
sponding vector field f is divergence-free (∇ · f =

∑
i(∂/∂x

i)f i = 0). If

1 Preservation of the oriented area means that D and Φ(D) have the same orientation and
(two-dimensional Lebesque) measure. The transformation (symmetry) (q, p) 7→ (q,−p)
preserves measure but not oriented area.
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d > 1, there are divergence-free differential systems in R2d that are not
Hamiltonian; their flows preserve oriented volume but are not symplectic.

The behavior of the solutions of Hamiltonian problems is very different
from that encountered in ‘general’ systems; some features that are ‘the rule’
in Hamiltonian systems are exceptional in non-Hamiltonian systems. Such
special behaviour of Hamiltonian solutions may always be traced back to
the symplecticness of the flow. As a very simple example, we consider once
more the harmonic oscillator (2.3). The origin is a center: a neutrally stable
equilibrium surrounded by periodic trajectories. Small perturbations of the
right-hand side of (2.3) generically destroy the center; after perturbation the
trajectories become spirals and the origin becomes either an asymptotically
stable node (trajectories spiral in) or an unstable node (trajectories spiral
out). However, if the perturbation is such that the perturbed system is also
Hamiltonian, then the center will not disappear under small perturbations.

Preservation of energy

If (q(t), p(t)) is a solution of (2.8), then

d

dt
H(q(t), p(t)) = ∇H(q(t), p(t))TJ−1∇H(q(t), p(t)) = 0,

because J−1 is skew-symmetric. Therefore we may state:

Theorem 2.2. The value of the Hamiltonian function is preserved by the
flow of the corresponding Hamiltonian system, i.e. H ◦ϕt = H for each real
t.

In applications to the physical sciences, this result is usually the mathe-
matical expression of the principle of conservation of energy. Unlike sym-
plecticness, which is a characteristic property, conservation of energy on its
own does not ensure that the underlying system is Hamiltonian. There are
many examples of non-Hamiltonian systems whose solutions preserve the
value of a suitable energy function.

Preservation of the canonical probability measure

Let β denote a positive constant and assume that H is such that

Z =

∫
R2d

exp(−βH(q, p)) dqdp <∞.

Then we have the following result, which is a direct consequence of the fact
that ϕt preserves both the volume element dqdp (Proposition 2.1) and the
value of exp(−βH) (because, according to Theorem 2.2, it preserves the
value of H).

Theorem 2.3. The probability measure µ in R2d with density (with re-
spect to the ordinary Lebesgue measure) Z−1 exp(−βH(q, p)) is preserved
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by the flow of the Hamiltonian system (2.8), i.e. µ(ϕt(D)) = µ(D) for each
domain D ⊂ R2d and each real t.

In statistical mechanics (Allen and Tildesley 1987, Frenkel and Smit 2002,
Tuckerman 2010), if (2.8) describes the dynamics of a physical system and β
is the inverse of the absolute temperature, then µ is the canonical measure
that governs the distribution of (q, p) over an ensemble of many copies of
the given system when the system is in contact with a heat bath at constant
temperature, i.e. Z−1 exp(−βH(q, p))dqdp represents the fraction of copies
with momenta between p and p+dp, and configuration between q and q+dq.
Note that under the canonical distribution, (local) minima of the energy H
correspond to (local) maxima of the probability density function, i.e. to
modes of the distribution. Also, if the temperature decreases (β increases),
it is less likely to find the system at a location (q, p) with high energy.

For Hamiltonian functions of the particular form in (2.10), we may fac-
torize

exp(−βH(q, p)) = exp(−1

2
β pTM−1p)× exp(−β U(q))

and therefore, under the canonical distribution, q and p are stochastically in-
dependent. The (marginal) distribution of the configuration variables q has
probability density function proportional to exp(−β U(q)). The momenta
p possess a Gaussian distribution with zero mean and covariance matrix
equal to M . These distributions are associated with the names of Boltz-
mann, Gibbs and Maxwell. Hereafter we refer to the canonical measure as
the Boltzmann-Gibbs distribution.

2.3. Reversible systems

Assume now that S is a linear involution in RD, i.e. a linear map such that
S(S(x)) = x for each x. A mapping Φ : RD → RD is said to be reversible
(with respect to S) if, for each x, S(Φ(x)) = Φ−1(S(x)) or, more compactly,

S ◦ Φ = Φ−1 ◦ S. (2.12)

The following results have easy proofs.

Proposition 2.4. If Φ is S reversible, then∣∣det Φ′
(
S(Φ(x))

)∣∣ =
∣∣det Φ′(x)

∣∣−1
,

for each x.

Proposition 2.5. If Φ1 is S-reversible, then Φ1 ◦Φ1 is S-reversible. If Φ1

and Φ2 are S-reversible, then the symmetric composition Φ1 ◦ Φ2 ◦ Φ1 is
S-reversible.

Theorem 2.4. Consider the system (2.1) with flow ϕt. The following
statements are equivalent:
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• For each t, ϕt is an S-reversible mapping.
• For each x ∈ RD, S(f(x)) = −f(S(x)), i.e. S ◦ f = −f ◦ S.

Systems of differential equations that satisfy the conditions in the theorem
are said to be reversible (with respect to S). Systems of the particular form
(2.2) are reversible with respect to the momentum flip involution

S(q, p) = (q,−p). (2.13)

If (2.2) describes a mechanical system, then (2.12) expresses the well-known
time-reversibility of mechanics: if (qin, pin) is the initial state of a system
and (qf , pf ) the final state after t units of time have elapsed, then the state
(qf ,−pf ) evolves in t units of time to the state (qin,−pin).

Proposition 2.6. The Hamiltonian system (2.8) is reversible with respect
to the momentum flip involution (2.13) if and only if H is an even function
of p, i.e. H(q,−p) = H(q, p) for all q and p.

Figure 6.1 illustrates the reversibility of the Hamiltonian flow correspond-
ing to a one-degree-of freedom double-well potential.

As it is the case for Hamiltonian systems, reversible reversible systems
have flows with special geometric properties, not shared by ‘general’ systems
(Lamb and Roberts 1998).

2.4. The Lie bracket

If ϕ
(f)
t and ϕ

(g)
t denote respectively the flows of the D-dimensional systems

d

dt
x = f(x),

d

dt
x = g(x),

in general ϕ
(g)
s ◦ ϕ(f)

t 6= ϕ
(f)
t ◦ ϕ

(g)
s ; in fact, a Taylor expansion shows that,

as t, s approach 0,

ϕ(g)
s

(
ϕ

(f)
t (x)

)
− ϕ(f)

t

(
ϕ(g)
s (x)

)
= st [f, g](x) +O(t3 + s3),

where the Lie bracket (or Lie-Jacobi bracket or commutator) [f, g] of f and
g (Arnol’d 1989, Section 39) is the mapping RD → RD that at x ∈ RD takes
the value

[f, g](x) = g′(x)f(x)− f ′(x)g(x) (2.14)

Thus the magnitude of [f, g] measures the lack of commutativity of the
corresponding flows. The following result holds:

Theorem 2.5. With the preceding notation, ϕ
(g)
s ◦ ϕ(f)

t = ϕ
(f)
t ◦ ϕ

(g)
s for

arbitrary t and s if and only if the Lie bracket [f, g](x) vanishes at each
x ∈ RD. When these conditions hold, we say that f and g commute.

For commuting f and g, ϕ
(g)
t ◦ϕ

(f)
t = ϕ

(f)
t ◦ϕ

(g)
s provides the t flow of the
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system

d

dt
x = f(x) + g(x).

The Lie bracket is skew symmetric: [f, g] = −[g, f ] for arbitrary f and g.
In addition it satisfies the Jacobi identity,

[f1, [f2, f3]] + [f2, [f3, f1]] + [f3, [f1, f2]] = 0,

for any f1, f2, f3. In this way the vector space of all vector fields together
with the operation [·, ·] is a Lie algebra.

For Hamiltonian systems it is possible to work in terms of the so-called
Poisson bracket of the Hamiltonian functions (Arnol’d 1989, Section 40),
rather than in terms of the Lie bracket of the fields:

Theorem 2.6. If the fields f and g are Hamiltonian with Hamiltonian
functions H and K respectively, i.e. f = J−1∇H, g = J−1∇K, then [f, g]
is also a Hamiltonian vector field. Moreover the Hamiltonian function of
[f, g] is given by −{H,K},2 where {H,K} is the Poisson bracket of the
functions H and K, defined as

{H,K} = (∇H)TJ−1∇K.

For real-valued functions in R2d, the Poisson bracket operation is skew
symmetric {H,K} = −{K,H} and satisfies the Jacobi identity:

{H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0.

Let f and g be reversible vector fields. Differentiation in g(S(x)) =
−S(g(x)) implies for the Jacobian that g′(S(x))S = −S(g′(x)) and it fol-
lows that g′(S(x))f(S(x))) = S(g′(x)f(x)) (no minus sign!). Then the
Lie-bracket of two reversible fields is not reversible, but rather satisfies the
following property.

Proposition 2.7. If two vector fields f and g are S-reversible then

[f, g](S(x)) = S
(
[f, g](x)

)
.

For three S-reversible vector fields, the iterated commutator [f1, [f2, f3]]
is S-reversible.

3. Integrators

In the sampling algorithms studied later, differential systems like (2.1) or
(2.2) have to be numerically integrated. In this section we review the

2 The minus sign here could be avoided by reversing the sign in the definition of the
Poisson bracket. The definition of {·, ·} used here is the one traditionally used in
mechanics.
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required material. The works (Hairer, Nørsett and Wanner 1993, Hairer
and Wanner 2010, Butcher 2016) provide extensive, authoritative treatises
on the subject. A more concise introduction is given by (Griffiths and
Higham 2010). We begin by recalling some basic definitions and later focus
on splitting integrators and fixed h stability, as both play important roles
in the implementation of HMC algorithms.

3.1. Preliminaries

Each one-step numerical method or one-step integrator for (2.1) is described
by a map ψh : RD → RD that depends on a real parameter h, the step size.
Given the initial value α, and a value of h (h 6= 0), the integrator generates
a numerical trajectory, x0, x1, x2, . . . , defined by x0 = α and, iteratively,

xn+1 = ψh(xn), n = 0, 1, 2, . . . (3.1)

To compute xn+1 when xn has already been found is to perform a (time)
step. For each n, the vector xn is an approximation to the value at time
tn = nh of the solution x(t) of (2.1) with initial condition x(0) = α, i.e. to
ϕtn(α). Typically h is positive and then the integration is forward in time
0 = t0 < t1 < t2 < . . ., but in some applications it may be of interest to use
h < 0 so as to get 0 = t0 > t1 > t2 > . . .

The simplest and best known integrator, Euler’s rule, with

xn+1 = xn + hf(xn), (3.2)

corresponds to the mapping ψh(x) = x+ hf(x). It uses one evaluation of f
per step. Explicit s-stage Runge-Kutta formulas use s evaluations of f per
step, s = 1, 2, . . ., and are therefore s times more expensive per step than
Euler’s rule; examples include Runge’s method

ψh(x) = x+ hf
(
x+

h

2
f(x)

)
(with two stages), several well-known formulas of Kutta with four stages3

and the formulas within the popular MATLAB function ode45. A method
with s stages will be competitive with Euler’s rule only if it gives more
accurate approximations than Euler’s rule when this is operated with a
step size s times shorter, so as to equalize computational costs.

Implicit Runge-Kutta integrators are also used in practice; in them ψh
is defined by means of algebraic equations. For instance, the midpoint rule
has

ψh(x) = x+ hf
(1

2
(x+ ψh(x))

)
,

3 One of these formulas is known in some circles as the Runge-Kutta method; this ter-
minology should be avoided as there are infinitely many Runge-Kutta methods.
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i.e.

xn+1 = xn + hf
(1

2
(xn + xn+1)

)
. (3.3)

Here, computing xn+1 when xn is already known requires to solve a system
of algebraic equations in RD. There are many more useful examples of
implicit Runge-Kutta methods, including the so-called Gauss methods.

Remark 3.1. Note that in the formulas displayed above h and f do not
appear separately, but always in the combination hf . This clearly implies
that, if, for a given method, xn, n = 0, 1, 2 . . . is a numerical trajectory
with step size h corresponding to the system (2.1), it is also a numerical
trajectory with step size λh for the system (d/dt)x = λ−1f(x) (λ 6= 0
denotes a constant). We shall always assume that we deal with integrators
having this property.

A one-step integrator is called symmetric or self-adjoint4 if

(ψh)−1 = ψ−h, (3.4)

so as to mimic the property (2.7) of the exact solution flow. The midpoint
rule (3.3) provides an example. Explicit Runge-Kutta methods are never
symmetric.

Multistep integrators, including the well-known Adams formulas, where
the computation of xn+1 requires the knowledge of k ≥ 2 past values xn,
xn−1, . . . , xn−k+1, may be very efficient, but will not be considered in this
paper; they have seldom been applied within sampling algorithms.

3.2. Order

Since for the exact solution, the sequence x(0) = α, x(t1), x(t2),. . . satisfies
x(tn+1) = ϕh(x(tn)), n = 0, 1, . . ., rather than (3.1), for the numerical
integrator to make sense it is necessary that ψh be an approximation to ϕh.
The integrator is said to be consistent if, at each fixed x ∈ RD, ψh(x) −
ϕh(x) = O(h2) as h→ 0. If ψh(x)− ϕh(x) = O(hν+1), ν a positive integer,
then the integrator is (consistent) of order ≥ ν. A method of order ≥ ν that
is not of order ≥ ν+1 is said to have order ν. Euler’s rule (3.2) has order 1,
the four-stage formulas of Kutta have order 4 and the midpoint rule (3.3)
has order 2. We shall see later (Theorem 4.4) that the order of a symmetric
integrator is an even integer. All integrators to be considered hereafter are
assumed to be consistent.

The vector ψh(x)−ϕh(x) is called the local error at x: it is the difference
between the result of a single time-step of the numerical method starting

4 Even though monographs like (Sanz-Serna and Calvo 1994) or (Hairer, Lubich and
Wanner 2010) use the term self-adjoint, there are reasons against that terminology
(Sanz-Serna 2016).
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from x and the result of the application of the h-flow to the same point
x. For future reference, we note that the expansion of the local error for
Euler’s method is given by

ψh(x)− ϕh(x) =
(
x+ hf(x)

)
−
(
x+ hf(x) +

h2

2
f ′(x)f(x) +O(h3)

)
= −h

2

2
f ′(x)f(x) +O(h3). (3.5)

In the expansion of the true solution flow we have used that (d/dt)x = f(x)
and (d2/dt2)x = f ′(x)(d/dt)x = f ′(x)f(x).

The local error does not give per se information on the global error at tn,
i.e. on the difference xn−x(tn). This is because xn = ψh(xn−1) while x(tn)
is the result of the application of the h-flow to x(tn−1): ψh and ϕh are not
applied to the same point.5 However the following result holds:

Theorem 3.1. If the (one-step) integrator is consistent of order ν, then,
for each fixed initial value x0 = x(0) and T > 0,

max
0≤tn≤T

|xn − x(tn)| = O(hν), h→ 0 + . (3.6)

This expresses the fact that the integrator is convergent of order ν. Of
course, the corresponding result holds if the integration is carried out back-
ward in time over −T ≤ t ≤ 0.

Remark 3.2. The global errors xn − x(tn) in addition to possessing an
O(hν) bound as above, have an asymptotic expansion in powers of h. For
instance, if we restrict the attention to the leading hν term in the expansion,
we have

xn − x(tn) = hνa(x(0), tn) + hνr(x(0), tn;h),

where the function a is independent of h and, for each fixed initial value
x(0), max0≤t≤T |r(x(0), t, h)| tends to 0 as h→ 0+. Thus, for h sufficiently
small, the global error is approximately equal to hνa(x(0), tn): halving h
divides the error by a factor 2ν .

Remark 3.3. In the description above, the step points tn are uniformly
spaced. General purpose software uses variable time steps: tn+1 = tn + hn
where hn changes with n. For each n, the value of hn is chosen by the
algorithm to ensure that the local error at xn is below a user-prescribed

5 In order to bound the global error in terms of the local error, i.e. to obtain convergence
from consistency, a stability property is needed. Hence the well-known slogan “stability
+ consistency imply convergence.” The one-step integrators considered here always
have the required stability and therefore, for them, consistency implies convergence as
in Theorem 3.1. The concept of stability that features in the slogan is different from
the concept of fixed h stability studied in Section 3.4 (Sanz-Serna 1991).
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tolerance. Since, for reasons to be explained in Section 4, HMC integrations
are carried out with constant step size, we shall not concern ourselves with
variable step sizes.

3.3. Splitting methods

Euler’s method and the other integrators mentioned above may be applied
to any given system (2.1). Other techniques only make sense for particular
classes of systems and cannot therefore be incorporated into general purpose
software; however they have gained much popularity in the last decades due,
among other things, to their role in geometric integration (see Section 4). Of
special importance to us is the class of splitting integrators that we consider
next. The monograph (Blanes and Casas 2016) is a very good source of
information.

The Lie-Trotter formula

Splitting methods are applicable to cases where the right hand-side of (2.1)
may be split into two parts

d

dt
x = f(x) = f (A)(x) + f (B)(x), (3.7)

in such a way that the flows ϕ
(A)
t and ϕ

(B)
t of the split systems

d

dt
x = f (A)(x),

d

dt
x = f (B)(x), (3.8)

are available analytically. To avoid trivial cases, we shall hereafter assume
that the Lie bracket [f (A), f (B)] does not vanish identically, because other-
wise Theorem 2.5 shows that (3.7) may also be solved analytically without
resorting to numerical approximations.

Systems of the particular form (2.2) provide an important example. When
they are split by taking

(A) :
d

dt
q = M−1p,

d

dt
p = 0. (3.9)

and

(B) :
d

dt
q = 0,

d

dt
p = F (q), (3.10)

the flows are explicitly given by

ϕ
(A)
t (q, p) = (q + tM−1p, p)

and

ϕ
(B)
t (q, p) = (q, p+ tF (q)).

In molecular dynamics (Schlick 2002) these mappings are respectively called
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a drift (q advances with constant speed and the momentum p remains con-
stant) and a kick (the system stays in its current configuration, and the
momentum is incremented by the action of the force). A direct compu-
tation of the Lie bracket shows that, except in the trivial case where F
vanishes identically, the vector fields in (3.9)–(3.10) do not commute.

A simple Taylor expansion proves that the Lie-Trotter formula

ψh = ϕ
(B)
h ◦ ϕ(A)

h (3.11)

defines a first-order integrator for (3.7):

ψh(x)− ϕh(x) =
h2

2
[f (A), f (B)](x) +O(h3). (3.12)

(Observe that, not unexpectedly, the coefficient of the leading power of h is
proportional to the Lie bracket.) While f (A) and f (B) contribute simultane-
ously to the change of x in (3.7), they do so successively in the Lie-Trotter
integrator. By swapping the roles of A and B, we have the alternative
integrator

ψh = ϕ
(A)
h ◦ ϕ(B)

h .

Strang’s formula

The most popular splitting integrator for (3.7) corresponds to Strang’s for-
mula (Strang 1963)

ψh = ϕ
(B)
(1/2)h ◦ ϕ

(A)
h ◦ ϕ(B)

(1/2)h (3.13)

and, as a Taylor expansion shows, has second order accuracy, ψh(x) −
ϕh(x) = O(h2) as h→ 0. More precisely,

ψh(x)− ϕh(x) =
h3

12
[f (A), [f (A), f (B)]](x)

+
h3

24
[f (B), [f (A), f (B)]](x) +O(h4), (3.14)

so that the leading term of the local error is a linear combination of two
so-called iterated Lie brackets.

When applied to the particular case (2.2), the formula (3.13) yields the
well-known velocity Verlet integrator, the method of choice in molecular
dynamics; the step n→ n+1 comprises two kicks of duration h/2 separated
by a drift of duration h:

pn+1/2 = pn +
h

2
F (qn),

qn+1 = qn + hM−1pn+1/2,

pn+1 = pn+1/2 +
h

2
F (qn+1).
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The evaluations of F represent the bulk of the computational cost of the
algorithm. The value F (qn+1) to be used in the first kick of the next step,
n + 1 → n + 2, is the same used in the second kick of the current step. In
this way, while the very first step requires two evaluations of F , subsequent
steps only need one.

When N steps of the method (3.13) are taken, the map that advances the
numerical solution from x0 to xN , i.e.

ψNh =

N times︷ ︸︸ ︷(
ϕ

(B)
(1/2)h ◦ ϕ

(A)
h ◦ ϕ(B)

(1/2)h

)
◦ · · · ◦

(
ϕ

(B)
(1/2)h ◦ ϕ

(A)
h ◦ ϕ(B)

(1/2)h

)
may be rewritten with the help of the group property (2.6) in the leapfrog
form

ψNh = ϕ
(B)
(1/2)h ◦

N−1 times︷ ︸︸ ︷(
ϕ

(A)
h ◦ ϕ(B)

h

)
◦ · · · ◦

(
ϕ

(A)
h ◦ ϕ(B)

h

)
◦ϕ(A)

h ◦ ϕ(B)
(1/2)h;

now the right hand-side only usesN+1 times the flow ϕ
(B)
t . In the particular

case (3.9)–(3.10), the combination ϕ
(A)
h ◦ ϕ(B)

h corresponds to the following
formulas to advance the numerical solution, n = 1, . . . , N − 1,

pn+1/2 = pn−1/2 + hF (qn),

qn+1 = qn + hM−1pn+1/2;

p jumps over q and then q jumps over p as children playing leapfrog. The
leapfrog implementation makes apparent the truth of an earlier observation:
N steps of the velocity Verlet integrator may be implemented with N + 1
evaluations of F .

Strang’s method is symmetric:

(ψh)−1 =
(
ϕ

(B)
(1/2)h

)−1◦
(
ϕ

(A)
h

)−1◦
(
ϕ

(B)
(1/2)h

)−1

= ϕ
(B)
−(1/2)h ◦ ϕ

(A)
−h ◦ ϕ

(B)
−(1/2)h

= ψ−h.

It is clear that the symmetry is a consequence of the palindromic structure
of (3.13) i.e. the formula reads the same from left to right as from right to
left.

The roles of A and B in (3.13), may be interchanged:

ψh = ϕ
(A)
(1/2)h ◦ ϕ

(B)
h ◦ ϕ(A)

(1/2)h. (3.15)

For (3.9)–(3.10) one then obtains the position Verlet integrator: one step
comprises two drifts of duration h/2 and one kick of duration h.
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Splitting formulas with more stages

It is of course possible to use splitting formulas more sophisticated than
Strang’s. For instance, for any choice of the real parameter b, we may
consider the integrator

ψh = ϕ
(B)
bh ◦ ϕ

(A)
(1/2)h ◦ ϕ

(B)
(1−2b)h ◦ ϕ

(A)
(1/2)h ◦ ϕ

(B)
bh , (3.16)

where we observe that, in one step, the A andB flows of the systems (3.8) act
for a total duration of h units of time each to ensure consistency. Due to its
palindromic structure, this integrator is symmetric and from Theorem 4.4 its
order is at least two. It turns out that the order is exactly two for all choices
of b (Blanes, Casas and Sanz-Serna 2014). The order of splitting integrators
is discussed later in relation with the concept of modified equations.

Even though three B flows and two A flows feature in (3.16), N steps of
the integrator only require the computation of 2N + 1 B flows and 2N A
flows; this is seen by combining flows as we did above for the Strang case.
We say that (3.16) is a palindromic two stage integrator.6 The method
(3.16) may be denoted by(

b, 1/2, (1− 2b), 1/2, b
)
. (3.17)

Similarly, one may consider the two-parameter family of palindromic
three-stage splittings(

b, a, 1/2− b, 1− 2a, 1/2− b, a, b
)
. (3.18)

A full description of this family is given by (Campos and Sanz-Serna 2017);
this reference suggests parameter choices for various applications. There is a
unique choice of a and b resulting in a fourth-order method often associated
with Yoshida’s name (Yoshida 1990); for all other choices, the order is ν = 2.

The family of palindromic s-stage splitting formulas is given by(
b1, a1, b2, a2, . . . , as′ , bs′+1, as′ , . . . , a2, b2, a1, b1

)
, (3.19)

if s = 2s′ is even, and by(
b1, a1, b2, a2, . . . , bs′ , as′ , bs′ , . . . , a2, b2, a1, b1

)
, (3.20)

if s = 2s′−1. After imposing the consistency requirement that at each step
the A and B flows act during h units of time each, the family has s − 1
parameters left. By taking s sufficiently high it is possible to achieve any
desired order (Sanz-Serna and Calvo 1994, Section 13.1). Clearly, increasing
the number of stages does not lead to integrators with a more complicated

6 But (3.16) is still a one-step integrator, because xn+1 is determined by xn; for two-step
schemes the computation of xn+1 requires the knowledge of both xn and xn−1. The
term stage is borrowed from the Runge-Kutta literature.
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implementation; regardless of the value of s numerical integrations just con-
sist of a sequence of flows of the split systems.

It is not necessary to add that to each of the integrators just described
there corresponds a second integrator found by swapping the roles of the
systems A and B, just as (3.15) corresponds to (3.13).

So far our attention has focused on palindromic formulas as these are im-
portant later in connection with the property of reversibility (Theorem 4.2).
It is also possible to consider splittings of the form:

ψh = ϕ
(B)
brh
◦ ϕ(A)

arh
◦ · · · ◦ ϕ(B)

b2h
◦ ϕ(A)

a2h
◦ ϕ(B)

b1h
◦ ϕ(A)

a1h
,

that we denote as (
br, ar, . . . , b2, a2, b1, a1

)
. (3.21)

(
∑

i ai =
∑

i bi = 1). The palindromic formulas in (3.19)–(3.20) are par-
ticular instances of this general format because it is always possible to set
a1 = 0 in (3.21).

Remark 3.4. When a splitting integrator of the general form (3.21) is
applied to the splitting (3.9)–(3.10) of the system (2.2), the result coin-
cides with the application of a so-called symplectic, explicit Runge-Kutta-
Nyström (RKN) method. The properties (order, stability, etc.) of such an
integrator may therefore be studied either by using techniques pertaining
to splitting integrators (as done in this paper) or by employing an RKN
approach. The second methodology was favoured in the early years of geo-
metric integration (Sanz-Serna 1992, Sanz-Serna and Calvo 1994).

3.4. Fixed h stability

If two numerical schemes are candidates to integrate an initial value problem
for a given system (2.1), then the scheme that leads to smaller global errors
for a given computational cost may seem more desirable (but, in the context
of geometric integration, the geometric properties may play a role when
choosing the integrator, see Section 4 below). Even though global errors
may be bounded as in (3.6), in practice, it is almost always impossible, for
the problem at hand, to estimate realistically the error constant implied in
theO(hν) notation in the bound. For this reason, the literature on numerical
integrators has traditionally resorted to well-chosen model problems where
both the numerical and true solutions, xn and x(tn), may be written down
in closed form; the performance of the various integrators on the model
problem may then be investigated analytically and is taken as an indication
of their performance when applied to realistic problems. Note that the
actual numerical solution of the model problem cannot be expected to be
of real practical interest, since in that problem the true solution is available
analytically.
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One degree of freedom

For our purposes, the model problem of choice is the harmonic oscillator
(2.3). For Runge-Kutta methods, for the splitting algorithms in Section 3.3
(and in fact for all one-step integrators of practical interest) a time-step
(qn+1, pn+1) = ψh(qn, pn) may be expressed as[

qn+1

pn+1

]
= M̃h

[
qn
pn

]
, M̃h =

[
Ah Bh
Ch Dh

]
(3.22)

for suitable method-dependent coefficients Ah, Bh, Ch, Dh. The evolution
over n time-steps is then given by[

qn
pn

]
= M̃n

h

[
q0

p0

]
, (3.23)

an expression to be compared with (2.4).
If a given h > 0 is such that |M̃n

h | → ∞ as n → ∞, the magnitude of
numerical solution (qn, pn) will grow unboundedly, while the true solution
of course remains bounded as t→∞. Necessarily, global errors will be large
for large n. Then the integrator is said to be unstable for that particular
choice of h.

Example 3.1. For Euler’s rule (3.2) we find

Ah = Dh = 1, Bh = −Ch = h.

The eigenvalues of M̃h are 1±ih with modulus (1+h2)1/2 and, therefore, for
any fixed h > 0, the powers M̃n

h grow exponentially as n increases. Due to
this numerical instability, Euler’s rule is completely unsuitable to integrate
the harmonic oscillator, and this rules it out as a method to integrate more
complicated oscillatory problems.

More precisely, in the step n→ n+ 1, the radius r = (q2 + p2)1/2, which
remains constant for the true solution, grows like

rn+1 = (1 + h2)1/2rn =

(
1 +

h2

2
+O(h4)

)
rn (3.24)

for the Euler solution, so that rn = (1 + h2)n/2r0. Note that, taking limits
as n → ∞, h → 0, with fixed nh, we find rn → r0 = r(0) = r(nh), as it
corresponds to a convergent method.

Example 3.2. The midpoint rule (3.3) has

Ah = Dh =
1− h2

4

1 + h2

4

, Bh = −Ch =
h

1 + h2

4

.

The characteristic equation of M̃h is

λ2 − 2Ahλ+ 1 (3.25)
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h t = Tper t = 10Tper

Tper/4 6.49e-1 2.00e0
Tper/8 1.60e-1 1.48e0
Tper/16 4.03e-2 4.00e-1
Tper/32 1.01e-2 1.01e-1

Table 3.1. Velocity Verlet integration of the harmonic oscillator. Relative
errors after one or ten oscillation periods

and therefore the product of the eigenvalues is 1. For h 6= 0, |Ah| < 1 and
the matrix has a pair of complex conjugate eigenvalues of unit modulus.
Then the powers M̃n

h remain bounded as n increases and the method is
stable for any h.

Example 3.3. Let us next consider Strang’s splitting (3.13), applied with
the splitting (3.9)–(3.10), which yields the velocity Verlet algorithm. This
has

Ah = Dh = 1− h2/2, Bh = h, Ch = −h+ h3/4;

the characteristic equation is again of the form (3.25). For h > 2, Ah < −1
and the eigenvalues are real and distinct, so that one of them has modulus
> 1, and therefore the powers M̃n

h grow exponentially. For h < 2 the eigen-

values are complex of unit modulus and the powers M̃n
h remain bounded.

For h = 2, M̃h is a nontrivial Jordan block whose powers grow linearly (weak
instability). To summarize, the integrator is unstable for h ≥ 2 and has the
stability interval 0 < h < 2. Integrations with h > 2 lead to extremely large
global errors as we shall see below.

Example 3.4. For the alternative Strang formula (3.15), which yields the
position Verlet algorithm, the coefficients are

Ah = Dh = 1− h2/2, Bh = h− h3/4, Ch = −h.

The discussion is almost identical to the one in the preceding example. The
stability interval is also 0 < h < 2, as one may have guessed from the equal
role that q and −p play in the harmonic oscillator (2.3).

Example 3.5. In the situation of Example 3.3, are values of h below the
upper limit 2 satisfactory? The answer of course depends on the accuracy
required. Table 3.1 gives, for the initial condition q = 1, p = 0, and different
stable values of h, the relative error in the Euclidean norm

|(qn − q(tn), pn − p(tn))|
|(q(tn), p(tn))|
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at the final integration time, when the integration is carried out over an
interval of length either one oscillation period (second column) or ten os-
cillation periods (third column). Columns are consistent with the order of
convergence as in (3.6). The last rows reveal that the error increases linearly
with t (this will not be true when integrating other differential systems). In
the first row the error grows more slowly than t: the numerical solution
(qn, pn) remains close to the unit circle for all values of n and therefore
errors cannot be substantially larger than the diameter of the circle. From
the table we see that if we are interested in errors below 10% over an inter-
val of length equal to ten oscillation periods, then h has to be taken below
2π/32 ≈ 0.20, i.e. well below the upper end, h = 2, of the stability inter-
val. To provide an indication of the effect of using unstable values of h, we
mention that with h = π the error after one period is ≈ 46.4 and after ten
periods ≈ 4.68× 1017.

Before we move to more complicated models, let us make two observa-
tions, valid for Runge-Kutta, splitting integrators and any other method of
practical interest.

Remark 3.5. Because the problem is linear and rotationally invariant,
the magnitude of the relative errors is independent of the initial condition
(q0, p0) 6= (0, 0).

Remark 3.6. Replacing the model (2.3) with the apparently more general
system

dq

dt
= ωp,

dp

dt
= −ωq, ω > 0, (3.26)

with oscillation period 2π/ω, does not really change things: in view of
Remark 3.1 integrating (3.26) with step size h is equivalent to integrating
(2.3) with step size h/ω. Because the length of the integration interval
and the step size in Table 3.1 are given in terms of the oscillation period,
the results displayed are valid for (3.26) for any choice of the value of ω.
Regardless of the initial condition, if we are interested in relative errors
below 10% over an interval of length 20π/ω (equal to ten oscillation periods),
then h has to be taken below 2π/(32ω). Of course, for (3.26), stability
requires that h < 2/ω.

Several degrees of freedom. Stability restrictions on h

Let us now move to the model with d degrees of freedom

d

dt
q = M−1p,

d

dt
p = −Kq,
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where M and K are d × d, symmetric, positive-definite matrices. This is
the Hamiltonian system with

H =
1

2
pTM−1p+

1

2
qTKq. (3.27)

In mechanics, M and K are the mass and stiffness matrices respectively.
This model may transformed into d uncoupled one-degree-of-freedom os-

cillators. In fact, factor M = LLT (which may be done in infinitely many
ways) and diagonalize the symmetric, positive-definite matrix L−1KL−T

as UTL−1KL−TU = Ω2, with U orthogonal and Ω diagonal with diagonal
entries ωi, i = 1, . . . , d. A simple computation yields the next result.

Proposition 3.1. With the notation as above, the (non-canonical) change
of dependent variables, q = L−TUq̄, p = LUΩp̄, decouples the system into
a collection of d harmonic oscillators (superscripts denote components):

dq̄i

dt
= ωip̄

i,
dp̄i

dt
= −ωiq̄i, i = 1, . . . , d.

Now, for all integrators of practical interest, decoupling and numerical
integration commute: carrying out the integration in the old variables (q, p)
yields the same result as successively (i) changing variables in the system, (ii)
integrating each of the uncoupled oscillators, (iii) translating the result to
the old variables. Therefore stability may be analyzed under the assumption
that the integration is performed in the uncoupled version.

Example 3.6. Consider a particular case with d = 2, M = L = I, ω1 = 1
and ω2 = 100 and the initial condition

q̄1(0) = 1, p̄1(0) = 0, q̄2(0) = 0.01, p̄2(0) = 0.

We wish to integrate with the velocity Verlet algorithm over 0 ≤ t ≤ 20π
(ten periods of the slower oscillation) and aim at absolute errors of mag-
nitude ≈ 0.1 in the Euclidean norm in the R4 space of the variables
(q1, q2, p1, p2) or, equivalently, because here q = Uq̄ with U orthogonal,
in the Euclidean norm of the variables (q̄1, q̄2, p̄1, p̄2). On accuracy grounds
it would be sufficient to take h ≈ 0.2: from Example 3.5 we know this is
enough to integrate the first uncoupled oscillator with the desired accuracy,
and the second oscillator should not contribute significantly to the error,
due to the smallness of q̄2(t) and p̄2(t) for all t. However, unless we take
hω2 < 2, i.e. h < 0.02, the errors in q̄2(t) and p̄2(t) will grow exponentially
due to instability. In this example, and in many situations arising in prac-
tice, to avoid instabilities, the value of h has to be chosen much smaller than
accuracy would require. As a result the computational effort to span the
time interval of interest would be much higher than it may be expected on
accuracy grounds. These situations are called stiff. To deal with stiffness
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one may resort to suitable implicit integrators such as the midpoint rule or
to explicit integrators with large stability intervals.

Remark 3.7. It may seem that the initial condition in the preceding ex-
ample is somehow contrived as the sizes of two components of q̄ are so
unbalanced. This is not so: it is easily checked that, in terms of the original
energy in (3.27), the contributions to H of the ω1 and ω2 oscillations are
both equal to 1/2. Those oscillations are called normal modes in mechanics.

The present discussion is continued in Section 4.4.
We emphasize that, while the preceding material refers to the quadratic

Hamiltonian (3.27), one may expect that it has some relevance for Hamilto-
nians close to that model. However there are cases where the behaviour of a
numerical integrators departs considerably from its behaviour when applied
to (3.27). This point is discussed in Section 9.2.

4. Geometric integration

Classically, the development of numerical integrators for ordinary differen-
tial equations focused on general-purpose methods (such as linear multistep
or Runge-Kutta formulas) that were selected after analyzing their local error
and fixed h stability properties. Geometric integration (Sanz-Serna 1997) is
a newer paradigm of numerical integration, where the interest lies in meth-
ods tailored to the problem at hand with a view to preserving some of its
geometric features. The development of geometric integration started in the
1980’s with the study of symplectic integrators for Hamiltonian systems by
Feng Kang and others (Sanz-Serna 1992, Sanz-Serna and Calvo 1994). Use-
ful monographs are (Leimkuhler and Reich 2004, Hairer et al. 2010, Feng
and Qin 2010, Blanes and Casas 2016). We review the geometric integra-
tion of Hamiltonian and reversible systems and study the use of modified
equations, a key tool for our purposes. We also examine the behaviour of
geometric integrators in the harmonic model problem. The section con-
cludes showing the optimality of the stability interval of the Strang/Verlet
integrator.

4.1. Hamiltonian problems

Splitting integrators are symplectic in the following sense. Assume that
the system (3.7) is Hamiltonian and that is split in such a way that both
split systems (3.8) are also Hamiltonian. Then the splitting integrator map-
ping ψh is symplectic, as a composition (Proposition 2.2) of flows that are
individually symplectic (Theorem 2.1). This ensures that the numerical so-
lution shares the specific properties of Hamiltonian flows that derive from
symplecticness. Note that to have a symplectic ψh it is not enough that
the system being integrated be Hamiltonian; if the split vector fields f (A)
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and f (B) are not Hamiltonian themselves, then ψh cannot be expected to be
symplectic. Of course, all possible splittings of a Hamiltonian vector field
as a sum of Hamiltonian vector fields, f = f (A) + f (B), may be obtained by
splitting the Hamiltonian H = H(A) + H(B) in an arbitrary way and then
setting f (A) = J−1∇H(A), f (B) = J−1∇H(B). To sum up:

Theorem 4.1. Assume that the Hamiltonian of the system (2.8) is writ-
ten as H = H(A) + H(B) and split correspondingly f = J−1∇H into
f (A) = J−1∇H(A), f (B) = J−1∇H(B). For any splitting integrator (3.21)
and any h, the mapping ψh is symplectic. In particular, ψh conserves ori-
ented volume.

Note that the n-fold composition ψnh that advances the numerical solution
over n time-steps is then also symplectic (Proposition 2.2).

Some implicit Runge-Kutta methods, including the midpoint rule and
Gauss methods, are also symplectic: ψh is a symplectic map whenever the
system (2.1) being integrated is Hamiltonian as in (2.8). No explicit Runge-
Kutta method is symplectic. In particular, Euler’s rule is not symplectic;
according to Example 3.1 the Euler discretization of the harmonic oscillator
increases area, as M̃h has determinant 1+h2. This increase in area is related
to the estimate (3.24) that shows that the Euler solution spirals outward, a
non-Hamiltonian behaviour.

In the particular case of the Hamiltonian in (2.10), taking T and U to
play the roles of H(A) and H(B) respectively leads to the splitting of the
differential system given in (3.9)–(3.10) with F = −∇U .

It would also be desirable to have integrators that preserved energy when
applied to the Hamiltonian system (2.8), i.e. H ◦ ψh = H. Unfortunately,
for realistic problems such a requirement is incompatible with ψh being
symplectic (Sanz-Serna and Calvo 1994, Section 10.3). It is then standard
practice to insist on symplecticness and sacrifice conservation of energy.
There are several reasons for this. Symplecticness plays a key role in the
Hamiltonian formalism (cf. Theorem 2.1). In addition, while, as we have
seen, it is not difficult to find symplectic formulas, standard classes of in-
tegrators do not include energy-preserving schemes except if the energy is
assumed to have particular forms. Finally, as we shall discuss below, sym-
plectic schemes have small energy errors even when the integration interval
is very long.

4.2. Reversible problems

For reversible systems we have, from Proposition 2.5 and Theorem 2.4:

Theorem 4.2. Assume that (3.7), and the split systems (3.8) are re-
versible with respect to the same involution S. If the system is integrated
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by means of a palindromic splitting integrator (3.19) or (3.20), then, for any
h, the mapping ψh will also be reversible.

The midpoint rule and Gauss Runge-Kutta formulas also generate re-
versible mappings ψh whenever they are applied to a reversible system. No
explicit Runge-Kutta method is reversible.

The n-fold composition ψnh that advances the numerical solution over n
time-steps is then also reversible (Proposition 2.5). However note that,
if variable time steps were taken, then the mapping ψhn ◦ · · · ◦ ψh1 , that
advances the solution from t0 to tn+1, would not be reversible. This is one
of the reasons for not considering here variable time steps; see Remark 3.3.

The use of reversible integrators (with constant step sizes) ensures that
the numerical solution inherits relevant geometric properties of the true
solution of the differential system (Cano and Sanz-Serna 1997, Cano and
Sanz-Serna 1998).

4.3. Modified equations

Modified equations are rather old (see references in (Griffiths and Sanz-
Serna 1986)); however their use as a means to analyse numerical integrators
has only become popular in the last twenty years, after the emergence of
geometric integration (Sanz-Serna 1996).

Motivation

Let us first look at some examples:

Example 4.1. Suppose that the system (2.1) is solved with Euler’s rule
(3.2) and denote by ψh the corresponding map x+hf(x). Consider the new
system, parameterized by h,

d

dt
x = f̃h(x), f̃h(x) = f(x)− h

2
f ′(x)f(x), (4.1)

with flow ϕ̃t (for simplicity, the dependence of this flow on the parameter h
is not incorporated in the notation). By proceeding as in the derivation of
(3.5), we find that the Taylor expansion of ϕ̃h in powers of h is

ϕ̃h(x) = x+ hf̃h(x) +
h2

2
f̃ ′h(x)f̃h(x) +O(h3)

= x+ h

(
f(x)− h

2
f ′(x)f(x)

)
+
h2

2
f ′h(x)fh(x) +O(h3)

= x+ hf(x) +O(h3).

Thus, the Euler mapping ψh(x), which differs from the flow of the system
(2.1) being solved in O(h2) terms (first-order consistency), differs from the
flow ϕ̃h of the so-called modified or shadow system (4.1) in O(h3) terms
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(second-order consistency). According to Theorem 3.1 (see (Griffiths and
Sanz-Serna 1986) for details), over bounded time intervals, the Euler solu-
tion differs from the corresponding solution of the modified system in O(h2)
terms. Therefore we may expect that the properties of the Euler solutions
for (2.1) will resemble the properties of the solutions of (4.1) more than
they resemble the properties of solutions of (2.1) itself. When studying the
properties of Euler’s rule, working with (4.1) rather than with ψh should
be advantageous, because differential equations are simpler to analyze than
maps. An illustration is provided next.

Example 4.2. Let us particularize the preceding example to the case of
the harmonic oscillator (2.3). The modified system (4.1) is found to be

dq

dt
= p+

h

2
q,

dp

dt
= −q +

h

2
p,

and from here a simple computation yields for the radius r = (q2 + p2)1/2

dr

dt
=
h

2
r,

so that, over a time interval of length h, r is multiplied by the factor
exp(h2/2) = 1 +h2/2 +O(h3). This is precisely what we found in (3.24) for
the Euler solution of the harmonic oscillator (but the O(h3) remainder here
will not coincide with the one in (3.24), because there is an O(h3) difference
between ψh and ϕ̃h).

Example 4.3. In (4.1), f̃h(x) is a first-degree polynomial in h. If f̃h(x) is
chosen to be quadratic in h, i.e. f̃h = f − (h/2)f ′f + h2f2, it is possible to
determine f2 so as to achieve ψh − ϕ̃h = O(h4) for the Euler map ψh(x) =
x+hf(x). Similarly, taking f̃h(x) as a suitable chosen polynomial in h with
degree µ = 3, 4 . . . it is possible to achieve ψh − ϕ̃h = O(hµ+2).

Definition

Given a (consistent) integrator ψh for the system (2.1), there exists a
(unique) formal series in powers of h

f̃∞h (x) = f(x) + hg[1](x) + h2g[2](x) + · · · (4.2)

(the g[µ] map the space RD into itself) with the property that, for each

µ = 0, 1, . . ., the flow ϕ̃
[µ]
h of the modified system

d

dt
x = f̃

[µ]
h (x), f̃

[µ]
h (x) = f(x) + hg[1](x) + · · ·+ hµg[µ](x), (4.3)

satisfies

ψh(x)− ϕ̃[µ]
h (x) = O(hµ+2). (4.4)
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Furthermore, for a symmetric method, the odd-numbered g[µ](x) are iden-
tically zero:

g[1](x) = g[3](x) = g[5](x) = · · · = 0. (4.5)

As µ increases, the solutions of the modified system (4.3) provide bet-
ter and better approximations to ψh. For some vector fields f and some
integrators (see an example in Proposition 4.1 below), it may happen that
the formal series (4.2) converges for each x (so that f̃∞h is a well-defined

mapping RD :→ RD) and that furthermore the flow ϕ̃
[∞]
h of

d

dt
x = f̃∞h (x) (4.6)

coincides with ψh. In those cases, (4.6) provides an exact modified system
to study ψh. However such situations are exceptional, because, in general,
discrete dynamical systems (such as the one generated by ψh) possess fea-
tures that cannot appear in flows of autonomous differential systems. It
is the lack of convergence of (4.2) that makes it necessary to consider the
truncations in (4.3) which do not exactly reproduce ψh but approximate it
with an error as in (4.4). It is possible, by increasing µ as h becomes smaller

and smaller, to render the discrepancy ψh(x)−ϕ̃[µ(h)]
h (x) exponentially small

with respect to h, as first proved by Neishtadt (Sanz-Serna and Calvo 1994,
Section 10.1).

Finding explicitly the modified equations

For splitting integrators, the terms of the series (4.2) may be found ex-
plicitly by using the Baker-Hausdorff-Campbell formula. The next theorem
provides a summary of some key points; a more detailed description is given
in Section 9.1.

Theorem 4.3. Assume that system (3.7) is integrated by means of a (con-
sistent) splitting algorithm of the general format (3.21). The series (4.2) is
of the form(

f (A) + f (B)
)

+ hC1,1[f (A), f (B)]

+ h2
(
C2,1[f (A), [f (A), f (B)]] + C2,2[f (B), [f (A), f (B)]]

)
+ · · ·

where, for each µ = 1, 2 . . ., the coefficient of hµ is a linear combination
of linearly independent iterated commutators involving µ + 1 fields f (A),
f (B). The coefficients Ci,j that appear in the linear combinations are known
polynomials on the coefficients ak and b` that appear in the formula (3.21).

If the splitting is palindromic then all the coefficients C2i+1,j correspond-
ing to odd powers of h vanish.

For Runge-Kutta methods it is also possible to give expression for the
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terms in the series (4.2), see (Calvo, Murua and Sanz-Serna 1994, Sanz-
Serna 1996).

Modified equations and order

If in (4.2), the functions g[1], . . . , g[µ−1], µ ≥ 2, vanish so that

f̃
[µ]
h (x)− f(x) = hµg[µ](x) +O(hµ+1)

then, the flow ϕ̃
[µ]
h of (4.3) and the flow ϕh of (2.1) will satisfy

ϕ̃
[µ]
h (x)− ϕh(x) = hµ+1g[µ](x) +O(hµ+2)

which, in view of (4.4) implies that

ψh(x)− ϕh(x) = hµ+1g[µ](x) +O(hµ+2)

i.e. that the integrator ψh(x) has order µ (or higher). The converse is also
true, because the argument may be reversed: order ≥ µ implies that g[1],
. . . , g[µ−1] must vanish. From (4.5), the order of a symmetric methods must
be an even integer. To sum up, we have the following result, which makes
it possible to use the series (4.2) rather than the mapping ψh to study the
order of a given integrator.

Theorem 4.4. A (consistent) integrator has order ≥ ν, ν ≥ 2, if and only
if the functions g[1], . . . , g[ν−1] appearing in (4.2) are identically zero.

When the order is exactly ν, ν = 1, 2, . . ., the leading term of the trunca-
tion error is hν+1g[ν](x).

A (consistent) symmetric integrator has even order.

This theorem, in tandem with Theorem 4.3, provides the standard way
to write down the order conditions for splitting methods, i.e. the relations
on the coefficients ak, b` that are necessary and sufficient for an integrator
to have order ν. Specifically, order ≥ ν is equivalent to Ci,j = 0 whenever
i < ν. Here are the simplest illustrations:

• The Lie-Trotter formula (3.11) has ν = 1, and, according to Theo-
rems 4.3 and 4.4, the leading term of the local error is a constant
multiple of h2[f (A), f (B)], which matches our earlier finding in (3.12).

• The condition C1,1 = 0 is necessary and sufficient for an integrator to
have order ν ≥ 2. It is automatically satisfied for palindromic formulas.

• Strang’s formula (3.13) has order exactly 2. The coefficient of h3 in the
expansion of the local error is a combination of iterated commutators
with three fields. This was already found in (3.14).

• To have order ν ≥ 3 we have to impose the order conditions C1,1 = 0,
C2,1 = 0, C2,2 = 0.
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Modified equations and geometric integrators

The geometric properties of integrators have a clear impact on their modified
systems.

Let us begin with the Hamiltonian case. If the split fields in (3.8) are
Hamiltonian with Hamiltonian functions H(A) and H(B), then, by invoking
Theorem 2.6, it is feasible to work with iterated Poisson brackets of H(A)

and H(B) rather than with the iterated Lie brackets of f (A) and f (B). Then
the expansion in Theorem 4.3 is replaced by(

H(A) +H(B)
)
− hC1,1{H(A), H(B)}

+ h2
(
C2,1{H(A), {H(A), H(B)}}+ C2,2{H(B), {H(A), H(B)}}

)
+ · · ·

For each µ, the modified system (4.3) is a Hamiltonian system. This is a
reflection of the fact that, according to Theorem 4.1, splitting integrators
give rise to mappings ψh that are symplectic. In the class of Runge-Kutta
methods it is also true that symplectic integrators have modified systems
that are Hamiltonian.

Speaking informally, we may say that all integrators change the system
being integrated into a modified system; in nonsymplectic methods the (per-
haps small) change is such that the modified system is no longer Hamilto-
nian. Symplectic methods are those that change Hamiltonian systems into
Hamiltonian systems. This heuristic description cannot be made entirely
rigorous because, as pointed out above, the exact modified system (4.6)
only exists in a formal sense due to the lack of convergence of the series in
(4.2). The existence of Hamiltonian modified system is at the basis of many
favourable properties of symplectic integrators.

Remark 4.1. The considerations above only make sense if the step size
h is held constant along the integration interval. Since the modified system
changes with h, variable step size implementations of symplectic integra-
tors do not have well-defined modified systems and in fact their behaviour
is closer to that of non-symplectic integrators than to that of symplectic
integrators used with constant step sizes (Calvo and Sanz-Serna 1993).

For the reversible case, consider the situation of Theorem 4.2. From
Proposition 2.7 all iterated commutators involving an odd number of fields
are themselves S-reversible. Since, according to Theorem 4.3, for palin-
dromic splitting integrators the iterated commutators with an even number
of fields enter the expansion (4.2) with null coefficients, then the modified
systems (4.3) are reversible.

Conservation of energy by symplectic integrators

As noted above, Neishtadt proved that, under suitable regularity assump-
tions, the modified system may be chosen so as to ensure that its h-flow is
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exponentially close to the mapping ψh. For symplectic integrators, the mod-
ified system is Hamiltonian and therefore exactly preserves its own Hamilto-
nian function that we denote by H̃h. It follows that, except for exponentially
small errors, ψh preserves H̃h. On the other hand for a symplectic integra-
tor of order ν, the difference between H̃h and H is O(hν) (Theorem 4.4).
These considerations make it possible to prove that symplectic integrators
preserve the value of the Hamiltonian H of the system being integrated
with error O(hν) over time intervals 0 ≤ t ≤ Th whose length Th increases
exponentially as h→ 0 (Hairer et al. 2010).

For linear problems, an exact modified system exists and using the same
argument, we may conclude that the error in energy of a symplectic inte-
grator has an O(hν) bound over the infinite interval 0 ≤ t <∞, or in other
words the energy error may be bounded independently of the number of
step taken. For the case of the harmonic oscillator, this will be illustrated
presently.

4.4. Geometric integrators and the harmonic model problem

We take again the integration of the harmonic oscillator as a model problem
(see (3.22)–(3.23)); now our interest is in studying in detail the behaviour
of geometric integrators.

We focus on (consistent) integrators that are both symplectic and re-
versible. In terms of the matrix M̃h, the first of these properties corre-
sponds to AhDh−BhCh = 1 and, when this condition holds, reversibility is
equivalent to Ah = Dh. Our treatment follows (Blanes et al. 2014).

The characteristic polynomial of M̃h is of the form (3.25) and there are
four possibilities, the first two correspond to unstable simulations and the
other two to stable simulations:

• h is such that |Ah| > 1. In that case M̃h has spectral radius > 1 and
therefore the powers M̃n

h grow exponentially with n.

• Ah = ±1 and |Bh|+ |Ch| > 0. The powers M̃n
h grow linearly with n.

• Ah = ±1, Bh = Ch = 0, i.e. M̃h = ±I, M̃n
h = (±I)n.

• h is such that |Ah| < 1. In that case, M̃h has complex conjugate
eigenvalues of unit modulus and the powers M̃n

h , n = 0, 1, . . . remain
bounded.

Comparing (3.22) with the result of setting t = h in (2.4), we see that,
by consistency, Bh = h + O(h2) and Ch = −h + O(h2), and therefore
Ah = (1 + BhCh)1/2 = 1 − h2/2 + O(h3). Thus, for h > 0 sufficiently
small, Ah < 1 and the integration will be stable. The stability interval of
the integrator is the longest interval (0, hmax) such that integrations with
h ∈ (0, hmax) are stable. For reasons discussed in Example 3.6 methods
with long stability intervals are often to be favoured. From Example 3.2,
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the midpoint rule has stability interval (0,∞). Explicit integrators have
stability intervals of finite length.

For each h such that |Ah| ≤ 1, it is expedient to introduce θh ∈ R such
that Ah = Dh = cos θh. For |Ah| < 1, we have sin θh 6= 0 and we may define

χh = Bh/ sin θh. (4.7)

In terms of θh and χh, the matrices in (3.22) and (3.23) are then

M̃h =

[
cos θh χh sin θh

−χ−1
h sin θh cos θh

]
(4.8)

and

M̃n
h =

[
cos(nθh) χh sin(nθh)

−χ−1
h sin(nθh) cos(nθh)

]
. (4.9)

For a value of h in the (stable) case Ah = ±1, Bh = Ch = 0, one has
sin θh = 0, so that (4.7) does not make sense. However the matrix M̃h is of
the form (4.8) for any choice of χh. (Typically, for such a value of h, one
may avoid the indeterminacy in the value of χh by taking limits as ε → 0
in χh+ε = Bh+ε/ sin θh+ε.)

For a method of order ν, χh = 1 + O(hν), θh = h + O(hν+1) as h → 0.
By comparing the numerical M̃n

h in (4.9) with the true Mnh in (2.4), one
sees that a method with θh = h would have no phase error: the angular
frequency of the rotation of the numerical solution would coincide with
the true angular frequency of the harmonic oscillator. More generally, the
difference θh−h governs the phase error. According to (4.9), this phase error
grows linearly with n (recall Table 3.1). On the other hand, a method with
χh = 1 would have no energy error: the numerical solution would remain on
the correct level curve of the Hamiltonian i.e. on the circle p2 +q2 = p2

0 +q2
0.

The discrepancy between χh and 1 governs the energy errors. In (4.9) we
see that these are bounded as n grows.

The preceding considerations may alternatively be understood by consid-
ering the modified Hamiltonian given in the next result.

Proposition 4.1. Consider the application to the harmonic oscillator
(2.3) of a (consistent) reversible, volume-preserving integrator (3.22) and
assume that the step size h is stable, so that M̃h may be written in the form
(4.8). Then ψh exactly coincides with the h flow of the modified Hamiltonian

H̃h =
θh
2h

(
χhp

2 +
1

χh
q2

)
.

In particular numerical trajectories are contained in ellipses

χhp
2 +

1

χh
q2 = χhp

2
0 +

1

χh
q2

0 (4.10)

rather than in circles (Figure 4.1).
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Figure 4.1. Modified Hamiltonian for velocity (left panel) and position (right
panel) Verlet. The dots are the first five points along a discrete orbit of the
velocity/position Verlet integrator initiated at (q, p) = (1, 0) and the gray line
provides the associated level set of the modified Hamiltonian. For comparison,
the black contour line shows the corresponding level set of the true Hamiltonian.

Remark 4.2. A comparison of a given integrator (3.22) with (2.4) shows
that [

qn+1

pn+1

]
= M̃h

[
qn
pn

]
, M̃h =

[
Ah −Ch
−Bh Dh

]
(4.11)

is a second integrator of the same order of accuracy. We may think that
(4.11) arises from (3.22) by changing the roles of the variables q and p. In
the particular case of splitting integrators, (4.11) arises from (3.22) after
swapping the roles of the split systems A and B. The integrators (3.22) and
(4.11) share the same interval of stability and the same θh. The function χh
of (4.11) is obtained by changing the sign of the reciprocal of the function χh
of (3.22). The important function ρ(h) to be introduced in Proposition 6.3
is also the same for (3.22) and (4.11). The velocity Verlet algorithm and
the position Verlet algorithm provide an example of this kind of pair of
integrators (see Examples 3.3 and 3.4).

The results we have just presented may be extended to quadratic Hamilto-
nians with d degrees of freedom (3.27): it is sufficient to use diagonalization
as in Proposition 3.1. In particular, for stability we require that the stability
interval of the integrator contains all products hωi, where the frequencies
ωi are the square roots of the eigenvalues of L−1KL−T , with LLT = M .

4.5. Optimal stability of Strang’s method

Let us fix an integer N and consider consistent palindromic splitting inte-
grators (3.19)–(3.20) with s = N ; these use N evaluations of F per step
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when applied to problems of the form (3.9)–(3.10). The corresponding co-
efficient Ah in (3.22) is a polynomial of degree N in the variable z = h2

(for obvious reasons Ah is often called the stability polynomial of the in-
tegrator). We pointed out above that consistency imposes the relation
Ah = 1 − z/2 + O(h2). Our aim is to identify, among the class just de-
scribed, the polynomial Ah(z) that satisfies |Ah(z)| < 1 for 0 < h < hmax

with hmax as large as possible. As we shall show presently, the Ah(z) sought
corresponds to the integrator

ψh =

Ntimes︷ ︸︸ ︷
ψVh/N ◦ · · · ◦ ψ

V
h/N , (4.12)

where ψVh is the mapping associated with the Strang/Verlet formula (3.13).7

Note that to carry out a step of length h with the method in (4.12) one just
has to take N consecutive steps of length h/N of standard velocity Verlet.
In other words, subject to stability, if one wishes to take as long a step as
possible with a budget of N evaluations of the force per step, the best choice
is to concatenate N steps of Strang/Verlet.8

To see the optimality of ψh in (4.12), we first note that, after expressing
ψVh/N in terms of the A and B flows and merging consecutive B flows, the

mapping (4.12) corresponds indeed to a palindromic splitting with N stages.
Then, from Example 3.3 we know that Verlet is stable for 0 < h < 2 and
this implies that (4.12) is stable for 0 < h/N < 2 (for (4.12) the powers of
M̃h are powers of the Verlet matrix M̃V

h/N ). In this way (4.12) has stability

interval (0, 2N) and we shall prove next that this is the longest possible.
From Example (3.3), Verlet with step size h/N has AVh/N = 1 − h2/(2N2),

which, in view of (4.8)–(4.9), implies that for (4.12) the coefficient Ah has
the expression

cos θh = cos(NθVh/N ).

Recalling the definition TN (cosα) = cos(Nα) of the Chebyshev polynomial
TN , we observe that for (4.12)

Ah(z) = TN
(
1− z

2N2

)
.

Well-known properties of TN , imply that no other polynomial Ah(z) of
degree ≤ N with Ah = 1 − z/2 + O(h2) has modulus ≤ 1 in the interval
−1 < 1− z/(2N2) < 1, i.e. when 0 < h < 2N .

7 Of course if, rather than in integrators of the format (3.19)–(3.20), one is interested in
the corresponding palindromic integrators that start and end with an A flow, then, in
the right-hand side of (4.12), one has to use (3.15) rather than (3.13).

8 More precisely, if one is interested in methods that start with a kick (resp. drift) one
has to concatenate the velocity (resp. position) version of Verlet.
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5. Monte Carlo methods

In this section we review some basic concepts and principles of Monte Carlo
methods aimed at computing integrals with respect to a given probability
distribution (Sokal 1997, Asmussen and Glynn 2007, Liu 2008, Diaconis
2009). We also describe the Hamiltonian or Hybrid Monte Carlo (HMC)
method and some of its variants.

5.1. Simple Monte Carlo Methods

Given a probability distribution µ in RD (the target distribution) and a
function F : RD → R, the problem addressed by the algorithms considered
here is to numerically estimate the following D-dimensional integral with
respect to µ,

µ(F ) =

∫
RD

F (x)µ(dx) . (5.1)

In general, µ(F ) cannot be determined analytically. Moreover, since the
dimension D might not be small, conventional numerical quadrature is likely
not to be practical or even feasible.

The simple Monte Carlo method approximately computes µ(F ) in (5.1)
by generating N independent and identically distributed (i.i.d.) samples
X1, . . . , XN from µ, evaluating the function F at these samples and using
the estimator

F̄N =
1

N

N∑
i=1

F (Xi) . (5.2)

Assuming that µ(F ) <∞, the law of large numbers states that

lim
N→∞

F̄N = µ(F ) as N →∞,

almost surely. If, in addition, the standard deviation σ0(F ) of the random
variable F (X), X ∼ µ, defined by

σ0(F )2 =

∫
RD

(F (x)− µ(F ))2µ(dx) (5.3)

is finite, the central limit theorem ensures the following distributional limit

N1/2(F̄N − µ(F ))
d→ N (0, σ0(F )2) as N →∞.

Loosely speaking, this may be interpreted as stating that the distribution
of F̄N is approximately N (0, σ0(F )2/N). Hence, the standard deviation of
the error F̄N −µ(F ) decreases like the inverse square root of the number of
samples. Often this standard deviation is referred to as Monte Carlo error.
Thus, to halve the Monte Carlo error the number of i.i.d. samples needs to
be quadrupled.
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In most cases of practical interest, one cannot directly generate i.i.d.
samples Xi from µ and resorts to Markov Chain Monte Carlo methods.

5.2. Markov Chain Monte Carlo Methods

Recall that a Markov chain with state space RD is a sequence of random
D-vectors {Xi}i∈N that satisfies the Markov property

P(Xi+1 ∈ A | X1, . . . , Xi) = P(Xi+1 ∈ A | Xi)

for all measurable sets A. In other words, given the past history of the chain
X1, . . . , Xi, the only information required to update the state of the chain is
the current state Xi. Here our interest is restricted to (time–)homogenuous
chains, i.e. to cases where P(Xi+1 ∈ A | Xi) is independent of i.

Typically one constructs a homogeneous Markov chain in terms of its
transition probabilities Πx, x ∈ RD. These are the probabilities

Πx(A) = P(Xi+1 ∈ A | Xi = x) ,

with i ∈ N and A measurable. Often Πx may be computed as

Πx(A) =

∫
A

Πx(dx′),

for a suitable kernel Πx(dx′). Clearly the chain is determined once the
transition probabilities and the distribution of X1 are known. In practice,
the term chain is used in a wide sense to refer to the transition probabilities
without specifying the distribution of X1.

A probability distribution ν is an invariant or stationary distribution of
a Markov chain with transition probabilities Πx if∫

RD
Πx(A)ν(dx) =

∫
A
ν(dx)

holds for all measurable sets A. We also say that Πx preserves ν. In the
situations we are interested in, a Markov chain will have a unique invariant
distribution. If ν is the invariant distribution of the chain and in addition
X1 ∼ ν, one says that the chain is at stationarity.

Markov Chain Monte Carlo (MCMC) methods generate a Markov chain
{Xi}i∈N that has the target µ as an invariant distribution and estimate
µ(F ) by the average (5.2). By analogy to the simple i.i.d. situation de-
scribed above, one would like to have MCMC methods that meet two basic
requirements.

• For each F : RD → R such that µ(F ) <∞,

F̄N
a.s.→ µ(F ) as N →∞ . (5.4)

This is the MCMC analog of the law of large numbers.
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• For each F : RD → R such that µ(F ) <∞ and σ0(F ) <∞,

N1/2(F̄N − µ(F ))
d→ N (0, σ(F )2) as N →∞, (5.5)

for some σ(F ). This is the MCMC analog of the central limit theorem.

For each fixed function F and Markov chain {Xi}i∈N, the constant σ(F )2

appearing in (5.5) is called the asymptotic variance of the MCMC estima-
tor F̄N . A straightforward calculation shows that this asymptotic variance
satisfies

σ(F )2 = σ0(F )2 + 2
∑
i>1

covµ(F (X1), F (Xi))

where σ0(F ) is defined in (5.3) and the covariances are computed assuming
that the chain is at stationarity. If the Xi were independent, all the covari-
ances covµ(F (X1), F (Xi)) would vanish and we would recover the standard
central limit theorem. Since in most interesting cases the Xi’s in the Markov
chain are not mutually independent, often σ(F ) is larger than σ0(F ). Gen-
erally speaking it is desirable to have low values of covµ(X1, Xi) so that
σ(F ) is not far away from σ0(F ) for each F .

In practice, the inputs that the user has to supply to an MCMC algorithm
include, at least:

• A sample of the initial state X1. Ideally, this sample should be taken
in a domain of state space of high probability. Otherwise the chain
may need many steps to start generating useful samples. A discussion
of this issue is out of the scope of this paper.
• A, not necessarily normalized, density function ρ of the target µ (i.e.

the probability density function is Z−1ρ(x), where Z =
∫
RD ρ(x)dx

is not assumed to be 1; the value of Z is not required to run the
algorithms).

5.3. Metropolis Method for Reversible Maps

The replacement of the i.i.d. variables that simple Monte Carlo uses in the
estimator (5.2) with variables of a Markov chain is of interest because it is
not difficult to construct a chain that has a given target µ as an invariant
distribution. The key of this construction is the Metropolis-Hastings ac-
cept/reject mechanism, that turns a given proposal chain (for which µ is not
invariant) into a Metropolized chain, which leaves µ invariant. The simplest
Metropolis rule was introduced in 1953 in a landmark paper (Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller 1953); later Hastings provided an
important generalization (Hastings 1970).

A review of the Metropolis-Hastings rule is not required for our purposes
here. However we shall present a trimmed down variant of Metropolis-
Hastings that we will use to define HMC. This variant works in the special
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case where the target µ is invariant with respect to a linear involution, takes
as an input a reversible deterministic map and manufactures a Markov chain
that preserves µ. While the chain that we construct is not expected to satisfy
a law of large numbers and therefore has no practical merit, Proposition 5.1
will be used later to analyse HMC methods.

The technique, patterned after (Fang, Sanz-Serna and Skeel 2014), re-
quires a non-normalized density function ρ : RD → R of the target, and,
as pointed out above, a map Φ : RD → RD that is reversible with respect
to a linear involution S that preserves probability, i.e. ρ ◦ S = ρ. The ac-
cept/reject mechanism is based on the acceptance probability α : RD → [0, 1]
defined as

α(x) = min

{
1,
ρ(Φ(x))

ρ(x)

∣∣det Φ′(x)
∣∣} . (5.6)

(Φ′ is the Jacobian matrix of Φ.)
We consider the following algorithm:

Algorithm 5.1. (Metropolized Reversible Map) Given X0 ∈ RD
(the input state), the method outputs a state X1 as follows.

Step 1 Generate a proposal move X̃1 = Φ(X0).

Step 2 Output X1 = γX̃1 + (1 − γ)S(X0) where γ is a Bernoulli random
variable with parameter α(X0) (i.e. γ is 1 with probabilty α(X0) and
0 with probability 1− α(X0)).

Step 2 contains the accept/reject mechanism. In case of acceptance the
updated state coincides with the state proposed X̃1 from Step 1; in case
of rejection the updated state is S(X0). Note that, in case of rejection,
conventional Metropolis mechanisms set the updated state of the chain to
be X0.

Proposition 5.1. In the situation described above, let {Xi}i∈N be the
Markov chain defined by iterating Algorithm 5.1. Then the target distribu-
tion is an invariant distribution of this chain.

Proof. The transition kernel of {Xi}i∈N is given by

Πx(dx′) = α(x)δ(x′ − Φ(x))dx′ + (1− α(x))δ(x′ − S(x))dx′

where δ(·) is the Dirac-delta function. Hence, for any measurable set A, if
1A(x) denotes the corresponding indicator function,∫

RD
Πx(A)ρ(x)dx =

∫
A
ρ(x)dx

+

∫
RD

α(x)ρ(x)1A(Φ(x))dx−
∫
RD

α(x)ρ(x)1A(S(x))dx .
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By change of variables in the third integral,∫
RD

Πx(A)ρ(x)dx =

∫
A
ρ(x)dx

+

∫
RD

α(x)ρ(x)1A(Φ(x))dx

−
∫
RD

α
(
S(Φ(x))

) ∣∣det Φ′(x)
∣∣ ρ(Φ(x))1A(Φ(x))dx,

where we used the hypothesis that ρ ◦ S = ρ. The last two terms on the
right-hand side of this equation cancel because

α
(
S(Φ(x))

)
= min

{
1,

ρ(x)

ρ(Φ(x))

∣∣det Φ′(x)
∣∣−1
}

= α(x)ρ(x)
1

ρ(Φ(x))

∣∣det Φ′(x)
∣∣−1

,

which follows from the reversibility of Φ, the hypothesis ρ ◦ S = ρ and
Proposition 2.4.

5.4. The HMC method: basic idea

We consider a target distribution Π in Rd. If U : Rd → R denotes the
negative logarithm of the (not necessarily normalized) probability density
function of the target, then

Π(dq) = Z−1
q exp(−U(q))dq , where Zq =

∫
Rd

exp(−U(q)) dq .

The Monte Carlo algorithms studied here use U but do not require the
knowledge of the normalization factor Zq. In HMC, regardless of the ap-
plication in mind, U is seen as the potential energy of a mechanical system
with coordinates q. Then auxiliary momenta p ∈ Rd and a quadratic kinetic
energy function T (p) = (1/2)pTM−1p are introduced as in (2.10) (M is a
positive-definite, symmetric matrix chosen by the user).9 The total energy
of this fictitious mechanical system is H = T + U and the equations of
motion are given in (2.9).

Example 5.1. In the particular case where the target µ is Gaussian
with un-normalized density exp(−(1/2)qTKq), q ∈ Rd, we have U(q) =
(1/2)qTKq, which leads to the Hamiltonian (3.27) we discussed before. For
a univariate standard normal target, H = (1/2)(p2 + q2) and Hamilton’s
equations reduce to those of harmonic oscillator (2.3).

9 Often M is just taken to be the unit matrix; however M may be advantageously chosen
to precondition the dynamics, see Remark 8.3.



40 N. Bou-Rabee and J. M. Sanz-Serna

The Boltzmann-Gibbs distribution in R2d corresponding to H was dis-
cussed earlier in connection with Theorem 2.3. This distribution is defined
as (for simplicity the inverse temperature is taken here to be β = 1):

ΠBG(dq, dp) = (2π)−
1
2
d |detM |−

1
2 exp

(
−1

2
pTM−1p

)
× Z−1

q exp(−U(q))dq dp. (5.7)

Clearly the target Π is the q–marginal of ΠBG. The p–marginal is Gaus-
sian with zero mean and covariance matrix M ; therefore samples from this
marginal are easily available (and will be put to use in the algorithms be-
low). A key fact for our purposes: Hamilton’s equations of motion (2.9)
preserve ΠBG (Theorem 2.3).

HMC generates (correlated) samples (qi, pi) ∈ R2d by means of a Markov
chain that leaves ΠBG invariant; the corresponding marginal qi ∈ Rd chain
then leaves invariant the target distribution Π. The basic idea of HMC
is encapsulated in the following algorithm (the duration λ > 0 is a —
deterministic— parameter, whose value is specified by the user).

Algorithm 5.2. (Exact HMC) Let λ > 0 denote the duration parame-
ter.

Given the current state of the chain (q0, p0) ∈ R2d, the method outputs a
state (q1, p1) ∈ R2d as follows.

Step 1 Generate a d-dimensional random vector ξ0 ∼ N (0,M).
Step 2 Evolve over the time interval [0, λ] Hamilton’s equations (2.9) with

initial condition (q(0), p(0)) = (q0, ξ0).
Step 3 Output (q1, p1) = (q(λ), p(λ)).

Note that p0 plays no role, since the initial condition starts from ξ0. Step
1 is referred to as momentum refreshment or momentum randomization.

It is easy to see that this algorithm succeeds in preserving the distribution
ΠBG:

Theorem 5.1. Consider the Markov chain {(qi, pi)}i∈N defined by iterat-
ing Algorithm 5.2. The probability distribution ΠBG in (5.7) is an invariant
distribution of this chain.

Proof. The transformation (q0, p0) 7→ (q0, ξ0) obviously preserves the
Boltzmann-Gibbs distribution. The same is true for the transformation
(q0, ξ0) 7→ (q1, p1) as we saw in Theorem 2.3.

The transition kernel of this chain is given by

Π(q,p)(dq
′, dp′) = E

{
δ((q′, p′)− ϕλ(q, ξ))

}
dq′dp′,

where the expected value is over ξ ∼ N (0,M).
The most appealing feature of the algorithm is that, if λ is sufficiently
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large, we may hope that the Markov transitions i→ i+1 produce values qi+1

far away from qi, thus reducing the correlations in the chain and facilitating
the exploration of the target distribution.

5.5. Numerical HMC

Algorithm 5.2 cannot be used in practice because in the cases of interest
the exact solution flow ϕλ of Hamilton’s equations is not available. It is
then necessary to resort to numerical approximations to ϕλ, but, as pointed
out in Section 4, numerical methods cannot preserve volume in phase space
and energy and therefore do not preserve exactly the Boltzman-Gibbs dis-
tribution. To correct the bias introduced by the time discretization error,
the numerical solution is Metropolized using Algorithm 5.1. However, this
requires that the numerical integrator be reversible.

Let Ψλ denote a numerical approximation of ϕλ (more precisely, if the step
size is h and n = bλ/hc is the number of steps required to integrate up to
t = λ, then Ψλ = ψnh). In order to use Algorithm 5.1 with Ψλ playing the role
of Φ and the momentum flip involution (2.13) playing the role of S, we first
note (Proposition 2.6) that the momentum flip involution preserves H in
(2.10) and, as a consequence, it preserves the Boltzmann-Gibbs distribution.
In addition Theorem 2.4 ensures that the Hamiltonian flow is reversible with
respect to this involution; it then makes sense (Theorem 4.2) to assume that
the integrator chosen is such that Ψλ is also reversible. The acceptance
probability in (5.6) now reads

α(q, p) = min
{

1, e−∆H(q,p)
∣∣det Ψ′λ(q, p)

∣∣} , (5.8)

where

∆H(q, p) = H(Ψλ(q, p))−H(q, p)

is the energy error (recall that if the integrator were exact H(Ψλ(q, p)) would
coincide with H(q, p) by conservation of energy, Theorem 2.2).

Algorithm 5.3. (Numerical HMC) Denote by λ > 0 the duration pa-
rameter and let Ψλ be a reversible numerical approximation to the Hamil-
tonian flow ϕλ.

Given the current state of the chain (q0, p0) ∈ R2d; the method outputs a
state (q1, p1) ∈ R2d as follows.

Step 1 Generate a d-dimensional random vector ξ0 ∼ N (0,M).
Step 2 Find Ψλ(q0, ξ0) by evolving Hamilton’s equations (2.9) with a re-

versible integrator over the time interval [0, λ] with initial condition
(q0, ξ0).

Step 3 Output (q1, p1) = γΨλ(q0, ξ0) + (1 − γ)(q0,−ξ0) where γ is a
Bernoulli random variable with parameter α(q0, ξ0) with α as in (5.8).
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Theorem 5.2. Consider the Markov chain {(qi, pi)}i∈N defined by iterat-
ing Algorithm 5.3. The probability distribution ΠBG in (5.7) is an invariant
distribution of this chain.

Proof. As in the preceding theorem, the transformation (q0, p0) 7→ (q0, ξ0)
preserves the Boltzmann-Gibbs distribution. The same is true for the trans-
formation (q0, ξ0) 7→ (q1, p1) according to Proposition 5.1.

The transition kernel of the chain is given by

Π(q,p)(dq
′, dp′) = E

{
α(q, ξ)δ((q′, p′)−Ψλ(q, ξ))

}
dq′dp′

+ E
{

(1− α(q, ξ))δ((q′, p′)− S(q, ξ))
}
dq′dp′.

In practice, the acceptance probability (5.8) may not be readily available
due to the need to compute det Ψ′λ(q, p). If the numerical approximation
Ψλ in addition to being assumed reversible is also volume preserving (as
it would be for splitting integrators according to Theorem 4.1), then the
determinant drops from the formula, and then the acceptance probability

α(q, p) = min
{

1, e−∆H(q,p)
}
, (5.9)

becomes easily computable. Variants where preservation of volume does not
take place are studied by (Fang et al. 2014).

Remark 5.1. The states of the Markov chain {(qi, pi)}i∈N are not to be
confused with the intermediate values of q and p that the numerical inte-
grator generates while transitioning the chain from one state of the chain
to the next. Those intermediate values were denoted by (qn, pn) in the pre-
ceding sections and we have preferred not to introduce additional notation
to describe the Markov chain.

Remark 5.2. Theorems 5.1 and 5.2 show that ΠBG is an invariant dis-
tribution for the chains generated by Algorithms 5.2 and 5.3 respectively.
However they do not guarantee that those chains meet the two basic re-
quirements in (5.4) and (5.5) and indeed a simple example will be presented
below where the sequence of values of q generated by those algorithms is q0,
−q0, q0, −q0, . . . so that the requirements are not met. A detailed study of
the convergence properties of HMC is outside the scope of this paper and
we limit ourselves to some remarks in Section 9.5.

5.6. Exact Randomized HMC

The Hamiltonian flow in Step 2 of Algorithm 5.2 is what, in principle,
enables HMC to make large moves in state space that reduce correlations
in the Markov chain {qi}i∈N. Roughly speaking, one may hope that, by
increasing the duration λ, q1 moves away from q0, thus reducing correlation.
However, simple examples show that this outcome is far from assured.
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Indeed, for the univariate standard normal target distribution in Exam-
ple 5.1, the Hamiltonian flow is a rotation in the (q, p)-plane with period
2π. It is easy to see that, if q0 is taken from the target distribution, as λ
increases from 0 to π/2, the correlation between q1 and q0 decreases and
for λ = π/2, q1 and q0 are independent. However increasing λ beyond π/2
will cause an increase in the correlation and for λ = π, q1 = −q0 and the
chain is not ergodic. For general distributions, it is likely that a small λ
will lead to a highly correlated chain, while choosing λ too large may cause
the Hamiltonian trajectory to make a U-turn and fold back on itself, thus
increasing correlation (Homan and Gelman 2014). Generally speaking the
performance of HMC may be very sensitive to changes in λ as first noted
by (Mackenzie 1989). In order to increase the robustness of the algorithm,
Mackenzie suggested to vary randomly λ from one Markov transition to
the next and for that purpose he used a uniform distribution in an interval
[λmin, λmax].

Recently (Bou-Rabee and Sanz-Serna 2017) have studied an algorithm
where the lengths of the time intervals of integration of the Hamiltonian
dynamics at the different transitions of the Markov chain are independent
and identically distributed exponential random variables with mean λ; these
durations are of course taken to be independent of the state of the chain.
The algorithm is then as follows:

Algorithm 5.4. (Exact RHMC) Given the current state of the chain
(q0, p0) ∈ R2d, the algorithm outputs the state (q1, p1) ∈ R2d as follows.

Step 1 Generate a d-dimensional random vector ξ0 ∼ N (0,M).
Step 2 Generate a random duration t ∼ Exp(1/λ).
Step 3 Evolve over the time interval [0, t] Hamilton’s equations (2.2) with

initial condition (q(0), p(0)) = (q0, ξ0).
Step 4 Output (q1, p1) = (q(t), p(t)).

Analogous to Theorem 5.1, the probability distribution ΠBG in (5.7) is an
invariant distribution of the Markov chain {(qi, pi)}i∈N defined by iterating
Algorithm 5.4. Analytical results and numerical experiments (Bou-Rabee
and Sanz-Serna 2017, §4-5) show that the dependence of the performance
of the RHMC Algorithm 5.4 on the mean duration parameter λ is simpler
than the dependence of the performance of Algorithm 5.2 on its constant
duration parameter.

5.7. Numerical Randomized HMC

Unfortunately, the complex dependence of correlation on the duration pa-
rameter λ of Algorithm 5.2 is not removed by time discretization and is
therefore inherited by Algorithm 5.3. For instance, for the univariate stan-
dard normal target, it is easy to check that if λ is close to an integer mul-
tiple of π and h > 0 is suitably chosen, then a Verlet numerical integration
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will result, for each q0, in q1 = −q0 (a move that will be accepted by the
Metropolis-Hasting step).

To improve its performance, Algorithm 5.3 is typically operated with val-
ues of h that are randomized (Neal 2011). Since, due to stability restrictions,
explicit integrators cannot be used with arbitrarily large values of the time
step, h is typically chosen from a uniform distribution in an (often narrow)
interval (∆tmin,∆tmax). The number of time steps N in each integration
leg is kept constant and therefore the length of the integration intervals is
random with a uniform distribution in (N∆tmin, N∆tmax). Even after such
a randomization, the fact remains that increasing the duration parameter
will increase the computational cost of each integration leg and may impair
the quality of the sampling.

Several modifications of Algorithm 5.4 that use numerical integration are
suggested in (Bou-Rabee and Sanz-Serna 2017). The most obvious of them
approximates the Hamiltonian flow in Step 3 by a volume-preserving, re-
versible integrator (such as Verlet) operated with a fixed step size h and
with the number of integration steps m at the different transitions of the
Markov chain being independent and identically distributed geometric ran-
dom variables with mean λ/h. These random numbers are of course taken
to be independent of the state of the chain. As in Algorithm 5.3, one needs
an accept-reject mechanism to remove the bias due to the energy errors
introduced by this integrator.

Algorithm 5.5. (Numerical RHMC) Denote by λ > 0 the duration
parameter and let ψh be a reversible numerical approximation of the Hamil-
tonian flow ϕh.

Given the current state of the chain (q0, p0) ∈ R2d, the algorithm outputs
the state (q1, p1) ∈ R2d as follows.

Step 1 Generate a d-dimensional random vector ξ0 ∼ N (0,M).

Step 2 Generate a geometric random variable m supported on the set
{1, 2, 3, ...} and with mean λ/h.

Step 3 Output (q1, p1) = γψmh (q0, ξ0) + (1 − γ)(q0,−ξ0) where γ is a
Bernoulli random variable with parameter α defined as in (5.9).

Analogous to Theorem 5.2, the probability distribution ΠBG in (5.7) is an
invariant distribution of the Markov chain {(qi, pi)}i∈N defined by iterating
Algorithm 5.5.

In the remainder of this paper the attention is focused on Algorithm 5.3.
Experiments based on Algorithm 5.5 are reported in Section 8.2 and an
example that illustrates the effects of randomization of h and λ is presented
in Section 9.3.
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6. Numerical integration and HMC

The computational work in HMC mainly stems from the cost of the eval-
uations of the force −∇U that are required in the numerical integration
to be carried out at each transition of the Markov chain (Step 2 of Algo-
rithm 5.3). If the dimension d of q is high, those evaluations are likely to be
expensive; for instance, in a molecular dynamics study of a macromolecule
with N � 1 atoms, d = 3N and each atom typically interacts with all
others, so that the complexity of evaluating −∇U grows like N2. As in
any other numerical integration, the aim is to reach a target accuracy with
the minimum possible complexity. Specific to the HMC scenario is the fact
that, in the event of rejection in Step 3, the algorithm wastes all of the force
evaluations used to compute Ψλ(q, ξ). In addition, when a rejection occurs
at a transition i→ i+ 1 of the Markov chain, the new value qi+1 coincides
with the old qi, and this contributes to an increase in the correlations along
the chain, which degrades the quality of sampling as pointed out when dis-
cussing the central limit theorem in (5.5). Since low acceptance rates are
unwelcome and the acceptance probability (5.9) is a function of the energy
error ∆H(q, p) = H(Ψλ(q, p))−H(q, p), it is important to perform the inte-
gration so as to have small energy errors. In this connection we recall from
Section 4 that symplectic integrators conserve energy with errors that are
O(hν) over exponentially long time intervals. In this way, the symplectic-
ness of the integrator plays a dual role in HMC. On the one hand, it ensures
conservation of volume, thereby making it possible to have the simple ex-
pression (5.9) for the acceptance probability. On the other hand, it ensures
favourable energy errors even if the integration legs are very long.

An additional point: the sign of the error matters. Formula (5.9) shows
that, if the integration starts from a point (q, p) for which ∆ < 0, then
α = 1 leading to acceptance.

This section begins with a key result, Theorem 6.1, that shows that for
reversible, volume preserving integrators the energy error is on average much
smaller than one may have anticipated. After that we study in detail the
model case of Gaussian targets and discuss the construction of integrators
more efficient than Verlet.

6.1. Mean energy error

Step 2 in Algorithm 5.3 requires a volume-preserving, reversible integrator
if (5.9) is to be used. As we shall discuss now, those geometric properties
have a direct impact on the mean energy error. We begin with an auxiliary
result (Beskos et al. 2013, Lemma 3.3) that holds for any volume-preserving,
reversible map.

Proposition 6.1. Let Ψ : R2d → R2d be a bijection that is volume-
preserving and reversible with respect to the momentum flip involution
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(2.13) and set ∆(q, p) = H(Ψ(q, p)) − H(q, p). If g is an odd real func-
tion of a real variable, then∫

R2d

g(∆(q, p)) e−H(q,p)dqdp = −
∫
R2d

g(∆(q, p)) e−H(Ψ(q,p))dqdp,

provided that one of the integrals exists. If g is even, then∫
R2d

g(∆(q, p)) e−H(q,p)dqdp =

∫
R2d

g(∆(q, p)) e−H(Ψ(q,p))dqdp,

provided that one of the integrals exists.

Proof. By a change of variables under the map (q, p) 7→ S(Ψ(q, p)),∫
R2d

g(∆(q, p))e−H(q,p)dqdp =

∫
R2d

g(∆(S(Ψ(q, p)))) e−H(S(Ψ(q,p)))dqdp

=

∫
R2d

g(−∆(q, p)) e−H(Ψ(q,p))dqdp,

where in the first step we used that both S and Ψ preserve volume and in
the second we took into account that S leaves H invariant and that the
reversibility of Ψ implies

∆(q, p) = −∆(S(Ψ(q, p))). (6.1)

We now use the proposition to bound the average of ∆.

Theorem 6.1. Let Ψ : R2d → R2d be a bijection that is volume-preserving
and reversible with respect to the momentum flip involution (2.13). If the
integral

m∆ =

∫
R2d

∆(q, p)e−H(q,p)dqdp, (6.2)

with ∆(q, p) = H(Ψ(q, p))−H(q, p), exists, then

0 ≤ m∆ ≤
∫
R2d

∆(q, p)2e−H(q,p)dqdp. (6.3)

Furthermore the first inequality is strict except in the trivial case where
∆(q, p) vanishes for each (q, p).

Proof. By using the preceding proposition with g(x) = x, we get

m∆ =
1

2

∫
R2d

∆(q, p)
(

1− e−∆(q,p)
)
e−H(q,p)dqdp . (6.4)

The inequality x(1 − e−x) > 0, valid for all real x 6= 0, yields the lower
bound in (6.3).
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Figure 6.1. A univariate target with probability modes at q = ±1, leading
to a double-well potential U . The continuous lines are contours of constant
H. The symmetry of the contours with respect to the axis p = 0 is a
consequence of the reversibility of the Hamiltonian flow. The solutions of
Hamilton’s equations move from left to right when p > 0 and from right to
left when p < 0, so when contours are reflected over the horizontal axis the
arrow of time is reversed. If a reversible Ψ maps (q0, p0) into (q∗, p∗), it
has to map (q∗,−p∗) into (q0, p0), so as to preserve the symmetry of the
figure. The transition (q0, p0) 7→ (q∗, p∗) has an increase in energy and
(q∗,−p∗) 7→ (q0, p0) decreases energy in exactly the same amount; this is
the content of formula (6.1).

For the upper bound, we apply the inequality |ex− 1| ≤ |x|(ex + 1), valid
for all x ∈ R, to obtain

m∆ ≤
1

2

∫
R2d

|∆(q, p)|
∣∣∣1− e−∆(q,p)

∣∣∣ e−H(q,p)dqdp

≤ 1

2

∫
R2d

∆(q, p)2
(

1 + e−∆(q,p)
)
e−H(q,p)dqdp

≤
∫
R2d

∆(q, p)2e−H(q,p) dqdp.

In the last step we used the Proposition 6.1 with g(x) = x2.

Figure 6.1 illustrates the geometry behind formula (6.1). The figure
makes clear that to each initial condition (q0, p0) with an energy increase
∆ ≥ 0 there corresponds an initial condition (q∗,−p∗) with an energy de-
crease of the same magnitude. In the integrand in (6.2) the energy increase
at (q0, p0) is weighed by exp(−H(q0, p0)), a larger factor than the weight
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exp(−H(q∗,−p∗)) of the corresponding energy decrease. In addition, by
conservation of volume, if (q0, p0) ranges in a small domain, then the cor-
responding points (q∗,−p∗) range in a small domain of the same measure.
This explains why the integral (6.2) is positive.

We are of course interested in applying Theorem 6.1 to the case where Ψ
is the map Ψλ in Step 2 of the HMC Algorithm 5.3. Assume for simplicity
that λ/h is an integer, so that t = λ coincides with one of the step points
of the numerical integration. Then the energy error satisfies pointwise, i.e.
at each fixed (q, p),

∆(p, q) = H(Ψλ(q, p))−H(q, p) =
[
H(ϕλ(q, p))+O(hν)

]
−H(q, p) = O(hν),

where ν is the order of the integrator and we have successively used the con-
vergence result in Theorem 3.1 and conservation of energy (Theorem 2.2).
The bounds in Theorem 6.1 have important implications.

• The upper bound. Even though pointwise, the energy error ∆ is of size
O(hν), on average (with respect to the Boltzmann-Gibbs distribution)
m∆ is, at least formally, of size O(∆2) = O(h2ν). The order of the
average energy error is automatically twice what we would have ex-
pected. This is clearly a pro of using a volume-reserving, reversible
integrator.

• The lower bound. This is a con. Imagine a case where two uncoupled
systems with Hamiltonian functions H1 and H2 are juxtaposed. The
aggregate is a new Hamiltonian system with Hamiltonian H1+H2. The
mean energy error for the aggregate is E(∆1 + ∆2) = E(∆1) + E(∆2)
and because both terms being added are ≥ 0 there is no room for
cancelation. In general, the value of the energy and therefore the value
of the energy error may be expected to increase as the number of
degrees of freedom increases, in agreement with the fact that in Physics
energy is an extensive quantity.

This discussion will be continued in Section 7.

6.2. Energy error in the standard Gaussian target

Sections 3.4 and 4.4 were devoted to investigating the behaviour of different
integrators when applied to the harmonic oscillator. We take up this theme
once more, this time in the HMC context. The aim is then to study what
happens when HMC is used to sample from the univariate standard normal,
hoping that any findings will be relevant to more complex distributions. (Of
course in practice there is no interest in using a MCMC algorithm to sample
from a normal distribution. See the discussion on model problems at the
beginning of Section 3.4.)
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Pointwise energy error bounds

We return to the situation in Proposition 4.1 and now study the energy error
after n time-steps ∆(q0, p0) = H(pn, qn)−H(q0, p0), withH = (1/2)(p2+q2).
The following result (Blanes et al. 2014, Proposition 4.2) provides an upper
bound for ∆(q0, p0) uniform in n.

Proposition 6.2. The energy error, ∆(q0, p0), may be bounded as

∆(q0, p0) ≤ 1

2
(χ2
h − 1)p2

0,

if χ2
h ≥ 1 or as

∆(q0, p0) ≤ 1

2

(
1

χ2
h

− 1

)
q2

0,

if χ2
h ≤ 1.

Proof. We only prove with the first item; the other is similar. The ellipse
(4.10) has its major axis along the co-ordinate axis p = 0 of the (q, p) plane,
as in the left panel of Figure 4.1. Hence 2H(q, p) = p2 + q2 attains its
maximum on that ellipse if p = 0 which implies q2 = q2

0 + χ2
hp

2
0. If the final

point (qn, pn) of the numerical trajectory happens to be at that maximum,
2∆(q0, p0) = (q2

0 + χ2
hp

2
0)− (q2

0 + p2
0).

Average energy error bounds

We estimate next the average energy error (Blanes et al. 2014, Proposition
4.3). Note that the bound provided is once more uniform in n.

Proposition 6.3. In the situation described above, assume that (q0, p0) is
a Gaussian random vector with non-normalized probability density function
exp(−H(q, p)), with H = (1/2)(p2 + q2). Then the expectation of the
random variable ∆(q0, p0) ∈ R2 is given by

E(∆) = sin2(nθh) ρ(h),

where

ρ(h) =
1

2

(
χ2
h +

1

χ2
h

− 2

)
=

1

2

(
χh −

1

χh

)2

≥ 0,

and accordingly

0 ≤ E(∆) ≤ ρ(h).

.

Proof. With the shorthand c = cos(nθh), s = sin(nθh), we may write

2∆(q0, p0) =

(
− 1

χh
sq0 + cp0

)2

+
(
cq0 + χhsp0

)2 − (p2
0 + q2

0

)



50 N. Bou-Rabee and J. M. Sanz-Serna

or

2∆(q0, p0) = s2

(
1

χ2
h

− 1

)
q2

0 + 2cs

(
χh −

1

χh

)
q0p0 + s2

(
χ2
h − 1

)
p2

0.

Since E(q2
0) = E(p2

0) = 1 and E(q0p0) = 0, the proof is ready.

Energy error bounds for Verlet
Let us illustrate the preceding results in the case of the Verlet integrator.
For the velocity version, we find from Example 3.3 and (4.7), for 0 < h < 2,

χ2
h =

h2

1−
(

1− h2

2

)2 =
1

1− h2

4

> 1.

The bound in Proposition 6.2 reads

∆(q0, p0) ≤ h2

8(1− h2

4 )
p2

0. (6.5)

For h = 1, ∆(q0, p0) ≤ p2
0/6; therefore, if −2 < p0 < 2 (an event that for a

standard normal distribution has probability > 95%), then ∆(q0, p0) < 2/3
which results in a probability of acceptance ≥ 51%, regardless of the number
n of time-steps.

The position Verlet integrator (Example 3.4 and Remark 4.2) has χ2
h =

1− h2/4 < 1 provided that 0 < h < 2. Proposition 6.2 yields

∆(q0, p0) ≤ h2

8(1− h2

4 )
q2

0

(as one may have guessed from (6.5) by symmetry).
From Proposition 6.3, for both the velocity and the position versions,

0 ≤ E(∆) ≤ ρ(h) =
h4

32(1− h2

4 )
. (6.6)

We draw the attention to the exponent of h in the numerator: even though,
pointwise, for the harmonic oscillator, energy errors for the Verlet integrator
are O(h2), they are O(h4) on average, which of course matches our earlier
finding in Theorem 6.1. For h = 1 the expected energy error is ≤ 1/24.
Halving h to h = 1/2, leads to an expected energy error ≤ 1/480. The
conclusion of the examples above is that acceptance rates for Verlet are
likely to be high even if the step size h is not small.

6.3. Velocity Verlet or position Verlet?

The symmetry between the velocity and position Verlet integrators may lead
to the conclusion that their performances in the HMC scenario are equiv-
alent. This is not the case, because in Algorithm 5.3 (for a general target
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Figure 6.2. Discrete trajectories of the Markov chain when HMC for the
standard Gaussian target is operated with velocity (left panel) and position (right
panel) Verlet. Each marker is a state of the Markov chain (intermediate values of
(q, p) along the numerical trajectories are not depicted). The size of the markers
is related to the index i in the chain: states corresponding to larger values of i
have smaller markers. The chains start at q = 10. On the right, all chain
transitions result in rejection, so that qi = 10 for all values of i; position Verlet
gets stuck. On the left, the velocity chain quickly identifies the interval around
q = 0 where the target distribution is concentrated.

distribution) the q and p variables do not play a symmetric role at all. In
particular, samples of p from the correct marginal distribution (Step 1) are
used as initial conditions for the integration legs in Step 2. On the contrary,
when the Markov chain is initialized, the user has to guess a suitable start-
ing value for q (see the end of Section 5.2). In some applications, the chosen
starting value may actually correspond to a location of low probability, and
we now study the difficulties that may arise in that case.

Figure 6.2 corresponds to the standard Gaussian/harmonic oscillator tar-
get and compares the performance of the velocity and position algorithms
when the chain is initialized with q at a location of very low probability,
q0 = 10, ten standard deviations away from the mean (the initialization
of p is of no consequence since momenta are discarded in the momentum–
refreshment Step 1 of Algorithm 5.3). The position integrator gets stuck
where its velocity counterpart succeeds without problems.

Insight into the different behaviors of velocity and position Verlet may
be gained from Figure 6.3, that corresponds to integrations with the large
value h = 1.85 carried out in the interval 0 ≤ t ≤ λ = 9.25 (five time-
steps). Regardless of the choice of |q0|, velocity Verlet will result in an
energy decrease (and therefore in acceptance) if the initial sample ξ0 of the
momentum is such that (q0, ξ0) lands in the grey area of the left panel,
which will happen with large probability because small values of |ξ0| are
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Figure 6.3. Regions where the energy error ∆(q, p) is positive/negative for
velocity (left panel) and position (right panel) Verlet. In the gray-shaded regions
∆(q, p) is negative, ensuring acceptance of the Markov transition. The contour
lines in the background shows level sets of H(q, p).

likely to occur. On the contrary, in the position algorithm energy decreases
only occur if very large values of ξ0 are drawn. Certainly, there is symmetry
between the gray areas of both panels; however, in HMC, having energy
decreases near the q axis is helpful and having them near the p axis is not.
It may help to go back to the bound (6.5) that shows that, for velociy Verlet,
p0 = 0 ensures an energy decrease; compare both panels in Figure 4.1 as
well.

To conclude this discussion we emphasize that if the chains were initialized
by drawing samples from the marginal distribution of q (i.e. started at
stationarity), then the behaviour of velocity and position Verlet would be
the same due to the q/p symmetry.

6.4. Multivariate Gaussian model

We study once more the quadratic Hamiltonian (3.27) and note that the
covariance matrix Σ of the target is the inverse of the stiffness matrix K.
As discussed in Proposition 3.1, in the particular case where M = I, the
square roots of the eigenvalues of K are the angular frequencies of the
dynamics; the eigenvalues of Σ are of course the variances of the target
along the directions of the eigenvectors. Thus small variance implies high
frequency.

Average energy error in the multivariate case

Proposition 6.3 may be extended to the multivariate Gaussian case. We
begin by providing a variant of Proposition 3.1.

Proposition 6.4. The change of dependent variables, q = L−TUΩ−1Q,
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p = LUP , decouples the system into a collection of d harmonic oscillators
(superscripts denote components):

dQi

dt
= ωiP

i,
dP i

dt
= −ωiQi, i = 1, . . . , d.

In terms of the new variables, the function in (3.27) is given by

1

2
P TP +

1

2
QTQ =

1

2

∑
i

(
(P i)2 + (Qi)2

)
.

Therefore the 2d variables Qi and P i are independent standard Gaussian.10

As discussed in connection with Proposition 3.1, we may assume that
the numerical method is applied to each of the uncoupled oscillators. After
recalling Remark 3.6, the following result is easily proved.

Theorem 6.2. Consider a stable integration of (3.27) with a (consistent),
reversible, volume preserving integrator applied with a stable value of h. If
(q0, p0) are random variables with probability density function (proportional
to) exp(−H), then for each n the expectation of the energy error ∆(q0, p0) =
H(qn, pn)−H(q0, p0) may be bounded as

0 ≤ E(∆) ≤
d∑
j=1

ρ(ωjh), (6.7)

where ρ is the function defined in Proposition 6.3.

An illustration

As an example, we consider a two-dimensional target where

K = Σ−1 =
1

2

[
101 −99
−99 101

]
This matrix has eigenvalues ω2

1 = 1 (with eigenspace q1 = q2) and ω2
2 = 100

(with eigenspace q1 = −q2). The mass matrix is chosen to be M = I. We
use HMC with velocity Verlet; stability requires hω2 < 2 or h < 0.2 and we
set h = 0.15. The chain is started at (q1, q2) = (9, 9) where U(9, 9) = 81,
i.e. about 9 standard deviations in the direction of largest variance. The
duration parameter λ is set to be equal to 1.35 (i.e. there are 9 time-steps in
each numerical integration leg) and the number of transitions in the chain
was the maximum attainable with a computational budget of 100 force
evaluations. The left panel in Figure 6.4 shows that HMC rapidly relaxes
to a region of high probability.

10 Obviously, the last display does not give the Hamiltonian function for the Hamiltonian
dynamics for (Q,P ). Proposition 2.3 does not apply because the change of variables
(q, p) = Φ(Q,P ) is not symplectic.



54 N. Bou-Rabee and J. M. Sanz-Serna

-5 0 5

q1

-5

0

5
q
2

HMC with V Verlet: h =0.15, λ =1.35

-5 0 5

q1

-5

0

5

q
2

MALA with h =0.2

Figure 6.4. Bivariate Gaussian distribution, (q1, q2) plane; the ellipse is a
contour of constant probability density. HMC operated with velocity
Verlet (left panel) and MALA (right panel). The size of the markers is
related to i: points along the Markov trajectory corresponding to larger
values of i have smaller markers. The computational budget for both
algorithms is fixed at 100 force evaluations. Along these trajectories, the
average acceptance probability for HMC and MALA is 93% and 82%,
respectively. The stability requirement for Verlet is h < 0.2, which is set
by the component of the target distribution with the smallest variance. In
relation to MALA, note that HMC relaxes faster to a region of high
probability.

Remark 6.1. It may be of interest to relate this experiment to the discus-
sion of stiffness in Example 3.6. Here it is the oscillation with frequency ω1

(i.e. the evolution along the diagonal q1 = q2) that matters most; however h
has to be chosen in terms of the oscillation with frequency ω2.11 Neverthe-
less HMC succeeds because, at each Markov transition, several time-steps
are taken.

As a comparison we have also implemented the well-known algorithm
MALA, with the same initial state and same computational budget. MALA
may be described as the algorithm that results when, in HMC operated with
velocity Verlet, the duration parameter λ is chosen to coincide with h, i.e.
each integration leg only takes one time-step. In this way the accept/reject
mechanism operates after each individual time-step in MALA (but only
after λ/h successive time-steps in HMC). The right panel shows MALA
zigzags in a region of low probability.

Remark 6.2. In connection with the preceding remark, we note that for

11 Example 3.6 had ω2 = 100; here we have chosen a smaller value of ω2 so as not to blur
the figure.



Geometric integrators and Hamiltonian Monte Carlo 55

MALA the progress of the Markov chain along the q1 = q2 diagonal is slow.
Each time-step moves the state by a small amount, because h was chosen
by taking into account the behaviour of the problem along the q1 = −q2

diagonal. The momentum refreshments, which in MALA take place after
every individual time-step, change the direction of motion in the (q1, q2)
plane, thus inducing a random-walk behaviour. HMC avoids this random
walk behaviour by taking sufficiently many time-steps between consecutive
accept/reject steps so that integration legs make substantial strides in the
solution components with high variance.

6.5. May Verlet be beaten?

Currently, velocity Verlet is the integrator of choice within HMC algorithms.
Is this the best possibility? In this subsection we will discuss whether it is
possible to construct a palindromic splitting formula with s > 1 stages
(3.19)–(3.20) that improves on the velocity Verlet algorithm in the sense
that, when operated with a step size h, leads to smaller energy errors —
higher acceptance probabilities— than velocity Verlet with step size h/s.
Because, as illustrated above, Verlet is often very successful for large values
of the step size, such a construction has to be based on investigating the
behaviour of the integrators for finite h and therefore cannot be guided
by information (such as the expansion in Theorem 4.3) that corresponds
to the behaviour as h → 0. We therefore resort to Gaussian models with
Hamiltonian of the form (3.27). In the remainder of this subsection we shall
use the symbol τ to refer to the actual value of the step size implemented in
the algorithm and keep the letter h for the (nondimensional) product ωτ ,
where ω represents one of the frequencies present in the problem. With this
notation, Verlet is stable for 0 < h < 2 or 0 < τ < 2/ωmax.

When the number d of degrees of freedom equals 1, velocity Verlet is
indeed the best choice. We know, from Section 6.2, that Verlet will de-
liver high acceptance rates for h just below its stability limit and, from
Section 4.5, that Verlet has the longest stability interval. So Verlet peforms
well for HMC for values of τ where other integrators are not even stable. Es-
sentially the same is true for d small, as one sees by decoupling the problem
into d one-degree-of-freedom oscillators as we did in Section 6.4. However,
as d increases, Verlet is not likely to keep high acceptance rates if τ is just
below 2/ωmax: in fact the additive character of the energy, noted in the
discussion of Theorem 6.1, implies that, even if the energy error in each of
the one-dimensional oscillators in the problem is small, the energy error for
the overall system will likely be large. In that scenario, where, on accu-
racy grounds, Verlet has to be operated with τ significantly smaller than
the stability limit 2/ωmax, there is room for improvements in efficiency by
resorting to more sophisticated integrators, as we discuss next.
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Figure 6.5. Two-stage palindromic integrators (3.17) corresponding to b = 1/4
or b given by (6.8). Left panel: stability polynomial Ah. For b = 1/4 (which
provides two steps of velocity Verlet of step length τ/2) stabilty is lost at h = 4
and there is a double root of the equation Ah = −1. The method (6.8) has a
significantly shorter stability interval because under perturbation the double root
of Ah = −1 splits into two real roots. Right panel: the quantity ρ = ρ(h) that
governs the expected energy error for Gaussian problems (see (6.7)). When the
methods are operated with 0 < h < 2, i.e. 0 < τ < 2/ωmax, the choice (6.8) yields
values of ρ much smaller than those corresponding to b = 1/4.

Two stages

We begin by studying the one-parameter family (3.17) of methods with
two stages (i.e. essentially two force evaluations per step). For the choice
b = 1/4, one step of length τ of the two-stage method is equivalent to two
steps of length τ/2 of velocity Verlet (see equation (4.12) with N = 2). The
stability polynomial Ah was described in terms of the Chebyshev polynomial
T2 in Section 4.5 and its graph may be seen in the left panel of Figure 6.5.
Stability is lost at h = 4 when Ah = 1; at h = 2

√
2 ≈ 2.82, there is a

double root of the equation Ah = −1 (corresponding to the double root
at ζ = 0 of the equation T2(ζ) = 2ζ2 − 1 = −1). Small perturbations of
b = 1/4 turn the double root of the equation Ah = −1 into two real roots
in the neigbourhood of h = 2

√
2; after such perturbation the length of the

stability interval drops from 4 to ≈ 2
√

2. Accordingly, in problems where
d is small enough for standard velocity Verlet to work well with τωmax in
the interval (

√
2, 2), no two-stage formula with b 6= 1/4 can improve upon

Verlet. However if, when applying Verlet, τωmax has to be chosen below
√

2
on accuracy grounds, then, as we will see now, efficiency may be improved
by choosing b in (3.17) different from 1/4.

The paper (Blanes et al. 2014) suggests the following procedure to find the
value of b. Numerical experiments in that reference show that, for Gaussian
problems with d ≤ 1000, (one-stage) velocity Verlet achieves acceptance
rates ≥ 20% when τωmax ≤ 1 (i.e. when τ is less than a half of the maximum
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Figure 6.6. Three-stage palindromic integrators (3.18) for a = 1/3, b = 1/6 or
a, b given by (6.9). Left panel: stability polynomial Ah. Right panel: the
quantity ρ = ρ(h) that governs the expected energy error for Gaussian problems
(see (6.7)). When the methods are operated with 0 < h < 3, the choice (6.9)
yields values of ρ much smaller than those corresponding to a = 1/3, b = 1/6.

allowed by stability). It is then assumed that two-stage integrators should
be demanded to perform well when τωmax ≤ 2. On the other hand, in
view of (6.7), for Gaussian models performance is governed by the quantity
ρ defined in Proposition 6.3, which for the one-parameter family (3.17) is
found to be

ρ(h; b) =
h4
(
2b2(1/2− b)h2 + 4b2 − 6b+ 1

)2
8
(
2− bh2

)(
2− (1/2− b)h2

)(
1− b(1/2− b)h2

) .
Then b is chosen by minimizing

‖ρ‖(2) = max
0≤h≤2

ρ(h; b);

which yields b = 0.21178 . . . To avoid cumbersome decimal expressions,
(Blanes et al. 2014) instead uses the approximate value

b =
3−
√

3

6
≈ 0.21132, (6.8)

which gives ‖ρ‖(2) ≈ 5× 10−4. For comparison b = 1/4 has a substantially

larger ‖ρ‖(2) ≈ 4 × 10−2. Numerical experiments reported in (Blanes et
al. 2014) confirm that, when d is not small the method (6.8) is a clear
improvement on Verlet in an example where the target is not Gaussian. See
also (Mannseth, Kleppe and Skaug 2017).

Three stages

A similar study may be undertaken for the three-stage family (3.18) with
two parameters a and b. The choice a = 1/3, b = 1/6 yields a method
consisting of the concatenation of three successive steps of length τ/3 of
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velocity Verlet (see equation (4.12) with N = 3). The graphs of the stability
polynomial Ah may be seen in the left panel of Figure 6.6. Stability is lost
at h = 6 when Ah = −1. The double root of T3(ζ) = 4ζ3 − 4ζ = 1 at
ζ = −1/2 gives rise to a double root of Ah = 1 at h = 3

√
3 ≈ 5.19. The

double root of T3(ζ) = −1 gives rise to a double root of Ah = −1 at h = 3.
Perturbing the values a = 1/3, b = 1/6 leads in general to methods with
(short) stability intervals of length ≈ 3, because typically the double root
of Ah = −1 splits into two single roots. However it is possible to perturb
a and b in such a way that, after perturbation, Ah = −1 has a double root
close to h = 3 as analyzed in (Campos and Sanz-Serna 2017). For such
particular perturbations, stability is lost by crossing the line Ah = 1. This
is what happens for the choice

a = 0.29619504261126, b = 0.11888010966548, (6.9)

found in (Blanes et al. 2014) by minimizing

‖ρ‖(3) = max
0≤h≤3

ρ(h; b).

Note that the range of the maximum is now 0 ≤ h ≤ 3 to account for the
fact that, when using three force evaluations per step, we aim at integra-
tions with τωmax ≤ 3 to be competitive with Verlet. The choice (6.9) results
in ‖ρ‖(3) ≈ 7 × 10−5 and a stability interval of length ≈ 4.67 . . . The pa-
per (Blanes et al. 2014) reports experiments that show the superiority of
(6.9) over standard velocity Verlet and also describes the construction of
optimized four-stage integrators.

The AIA approach

Let us go back to the one-parameter family (3.17) of methods with two
stages. The choice (6.8) is based on the assumption that with b = 1/4 the
integrator (equivalent to velocity Verlet) would be used with τωmax in the
interval (0, 2). There is of course a degree of arbitrariness in the choice of
this interval. When an interval (0, c) with c slightly above 2 is considered,
then minimization of

max
0≤h≤c

ρ(h; b) (6.10)

results in a value of b slightly above that corresponding to (0, 2). This
improves the length of the stability interval, but, with the notation in The-
orem 4.3, increases the quantity C2

2,1 +C2
2,2, so that the integrator becomes

less accurate in the limit h→ 0 (note that C1,1 = 0 because we are dealing
with methods of order 2). As c is increased further, the value of b that min-
imizes (6.10) increases towards b = 1/4; the stability interval improves and
accuracy worsens. For c ≥ 2

√
2 the optimization procedure leads to b = 1/4

because, as pointed out earlier, then b = 1/4 is the only value for which
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the maximum in (6.10) is finite. On the other hand, as c decreases from
2, the optimal value of b decreases, accuracy in the limit h → 0 improves
and the stability interval becomes shorter. In the limit c ↓ 0, b approaches
b ≈ 0.1932, the value that minimizes C2

2,1 + C2
2,2 (McLachlan 1995).

In the Adaptive Integration Approach (AIA) suggested by (Fernández-
Pendás, Akhmatskaya and Sanz-Serna 2016, Akhmatskaya, Fernández-
Pendás, Radivojević and Sanz-Serna 2017) for molecular dynamics prob-
lems, the value of b in (3.17) is chosen by minimizing (6.10) with the pa-
rameter c adapted to the problem being solved, rather than being kept at
the somehow arbitrary value c = 2. The procedure is the following. In
molecular dynamics packages such as GROMACS (Hess, Kutzner, van der
Spoel and Lindahl 2008), the user is prompted to specify her choice of the
value of τ ; of course smaller values of τ lead to more expensive simulations.
The package estimates the values of the frequencies of all harmonic forces
present in the problem and will not run if τ ω̃max is close to the Verlet sta-
bility limit (ω̃max is the maximum of the estimated frequencies). AIA sets
c =
√

2ω̃maxτ (
√

2 is a safety factor) so that in (6.10) h ranges in the short-
est interval that contains all products

√
2τ ω̃i, where ω̃i are the estimated

frequencies. (If c ≥ 4, the user is demanded to reduce τ .) In this way
whenever the user is prepared to operate with a value of τ that is “small”
for the problem being tackled, AIA chooses a more accurate integrator; as
τ increases, AIA will pick up a value of b leading to a more stable, less
accurate integrator. This strategy has been successfully implemented in an
in-house version of GROMACS. The computational overheads are negligible
as they only stem from finding the value of b for the problem at hand and
the value of τ chosen by the user. Numerical experiments show that AIA is
a clear improvement on Verlet.

7. HMC in high dimension. Tuning the step size

We now follow (Beskos et al. 2013) and study the behaviour of HMC as the
dimensionality increases. As a byproduct we obtain a general rule for tuning
the value of h when running HMC with a chosen value of the duration λ
of the integration legs. The analysis uses a model situation similar to that
employed in (Roberts, Gelman and Gilks 1997, Roberts and Rosenthal 1998)
to analyze other sampling techniques. High dimensionality in a different
setting is the object of the next section.

7.1. The set up

We consider a high-dimensional Hamiltonian system in (R2d)m, m � 1,
obtained by juxtaposing without coupling m copies of a fixed Hamiltonian
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system in R2d. If we write a point (q, p) ∈ (R2d)m in components as

q = (q1, . . . , qm) ∈ (Rd)m and p = (p1, . . . , pm) ∈ (Rd)m,

then the Hamiltonian of the system in (R2d)m is

Hm(q, p) =

m∑
j=1

H(qj , pj),

with

H(qj , pj) =
1

2
pTj M

−1pj + U(qj)− log(Z).

Here U : Rd → R is the potential energy function for each component and Z
is the normalizing factor for the one-component Boltzmann-Gibbs distribu-
tion, so that exp(−H(qj , pj)) is a (normalized) probability density function
in R2d.12 In this way exp(−Hm(q, p)) is the (normalized) probability den-
sity function of the Boltzmann-Gibbs distribution in (R2d)m; clearly the 2m
random vectors qj , pj are stochastically independent for this distribution.

From a sampling viewpoint, the target Π is the distribution in (Rd)m
with non-normalized density exp(−

∑m
j=1 U(qj)); under this target the qj

are independent and identically distributed. We sample from Π by using the
HMC Algorithm 5.3 evolving (q, p) by integrating numerically the dynam-
ics associated with Hm. Since there is no coupling between components, in
Step 2 of the algorithm each pair (qj , pj) moves independently of all oth-
ers. In particular, the step size stability restriction for the whole system
will coincide with the restriction for the one-component Hamiltonian and
therefore will be independent of m. Similarly, in Step 1 randomizing the
momentum p in (Rd)m is equivalent to randomizing each pj . However, in
Step 3, the different components come together: acceptance depends on the
error in Hm and this is obtained by adding the errors in the energies of the
individual components. As a consequence of Theorem 6.1, for a fixed value
of h and a fixed integration interval 0 ≤ t ≤ λ, the mean energy error in
one component is positive and therefore the mean energy error for Hm will
grow linearly with m; as a result, the acceptance rate will decrease as the
dimensionality increases. Therefore, for m large with λ fixed, the value of
h will have to be decreased to ensure a satisfactory acceptance rate; note
that this restriction on h is due to accuracy considerations and has no rela-
tion with the stability limit of the integrator being used, which, as we just
pointed out, is independent of m in our setting.

12 The presence of Z in the expression for H simplifies several formulas below but has
no consequence in the HMC algorithm itself (the constant log(Z) does not change the
Hamiltonian dynamics and drops from the expression of the acceptance probability).
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7.2. Decreasing h as the dimensionality increases

In what follows we fix the duration λ of the integration leg, assume that
λ/h is an integer and study the way in which h has to be decreased if we
wish to ensure that the acceptance rate remains bounded away from 0 as
m ↑ ∞. We denote by ∆(qj , pj ;h) the one component energy error at t = λ
for an integration started from the initial state (qj , pj); this initial state
is regarded as a random variable distributed according to the Boltzmann-
Gibbs associated with H. Thus (q, p) will be distributed according to the
Boltzmann-Gibbs distribution with density exp(−Hm); in other words the
chain is assumed to be at stationarity.

The mean energy error for one component

We shall be concerned with the first and second moments

µ(h) =

∫
R2d

∆(qj , pj ;h)e−H(qj ,pj)dqjdpj ,

s2(h) =

∫
R2d

∆(qj , pj ;h)2e−H(qj ,pj)dqjdpj ,

and the corresponding variance σ2(h) = s2(h)− µ(h)2.
The following important result rounds out Theorem 6.1. We now assume

that ∆(qj , pj ;h) behaves asymptotically as hνa(pj , qj) for a suitable func-
tion a (cf. Remark 3.2 where global errors rather than energy errors were
considered). In this way, smaller values of |a| correspond to more accurate
integrators and/or “easier” Hamiltonians. The theorem below ensures that
the expectation µ(h) of ∆ is ≈ (Σ/2)h2ν , where we emphasize that the ex-
ponent of h is twice the order of the method and that the proportionality
constant Σ is the average of a2. The hypotheses in the theorem will hold
in practice under reasonable hypotheses on the integrator and the target
distribution; the reader is referred to (Beskos et al. 2013) for a complete
study in the case of the velocity Verlet scheme.

Theorem 7.1. Assume that:

• There exist functions a(pj , qj) and r(qj , pj ;h) such that

∆(qj , pj ;h) = hνa(pj , qj) + hνr(qj , pj ;h),

with limh→0 r(qj , pj ;h) = 0 for each (qj , pj).

• There exists a real-valued function D(qj , pj), integrable with respect
to the Boltzmann-Gibbs distribution, such that, for a suitable h0 > 0,

sup
0<h<h0

∆(qj , pj ;h)2

h2ν
≤ D(qj , pj).
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Then

lim
h→0

µ(h)

h2ν
=

Σ

2
, lim

h→0

σ2(h)

h2ν
= Σ,

with

Σ =

∫
R2d

a(qj , pj)
2e−H(qj ,pj)dqjdpj .

Proof. We first establish the second limit. For fixed (qj , pj), the first hy-
pothesis implies that ∆(qj , pj ;h)/h2ν → a(qj , pj) and then, by dominated
convergence,

lim
h→0

s2(h)

h2ν
=

∫
R2d

a(qj , pj)
2e−H(qj ,pj)dqjdpj = Σ.

In addition, the bound (6.3) shows that

lim
h→0

µ(h)2

h2ν
= 0

and the limit for σ2(h)/h2ν follows.
From (6.4), with the shorthand ∆ = ∆(qj , pj ;h),

2µ(h)− σ2(h)

h2ν
− µ(h)2

h2ν

= −
∫
R2d

∆

hν
exp(−∆)− 1 + ∆

hν
e−H(qj ,pj)dqjdpj .

We note that the second fraction in the integral approaches 0 as h→ 0 for
fixed (qj , pj), because the numerator is O(∆2). A dominated convergence
argument (see (Beskos et al. 2013) for details) shows that the integral also
approaches 0 and the proof is complete.

The mean energy error for m components

For the Hamiltonian Hm the energy error ∆m(q, p;h) is given by the sum∑m
j=1 ∆(qj , pj ;h). Under our hypotheses, the random variables being added

are independent and identically distributed and therefore ∆m(q, p;h) has
expectation mµ(h) ≈ mΣh2ν/2 and variance mσ2(h) ≈ mΣh2ν ; thus to
ensure that ∆m(q, p;h) has a distributional limit as m ↑ ∞, it is reasonable
to impose a relation

h = `m−1/(2ν), (7.1)

with ` > 0 a constant. Under this relation, a central limit theorem (see
(Beskos et al. 2013) for details) ensures that, as m ↑ ∞, the distribution of
the random variable ∆m(q, p;h) converges to the distribution of a random
variable ∆∞ ∼ N(`2νΣ/2, `2νΣ). It then follows that, the expectation of
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the acceptance probability min{1, exp(−∆m)} converges to

E
(

min
{

1, e−∆∞
})

.

The last expectation may be found analytically and turns out to be:

A(`) = 2Φ(−`ν
√

Σ/2), (7.2)

where Φ is the standard normal cumulative distribution function

Φ(x) =
1√
2π

∫ x

−∞
exp(−ξ

2

2
) dξ.

We then conclude:

Theorem 7.2. Assume that the hypotheses of Theorem 7.1 are fulfilled.
If in the scenario above the number of copies m and the stepsize h are
related as in (7.1), then, at stationarity, the expectation of the acceptance
probability of the HMC algorithm converges to (7.2) as m ↑ ∞.

For Verlet, with ν = 2, the scaling (7.1) entails that halving h com-
pensates for a multiplication of m by a factor of 16. This scaling in high
dimension is very favourable when compared with the situation for other
sampling techniques (Roberts et al. 1997, Roberts and Rosenthal 1998).

7.3. Optimal tuning

In Theorem 7.1, a lower value of Σ, i.e. a lower mean value of the function
a2, indicates a more accurate integrator and/or an “easier” Hamiltonian.
Correspondingly, formula (7.2) is such that lowering the value of Σ increases
the expected acceptance probability A (Φ(x) is an increasing function of x).
In practice the function a and the constant Σ are unknown and this would
seem to imply that (7.2) is of no practical value. We shall show now that,
on the contrary, that relation provides a basis for tuning the parameter h
in the HMC algorithm.

Increasing the value of ` in (7.1) leads to a larger step size and therefore
lowers the computational cost of each integration leg over the fixed interval
[0, λ] but typically increases the energy error. Note in this connection that
in (7.2), A decreases as ` increases. What is the best choice of `? It is
argued in (Beskos et al. 2013) that the function E(`) = `A(`) is a sensible
indicator of the efficiency of the algorithm, as its reciprocal measures the
amount of work necessary to generate an accepted proposal. With this
metric, ` should be determined to maximize `A(`): a direct maximization
is not feasible because, as we just noted, we cannot compute A(`). This
difficulty may be circumvented by treating A as an independent variable
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and expressing ` as a function of A: then

E(A) =
21/ν

Σ1/(2ν)
A
(
Φ−1(1−A/2)

)1/ν
.

Clearly the value of A that maximizes E is independent of Σ and is therefore
independent of the target. In addition the optimal A is the same for all
integrators of sharing the same value of ν. For the case ν = 2, it is found
numerically that

A
(
Φ−1(1−A/2)

)1/2
is maximized when

A ≈ 0.651

This analysis suggests that, for an integrator of order ν = 2 and once the
integration interval has been chosen, if m is large, h should be selected in
such a way that, in the simulations, the acceptance rate is observed to be
close to 65%. If the observed acceptance rate is larger, one would do better
with a larger value of h. That would imply more rejections, but the waste
caused by the rejections would be offset by the larger number of proposals
that may be generated with a fixed budget of force evaluations. Conversely,
acceptance rates significantly below 65% indicate that one would do better
by working more to generate each single proposal. While our analysis has
been performed in the case where the target is a product of m independent
identical distributions, practical experience shows that this rule works more
generally (Beskos et al. 2013).

8. HMC for path sampling. Sampling from a perturbed
Gaussian distribution

So far the samples generated by the HMC algorithm have been vectors
q ∈ Rd. In some applications the samples needed are paths. In this section
we discuss the use of HMC in those situations. As it will be clear, the
material is directly relevant for the problem of sampling from targets that
are perturbations of Gaussian distributions.

8.1. A model problem

In order to keep the presentation as simple as possible, we shall initially
limit our attention to a model situation; the general case is discussed at the
end of the section.

We consider paths u(s), where u is a real-valued function of the variable
s ∈ [0, S]. The paths are constrained by the homogeneous Dirichlet condi-
tions u(0) = u(S) = 0 and, formally, their distribution is governed by the
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“potential energy” functional

U(u) =

∫ S

0

[
1

2
(∂su(s))2 + g(s, u(s))

]
ds. (8.1)

If the function u(s) is smooth, then after integration by parts,

U(u) =

∫ S

0

[
−1

2
u(s)∂ssu(s) + g(s, u(s))

]
ds. (8.2)

Distributions of this form arise when studying diffusion bridge problems
(Reznikoff and Vanden-Eijnden 2005, Beskos et al. 2008, Hairer, Stuart and
Voss 2009).

Example 8.1. Fix a time13 horizon S > 0 and consider the process X :
[0, S]→ R that solves the Ornstein-Uhlenbeck equation

dX(s) = −X(s)ds+ dB(s),

conditioned on both initial and final conditions X(0) = 0, X(S) = 0. Here
B is a standard Brownian motion. The law of this diffusion bridge is a
probability measure Π on paths u satisfying the boundary conditions that
is associated to the functional:

1

2

∫ S

0

[
(∂su(s))2 + u(s)2

]
ds. (8.3)

Remark 8.1. The case where the process is conditioned on X(0) = x−,
X(S) = x+ may be reduced to the case with homogeneous boundary condi-
tions, by writing u(s) = ū(s)+`(s), where `(s) is a smooth function of s with
`(0) = x−, `(S) = x+. After this transformation, the new paths ū(s) satisfy
homogeneous boundary conditions and their distribution corresponds to a
functional of the form (8.1).

A precise mathematical description of the meaning of (8.1) and of the as-
sociated probability distribution on paths Π will be given later. For the time
being, we note that to study the infinite-dimensional problem on a computer
it is necessary to introduce a finite-dimensional discretized version, and we
turn to presenting a way of performing the discretization.

We use a uniform grid consisting of d+ 2 grid points

{sj = j∆s | j = 0, ..., d+ 1}, ∆s = S/(d+ 1).

The space of paths is then replaced by the finite-dimensional state space Rd;

13 In applications, the variable s typically corresponds to physical time, as distinct from
the artificial time t to be used later in the Hamiltonian dynamics that evolves the
paths when obtaining samples.
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the j-th component uj of an element u ∈ Rd is seen as an approximation
to u(sj), j = 1, ..., d. The functional (8.1) is discretized as (cf. (8.2))

Ud(u) = ∆s

(
−1

2
uTLu +Gd(u)

)
, Gd(u) =

d∑
j=1

g(uj) , (8.4)

where the matrix L corresponds the standard central difference approxima-
tion to ∂ss with homogeneous Dirichlet boundary conditions:

L =
1

∆s2


−2 1

1
. . .

. . .
. . .

. . . 1
1 −2

 . (8.5)

Note that, if the vector u contains the grid values of a smooth path u, then
Ud(u)→ U(u) as ∆s→ 0.

Our task is then to sample from the target Πd in Rd with non-normalized
density exp(−Ud(u)). Special attention has to be paid to the increase in
dimension d as the discretization becomes more accurate.

8.2. Preconditioned HMC for path sampling

We now set up an HMC algorithm, to be called Preconditioned HMC
(PHMC), to sample from our target Πd.

Algorithm description

As expected, we introduce an auxiliary variable p ∈ Rd and a Boltz-
mann-Gibbs distribution ΠBGd in Rd × Rd with non-normalized density
exp(−Hd(u,p)). The Hamiltonian Hd is given by ∆sHd(u,p), with (M is
a mass matrix)

Hd(u,p) =
1

2
pTM−1p− 1

2
uTLu +Gd(u).

Of course, the target Πd is the u-marginal of ΠBGd, while the p-marginal is
Gaussian N(0, (∆s)−1M).

The pair (u,p) is evolved by means of the Hamiltonian dynamics asso-
ciated to Hd: [

u̇(t)
ṗ(t)

]
=

[
M−1p(t)

Lu(t)−∇Gd(u(t))

]
. (8.6)

Clearly, this dynamics preserves the value of Hd and therefore the distribu-
tion ΠBGd.

Remark 8.2. Instead of (8.6), one could use the dynamics correspond-
ing to the Hamiltonian Hd that features in the non-normalized density
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exp(−Hd(u,p)) of ΠBGd; that alternative dynamics differs from that of
(8.6) by a change in the scale of t. However (8.6) is more natural in our
context, where there is an infinite-dimensional problem in the background.
We illustrate this as follows. Assume that M is taken to be the identity
and g = 0. Then (8.6), after eliminating p, implies ü = Lu, so that u(t)
satisfies the standard semidiscrete wave equation. This matches the fact
that as ∆s→ 0, Hd approaches∫ S

0

1

2

(
p(s)2 + (∂su(s))2

)
ds,

which provides the Hamiltonian functional (total energy) for the Hamilto-
nian partial differential equations ∂tu = p, ∂tp = ∂ssu, that, after elimina-
tion of p, yield the wave equation ∂ttu = ∂ssu.

A challenge with numerically solving (8.6) using an explicit symplectic
integrator (like Verlet) is that the spectral radius of L grows with d. Conse-
quently, as the number of grid points increases, the dynamics may become
highly oscillatory due to the presence of fast frequencies, and stably approx-
imating this type of dynamics may be difficult (Calvo and Sanz-Serna 2009).
For example, numerical stability of a Verlet integrator applied to (8.6) with
Gd = 0 and M = I requires that its time step size h be inversely propor-
tional to d.

To avoid this type of restrictive dependence, we precondition the dynamics
by choosing the mass matrix M = −L:[

u̇(t)
ṗ(t)

]
=

[
−L−1p(t)

Lu(t)−∇Gd(u(t))

]
. (8.7)

In the particular case where g vanishes, we have ü = −u; all the d frequen-
cies of the preconditioned problem are 1 and Verlet has a stepsize restriction
h < 2, independently of d.

Remark 8.3. Consider for a moment, a dynamics of the form (8.6) where
L is an arbitrary negative-definite matrix and ∇Gd(u) is small with respect
to Lu. From a sampling viewpoint, this situation would arise if standard
HMC is applied to sampling from a perturbation of the centered Gaussian
distribution with covariance matrix −L−1. The preconditioning M = −L
makes sense in that setting. Large eigenvalues of −L correspond to direc-
tions in state space with small variances/large forces; the mass in those
direction is then chosen to be large so as to ensure small displacements and
avoid fast frequencies. This idea may be extended: general targets may be
locally approximated by a state-dependent Gaussian model and one may
then choose a state-dependent M as the inverse of the covariance matrix
of the Gaussian approximation (Girolami and Calderhead 2011). Unfortu-
nately the state dependence of the mass matrix introduces additional terms
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Figure 8.1. Ornstein-Uhlenbeck Bridge Example: Mean acceptance probability
as a function of h for the PRHMC algorithm for three choices of the splitting
parameter c and the three values of ∆s. The number of time-steps n at each
integration leg is random with a geometric distribution chosen in such a way that
the average length λ = nh of the integration interval is 20. The number of
samples is 104. For c = 1 the acceptance probability does not decrease as the grid
is refined.

in Hamilton’s equations, which are not any longer of the form (2.9), with
the unwelcome consequence that explicit volume-preserving reversible inte-
grators do not exist.

In the PHMC algorithm, the system (8.7) is integrated by means of a
symplectic, reversible scheme with second order of accuracy. We use the
Strang splitting (3.13) with[

u̇(t)
ṗ(t)

]
=

[
−L−1p(t)
c2Lu(t)

]
(A)

and [
u̇(t)
ṗ(t)

]
=

[
0

(1− c2)Lu(t)−∇Gd(u(t))

]
(B)

where c ∈ [0, 1] is a parameter. The choice c = 0 leads to the velocity Verlet
method.

Thus, in PHMC, a transition of the HMC Markov chain starts by draw-
ing a fresh momentum from the marginal distribution N(0, (∆s)−1M) =
N(0,−(∆s)−1L), takes m = bλ/hc steps of the splitting integrator
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Figure 8.2. Ornstein-Uhlenbeck Bridge Example. This figure assesses the
sampling accuracy of the PRHMC algorithm. The plot graphs, for the
distribution Πd, the exact and empirical values of the variance of ui when
∆s = 0.02 corresponding to d = 49 interior grid points (the horizontal axis labels
the components). The time step size is h = 2.0. The number of time-steps n at
each integration leg is random with a geometric distribution chosen in such a way
that the average length λ = nh of the integration interval is 20. The number of
samples is 106. The acceptance rate was 95%. When measured in the L2 norm of
R49, the relative error of the vector of empirical variances is 0.36%. The values
c = 0, c = 0.5 were also tested but the acceptance rates were virtually zero.

and accepts/rejects with acceptance probability min{1, e−∆Hd} (see Algo-
rithm 5.3). A variant, that we call PRMHC, with randomized duration as
in Algorithm 5.5 is clearly possible; in that variant the number of steps is
chosen to be geometrically distributed with mean λ/h.

Remark 8.4. For implementation purposes, it is advisable to use the vari-
able v = −L−1p rather than p. In the variables (u,v), the split system
(A) takes the trivial form u̇(t) = v(t), v̇(t) = −c2u(t). Before beginning an
integration leg, the fresh value of v is drawn from the corresponding distri-
bution N(0, (∆s)−1L−1). When computing the acceptance probability, the
Hamiltonian Hd is correspondingly expressed in terms of (u,v).

Numerical illustration

We have implemented the randomized duration PRHMC algorithm in the
particular case of the Orstein-Uhlenbeck bridge in Example 8.1, with S = 1
and homogeneous Dirichlet boundary conditions (see Section 9.3 for the case
of constant-duration PHMC). Note that due to the linearity of the Orstein-
Uhlenbeck process, the target Πd is Gaussian and there is no need to use
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MCMC techniques to sample from it; however using this target provides a
convenient test problem. Figure 8.1 plots the mean acceptance probability
of PRHMC as a function of h for three values of the parameter c in the inte-
grator and three choices of ∆s. Clearly c = 1 provides the best performance.
Note in particular that for c = 1 the acceptance probability is independent
of ∆s; for the other values of c and fixed h the acceptance probability de-
creases with ∆s. Figure 8.2 shows that the use of c = 1 leads to accurate
sampling even with h is large. The theory in what follows clarifies these
numerical results.

Analysis

The results that follow are concerned with the application of PHMC and
PRHMC to target associated with (8.1) in the particular case of the Orstein-
Uhlenbeck bridge (8.3). The proofs are given in Section 9.4.

In the following stability theorem we require the lowest eigenvalue

ω2
1 =

4

∆s2
sin2

(
π

2(d+ 1)

)
(8.8)

of −L. It is trivial to show that 2/S ≤ ω1; therefore the stability require-
ments does not become more stringent as ∆s → 0. This is a consequence
of the preconditioning of the dynamics.

Theorem 8.1. If h > 0 satisfies
ch+ 2 arctan

(
h(1 + (1− c2)ω2

1)

2cω2
1

)
< π if c ∈ (0, 1],

h <
2ω1√
1 + ω2

1

if c = 0,
(8.9)

then the splitting integrator used in the PHMC and PRMHC algorithms is
stable.

We now turn to the mean energy error after an integration leg.

Theorem 8.2. Choose η ∈ (0, π) and restrict the attention to step sizes
such that ch ≤ η and the stability requirement (8.9) is satisfied.

• For c ∈ [0, 1), there exist positive constants h0 = h0(c, η) and C =
C(c, η), such that for h < h0, the mean energy error after n time-steps
has the bounds

0 ≤ E(∆Hd) ≤ Cdh4.

• In the case c = 1, there exist positive constants h0 = h0(η) and C ′ =
C ′(η), such that for h < h0,

0 ≤ E(∆Hd) ≤ C ′h4.
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Here, the expected value is over random initial conditions with non-
normalized density e−Hd(u,p).

The exponent of h in the bounds should not be surprising by now. We
emphasize that the bounds are independent of the number of steps in the
integration leg. They therefore apply to the PHMC case where the duration
of the integration leg is fixed and to cases where that duration is randomized
as in the PRHMC algorithm in the experiments above. For c 6= 1 the
energy error grows linearly with the number of degrees of freedom. This is
the behaviour we found in the scenario studied in Section 7, but we note
that here the different components uj are not independent nor are they
identically distributed (this point is discussed further in Section 9.4). On
the other hand, for c = 1 the energy error bound is uniform in ∆s.

Even though full details will not be given, we mention that the bounds
in Theorem 8.2 may be used to derive results on the acceptance rate, in
analogy to what we did in Section 7. If c = 1, the mean acceptance rate
for fixed h is independent of ∆s. However for c 6= 1, h has to be scaled as
(∆s)1/4 to ensure that the mean acceptance rate is bounded away from 0
as ∆s→ 0. This agrees with the experiments in Figure 8.1. Note that the
scaling h ∼ (∆s)1/4 arises from accuracy considerations rather than from
stability restrictions.

8.3. Hilbert space HMC

The non-normalized density ∝ exp(−Ud(u)) of the target Πd associated with
Ud(u) in (8.4) may be factored as

exp(−∆sGd(u))× exp
(
− ∆s

2
uTLu

)
. (8.10)

Thus Πd has non-normalized density

exp(−∆sGd(u)) (8.11)

with respect to the Gaussian distribution Π0
d in Rd with mean 0 and co-

variance matrix (∆s)−1L−1. This observation is useful because as d ↑ ∞,
Π0
d approaches the centered Gaussian distribution Π0 in the Hilbert space

L2(0, S) with covariance operator (−∂ss)−1, where the differential operator
−∂ss has homogeneous boundary conditions (Da Prato and Zabczyk 2014).
It is well known that Π0 is the distribution of the Brownian bridge in [0, S]
with homogeneous boundary conditions. On the other hand the first factor
in (8.10) is a discretization of

exp

(
−
∫ S

0
g(s, u(s))ds

)
.

In this way the path distribution Π may be described as the measure whose
density with respect to the Gaussian Π0 is given by the last display. There
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is an important difference between the finite and infinite dimensional cases.
The finite dimensional Πd may described in two equivalent ways: (i) as
having non-normalized density exp(−Ud(u)) with respect to the standard
Lebesgue measure dq or (ii) as having non-normalized density (8.11) with
respect to the Gaussian Π0

d. The infinite-dimensional Π cannot be defined
by a density with respect to the standard Lebesgue measure in L2, simply
because that measure does not exist. Thus, necessarily Π has to be defined
by its density with respect to Π0.

These considerations lead to studying the general problem of sampling
from a target Π defined by a density exp(−Φ(u)) with respect to a given
centered Gaussian reference measure Π0 in a Hilbert space. The PHMC and
PRHMC algorithms described above in the restricted scenario of (8.1) may
be extended without difficulty to that general problem. In the extension,
the matrix L in (8.5) is replaced by a discretization of the inverse of the
covariance operator of Π0 and the function Gd arises from discretizing Φ.
Again the key point in the preconditioned algorithms is to choose the mass
matrix M to coincide with −L; this ensures that if Φ = 0 the dynamics is
given by ü = −u where all frequencies are 1.

The general problem just described has been addressed by (Beskos et
al. 2011) who introduced an HMC algorithm that is formulated in the Hilbert
space itself. Of course in practice that algorithm can only be implemented
after a suitable discretization and, once the discretization has been per-
formed, it coincides with PHMC with c = 1 implemented as in Remark 8.4.
We emphasize that in PHMC we first discretized the target and then formu-
lated the sampling method. In contrast, (Beskos et al. 2011) proceed in the
reverse order: discretization comes after formulating the sampling method.
The route in (Beskos et al. 2011), which requires nontrivial use of func-
tional analytic techniques, is mathematically more sophisticated than the
approach we have followed here. What is then the advantage of formulating
the algorithm in the infinite-dimensional scenario? A sampling method that
works in the Hilbert space itself may be expected to work uniformly well
as the dimension d of the discretization tends to ∞. This is what happens
to the algorithm in (Beskos et al. 2011) in view of Theorem 8.2. On the
other hand, for c 6= 1, PHMC cannot arise from discretizing a Hilbert space
algorithm, because we know that its performance becomes worse and worse
as d ↑ ∞ with h fixed.

To finish this section, we remark that for MALA preconditioned and non-
preconditioned versions are available (Beskos et al. 2008), and analogous to
the latter, there is a non-preconditioned version of HMC (Bou-Rabee 2017).
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9. Supplementary material

The paper concludes with material that complements a number of points
considered in the preceding sections.

9.1. Finding the modified equation of a splitting integrator

We now show how to obtain the expansion in Theorem 4.3. Full details will
be given for the particular case of the Lie-Trotter splitting algorithm (3.11);
but the method is the same for more involved integrators. There are two
steps. In the first, flows are represented as exponentials. In the second, ex-
ponentials are combined by means of the Baker-Campbell-Hausdorff (BCH)
formula.

Lie derivatives

Associated with the vector field f(x) in the differential system (2.1) with
flow ϕt, there is a Lie derivative Df . This is the first-order differential
operator that maps each smooth function χ : RD → R into a new function
Dfχ : RD → R defined as follows:

(Dfχ)(x) =
D∑
i=1

f i(x)
∂

∂xi
χ(x)

(superscripts denote components of vectors). The chain rule leads to the
formula

d

dt
χ
(
ϕt(x)

)∣∣∣∣
t=0

= (Dfχ)(x),

which shows the meaning of (Dfχ)(x) as a rate of change of χ along the
solution t 7→ ϕt(x) of (2.1). By successively applying this formula to the
functions Dfχ, Df (Dfχ), . . . , we find

dk

dtk
χ
(
ϕt(x)

)∣∣∣∣
t=0

= (Dk
fχ)(x), k = 2, 3, . . . ,

where Dk
f is the k-th order differential operator defined inductively as

(Dk
fχ)(x) = (Df (Dk−1

f χ))(x), k = 2, 3, . . .

Therefore the Taylor expansion of χ(ϕt(x)) at t = 0 reads

χ
(
ϕt(x)

)
=

∞∑
k=0

tk

k!
(Dk

fχ)(x),

or

χ
(
ϕt(x)

)
=
(

exp(tDf )χ
)
(x)
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a formula that may be used to retrieve, at least formally, ϕt: its application
with χ equal to the coordinate function χ(x) = xi, i = 1, . . . , D, yields the
i-th component of the vector ϕt(x). In conclusion, the equality

χ ◦ ϕt = exp(tDf )χ (9.1)

may be understood as a representation of the flow of a differential system
as the exponential of the Lie operator of its vector field.

If f (A) and f (B) are vector fields, then the compositions Df (A)Df (B) and
Df (B)Df (A) are second-order differential operators. However, it is easily
checked that Df (A)Df (B) −Df (B)Df (A) is a first-order differential operator.
In fact the following result holds (Arnol’d 1989, Section 39).

Proposition 9.1. Df (A)Df (B) − Df (B)Df (A) is the Lie operator corre-

sponding to the vector field [f (A), f (B)] i.e. to the Lie bracket of f (A) and
f (B) defined in (2.14).

If now ϕ
(A)
t , ϕ

(B)
s are the flows corresponding to the vector fields f (A) and

f (B) respectively, two applications of (9.1) give

χ ◦
(
ϕ(B)
s ◦ ϕ(A)

t

)
=
(
χ ◦ ϕ(B)

s

)
◦ ϕ(A)

t = exp(tDf (A))
(
χ ◦ ϕ(B)

s

)
(9.2)

= exp(tDf (A))
(

exp(sDf (B))χ
)

=
(

exp(tDf (A)) exp(sDf (B))
)
χ.

Thus the operator exp(tDf (A)) exp(sDf (B)) represents the composition

ϕ
(B)
s ◦ϕ(A)

t in analogy with (9.1). Note that the A-flow acts first in the com-

position ϕ
(B)
s ◦ϕ(A)

t while exp(tDf (A)) acts second in the product of operators
exp(tDf (A)) exp(sDf (B)). Our task now is to write exp(tDf (A)) exp(sDf (B))
as a single exponential.

The Baker-Campbell-Hausdorff formula
Assume for the time being that X and Y are square matrices of the same
dimension. It is well known that the product exp(X) exp(Y ) of their expo-
nentials only coincides with exp(X + Y ) if X and Y commute. In fact, by
multiplying out

exp(X) = I +X +
1

2
X2 +

1

6
X3 + · · ·

and

exp(Y ) = I + Y +
1

2
Y 2 +

1

6
Y 3 + · · ·

we find

exp(X) exp(Y ) = I +X + Y +
1

2
X2 +XY +

1

2
Y 2
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1

6
X3 +

1

2
X2Y +

1

2
XY 2 +

1

6
X3 + · · ·

The products in the right-hand side are all of the form XkY `, while the
expansion of exp(X+Y ) gives rise to products like Y X, Y 2X, Y X2, XYX,
Y XY , etc. The BCH formula (Sanz-Serna and Calvo 1994, Hairer et al.
2010) writes exp(X) exp(Y ) as the exponential exp(Z) of a matrix

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]]

+
1

24
[X, [Y, [Y,X]]]− 1

720
[Y, [Y, [Y, [Y,X]]]] + · · ·

where [·, ·] denotes the commutator, e.g. [X,Y ] = XY −Y X, etc. The recipe
to write down the terms in the right-hand side is of no consequence for our
purposes; what is remarkable is that this right-hand side is a combination
of X, Y and iterated commutators.

Now the BCH is valid, at least formally (i.e. disregarding the convergence
of the series involved), if X and Y , instead of matrices, are elements of
any associative, non-commutative algebra. In particular it may be applied
to the case where X and Y are first-order differential operators as those
considered above. Going back to (9.2) and recalling that the commutator
of the Lie derivatives corresponds to the Lie bracket of the vector fields
(Proposition 9.1), the BCH formula with s = t = h then yields

ϕ
(B)
h ◦ ϕ(A)

h = exp(hDf̃∞h
),

where f∞h is the vector field

f∞h = f (A) + f (B) +
h

2
[f (A), f (B)] +

h2

12
[f (A), [f (A), f (B)]] + · · ·

Now a comparison with (9.1) shows that ϕ
(B)
h ◦ ϕ(A)

h is formally the h-flow
of f∞h , or, in other words, that f∞h is the modified vector-field for the Lie-
Trotter splitting algorithm (3.11).

For Strang’s method and for more involved splitting integrators the meth-
odology is the same: each of the individual flows whose composition yields
ψh is written as an exponential and then the exponentials are combined via
the BCH formula. For an integrator where ψh is the composition of m flows,
m − 1 applications of the BCH are required. The task may be demanding
due to the combinatorial intricacies of the BCH formula.

Remark 9.1. As noted in Section 4, finding the modified vector field as
above and then resorting to Theorem 4.4 is the most common way of inves-
tigating the consistency of splitting algorithms. An alternative direct tech-
nique, not based on modified equations, was suggested by (Murua and Sanz-
Serna 1999). More recently, word series (Alamo and Sanz-Serna 2016, Mu-
rua and Sanz-Serna 2017) have been introduced as a simpler means to deal
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Figure 9.1. Verlet scheme for time step h = 1 (left panel) and h = 1/2 (right
panel) applied to H(q, p) = (1/2)p2 + (1/4)q4. The numerical solutions mimic the
behaviour of the exact solution only for initial conditions close to the origin.
Decreasing h enlarges the region where the integrator performs satisfactorily, but
does not eliminate the problem.

with this kind of question. A survey of the combinatorial techniques used
to analyze integrators is provided by (Sanz-Serna and Murua 2015).

9.2. Distributions with light tails

The numerical integration of Hamiltonian systems with a quadratic Hamil-
tonian (3.27) (which corresponds to HMC sampling of Gaussian distribu-
tions) was discussed in Section 3. For distributions whose tails are lighter
than those of a Gaussian, the potential energy U(q) grows faster than
quadratially as |q| → ∞ and this causes difficulties when integrating nu-
merically the Hamiltonian dynamics.

We illustrate this for the univariate distribution with non-normalized den-
sity exp(−q3). Figure 9.1 shows, for two values of h, nine velocity Verlet
trajectories corresponding to initial conditions with p = 0 and q ∈ (0, 2].
While, for smaller values of the initial q the numerical trajectory mimics the
behaviour of the true solution, large initial values of q lead to trajectories
that quickly escape to infinity. Reducing the value of h enlarges the size of
the domain where Verlet performs satisfactorily. However no matter how
small h is chosen, there will be an outer region where the performance is
bad. This is easily understood. The kicks of the Verlet algorithm update p
by using the formula p 7→ p − (h/2)q3. For this update to be a reasonable
approximation to the true dynamics, it is obvious that the magnitude of
(h/2)q3 should be small when compared with the magnitude of p; a require-
ment that does not hold for any fixed h and p if |q| is sufficiently large.
The problem is the same for other explicit integrators. For implicit integra-
tors, such as the midpoint rule, the solution of the algebraic equations to
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Figure 9.2. Time-Step or Duration Randomization. Ornstein-Uhlenbeck
Bridge Example. Mean acceptance probability as a function of h for PHMC
operated with constant step sizes (first panel), PHMC operated with randomized
step sizes of average h (second panel), and PRHMC (third panel) for c = 0 and
three values of ∆s. In all three cases the duration parameter is λ = 20. The
number of samples is 104. The PRHMC algorithm is the least susceptible to
periodicities in the underlying Hamiltonian dynamics.

be solved at each step also demands smaller values of h for larger values of
q as discussed in (Sanz-Serna and Calvo 1994, Section 3.3.3).

The conclusion is that, when using an integrator with fixed h, one’s at-
tention has to be restricted to a bounded subset D of the phase space R2d

chosen to guarantee that the complement R2d\D has negligible probability
with respect to ΠBG. After fixing D, a suitably small value of h has to be
chosen. While the situation is well understood for the sampling algorithm
MALA (Bou-Rabee and Hairer 2013), the corresponding analysis for HMC
has not yet been carried out.

9.3. Randomizing the time step and the duration

The Exact RHMC algorithm, where the length of the integration leg is a
random variable with exponential distribution was discussed at the end of
Section 5, along with its numerical counterpart. We also discussed there
an alternative procedure, based on randomizing the step length. We now
illustrate the performance of these randomized algorithms in the case of
the Ornstein-Uhlenbeck bridge example considered in Section 8. With the
notation employed there, we set c = 0, which leads to the standard Verlet
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integrator. We have implemented three algorithms: (i) PHMC operated
with (constant) step sizes of length h, (ii) PHMC operated with step sizes of
length ∆t uniformly distributed in the interval [0.9h, 1.1h] and (iii) PRHMC.
The results are given in Figure 9.2. (The third panel here is the same as the
first panel in Figure 8.1.) As h varies, the behaviour of the un-randomized
algorithm (i) is very irregular due to resonances between the step size and
the periods of the dynamics (see Section 5.2). Randomizing h regularizes the
behaviour, but not as successfully as PRMHC does. This is consistent with
the study carried out in §4 and §5 of (Bou-Rabee and Sanz-Serna 2017).

The results of experiments with c = 0.5 and c = 1, not reported here,
show the same patterns.

9.4. PHMC for the Orstein-Uhlenbeck bridge: proofs

We now prove Theorems 8.1 and 8.2.

One degree of freedom

We begin by studying the application of the integrator used in PHMC to a
one-degree-of-freedom, linear analog of the dynamics in (8.7) given by the
Hamiltonian function

H(q, p) =
1

2
ω−2p2 +

1

2
(ω2 + 1)q2.

If ω � 1 this corresponds to the motion of a particle with large mass ω2

attached to a stiff spring of constant 1+ω2. The solutions are periodic with
a frequency 1 + 1/ω2 that decreases as ω increases.

The one-step propagation matrix (cf. (3.22)) is given explicitly by

M̃h,c =

 cos(ch)− hω̃2

2cω2
sin(ch)

sin(ch)

cω2

−hω̃2 cos(ch)− 4c2ω4 − h2ω̃4

4cω2
sin(ch) cos(ch)− hω̃2

2cω2
sin(ch)

 ,
with ω̃2 = 1 + (1− c2)ω2, if c ∈ (0, 1], or

M̃h,c =

 1− h2

2ω2
(1 + ω2)

h

ω2

h(1 + ω2)(h2 − (4− h2)ω2)

4ω2
1− h2

2ω2
(1 + ω2),


if c = 0.

The following result is concerned with the stability of the integrator. Note
that the stability restriction on h weakens as ω gets larger.
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Proposition 9.2. If ω > 0, c ∈ [0, 1], and h > 0 satisfies
ch+ 2 arctan

(
h(1 + (1− c2)ω2)

2cω2

)
< π if c ∈ (0, 1] ,

h <
2ω√

1 + ω2
if c = 0 ,

(9.3)

then the splitting integrator is stable.

Proof. Since the integrator is symplectic det(M̃h,c) = 1 and stability is
ensured if the magnitude of the trace is < 2. The case c = 0 is trivial. For
the case c ∈ (0, 1], by means of elementary trigonometric formulas we find

1

2
trace(M̃h,c) =

cos(ch+ arctan(
hω̃2

2cω2
))

cos(arctan(
hω̃2

2cω2
))

.

As h increases from 0, stability is lost when h is such that the sum of the
arguments in the cosine functions reaches π, so that the numerator and the
denominator are opposite.

As in Section 4.4, for stable integrations, M̃h,c may be written in the form

(4.8), with cos(θh) = trace(M̃h,c)/2 and

χh =


sin(ch)

cω2 sin(θh)
if c ∈ (0, 1].

h

ω2 sin(θh)
if c = 0.

For the error ∆ in H after an integration leg, by proceeding as in the
proof of Proposition 6.3, we may show:

Proposition 9.3. For any positive integer n, ω > 0, c ∈ [0, 1], β > 0 and
h > 0 satisfying the stability requirement (9.3), the energy error after n
steps satisfies

E(∆) = β−1 sin2(nθh)ρ(c, ω, h),

where the expected value is over random initial conditions with non-
normalized density e−βH(q,p) and

ρ(c, ω, h) =
1

2

(
χ̂2
h +

1

χ̂2
h

− 2

)
=

1

2

(
χ̂h −

1

χ̂h

)2

≥ 0

with

χ̂2
h = (ω2 + ω4)χ2

h.

Accordingly

0 ≤ E(∆) ≤ ρ(c, ω, h).
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Our next result gives a representation for ρ. The proof is a tedious exercise
in algebra and will not be given.

Proposition 9.4. For ω > 0, c ∈ [0, 1], and h > 0 satisfying the stability
requirement (9.3), we have

ρ(c, ω, h) =
1

2

h4r2

(1 + ω−2)(1 + ω−2 − h2r)
, (9.4)

where r is the function

r(c, ω, h) =
1

4
(1− c2 + ω−2)2 + c2(1− c2 + ω−2)R(ch),

with

R(ch) =
1− ch cot(ch)

(ch)2
.

The function R(ζ) has the finite limit 1/3 as ζ → 0. If c > 0, R(ch)
is positive and increases monotonically in the interval 0 < ch < π, with
R(ch) ↑ ∞ as ch ↑ π. As a consequence, r is an increasing function of
h ∈ (0, π); the term 1+ω−2−h2r in (9.4) approaches 0 as h approaches the
upper limit of the stability interval. The preceding propositions imply that
the mean energy error has an O(h4) bound. By now this result is hardly a
surprise, because we are dealing with an integrator of order ν = 2.

d degrees of freedom

We now address the application of PHMC to the target associated with (8.1)
when g(u) = (1/2)u2. Theorems 8.1 and 8.2 are proved by using in Rd an
orthonormal basis of eigenvectors of −L (cf. the proof of (6.7)). In the basis
of eigenvectors the different components are stochastically independent but
not identically distributed.

For Theorem 8.1 it is enough to recall that in Proposition 9.2 larger
values of ω lead to less stringent stability requirements. Therefore stability
is limited by the smallest eigenvalue of −L given in (8.8).

Turning to the proof of Theorem 8.2, by using the spectral decomposition
and Proposition 9.3 with β = ∆s, we may write

0 ≤ E(∆Hd) ≤
d∑
j=1

ρ(c, ωj , h),

with ω2
j equal to the j-th eigenvalue of −L

ω2
j =

4

∆s2
sin2

(
jπ

2(d+ 1)

)
≥ 4j2

S2
.
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We now use (9.4) to obtain the bound

0 ≤ E(∆Hd) ≤
h4

2

d∑
j=1

r(c, ωj , h)2

1− h2r(c, ωj , h)
,

and, since r is a decreasing function of ω,

0 ≤ E(∆Hd) ≤ d
h4

2

r(c, ω1, h)2

1− h2r(c, ω1, h)
.

The first bound in the theorem now follows easily: for h bounded away
from π, r is bounded, and then h may be reduced further to ensure that
1− h2r(c, ω1, h) is bounded away from 0.

When c = 1,

r(1, ωj , h) =
1

4
ω−4
j + ω−2

j R(h) ≤ S4

64j4
+
S2

4j2
R(h),

and therefore for h bounded away from π, r(1, ωj , h) = O(j−2). Thus, if we
write,

0 ≤ E(∆Hd) ≤
h4

2

d∑
j=1

r(1, ωj , h)2

1− h2r(1, ω1, h)
,

the sum in the right-hand side may be bounded independently of d.

9.5. Convergence

Here is a brief discussion of the sampling properties of HMC.
Intuitively speaking, the point of using HMC is that its Hamiltonian dy-

namics breaks the random walk behaviour that impairs the convergence
of simple MCMC methods like the random walk Metropolis or the MALA
algorithm (Gustafson 1998, Diaconis, Holmes and Neal 2000). This slow
convergence can be understood by using a diffusion approximation of these
simple MCMC methods. In particular, the processes associated to simple
MCMC methods are often well approximated (in a weak sense) by over-
damped Langevin dynamics (Bou-Rabee et al. 2014, see Theorem 5.1 for a
precise mathematical statement), also called Brownian dynamics. This may
be seen as a consequence of the detailed balance property of the algorithms.
As a result, the corresponding paths meander around state space and explore
the target distribution mainly by diffusion. Qualitatively speaking, this is
random walk behavior. The basic idea in HMC is to replace the first-order
Langevin dynamics in order to avoid this random walk behaviour.

Unfortunately, beyond this intuition, the improvement in convergence
afforded by HMC is not well understood. Under certain conditions on
the time-step and target distribution, it has been known for a while
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that numerical HMC converges to the right distribution asymptotically
(Schütte 1999, Stoltz 2007, Cancés, Legoll and Stoltz 2007). More recently,
the piecewise deterministic process associated with the exact RHMC Algo-
rithm 5.4 was shown to be geometrically ergodic; i.e., its transition proba-
bilities converge to the target distribution in the total variation metric at
an exponential rate (Bou-Rabee and Sanz-Serna 2017, see Theorem 3.9).
The proof of geometric ergodicity of RHMC relies on Harris theorem, which
requires a (local) version of Doeblin’s condition: a minorization condition
for the transition probabilities at a finite time and in a compact set. Un-
fortunately, given the complicated form of these transition probabilities,
the minorization condition involves non-explicit constants, and in particu-
lar, the dependence of the resulting convergence rate on the mean duration
parameter is not clear.

Using a coupling approach, a contraction rate for exact RHMC in a
Wasserstein distance has been derived (Bou-Rabee and Eberle 2017). The
dependence of the contraction rate on the mean duration parameter is ex-
plicit. It follows from this rate that, if the mean duration parameter is
proportional to the standard deviation of the target distribution, then the
algorithm converges at a kinetic speed (as opposed to a diffusive speed).
The main tools used in the proof are a Markovian coupling and a cou-
pling distance that are both tailored to the structure of exact RHMC. The
coupling is based on the framework introduced in (Eberle 2016b), and is re-
lated to a recently developed coupling for second-order Langevin dynamics
(Eberle 2016a, Eberle, Guillin and Zimmer 2016).

9.6. Related Algorithms

We finally discuss generalizations and variants of the basic HMC Algo-
rithm 5.3. The corresponding literature is extensive and rapidly growing;
we limit ourselves to a few of the many available techniques.

Generalized HMC

Generalized HMC (GHMC) allows the possibility of partial randomization of
momentum at every step of the HMC algorithm (Horowitz 1991, Kennedy
and Pendleton 2001). Specifically, in GHMC, one introduces a so-called
Horowitz angle φ ∈ (0, π/2] and replaces the randomized momentum ξ0 in
Step 1 of Algorithm 5.3 with cos(φ)p0 + sin(φ)ξ0. This partial momentum
randomization preserves the p-marginal of ΠBG, and hence, GHMC leaves
ΠBG invariant. When φ = π/2, the initial momentum p0 is fully randomized
and we recover HMC. If φ ∈ (0, π/2), then p0 is only partially randomized;
this may be of interest in molecular dynamics applications because then
the samples may give more information on the Hamiltonian dynamics than
when each integration leg starts with a completely new momentum. The
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case φ = 0 is excluded, since then there is no momentum randomization,
and consequently, the GHMC chain is confined to a single level set of H,
and in general, is not ergodic with respect to ΠBG. Since the momentum
randomizations are the source of dissipation in HMC (Bou-Rabee and Sanz-
Serna 2017), partial momentum randomization makes the algorithm less
dissipative and less diffusive, as discussed in §5.5.3 of (Neal 2011). One can
similarly introduce a partial momentum randomization to the randomized
HMC Algorithm 5.5.

Extra Chance HMC
As we pointed out before, rejections increase correlations along the HMC
chain and waste computational effort. Extra chance HMC (XHMC)
(Campos and Sanz-Serna 2015) provides a simple way for HMC to get extra
chances to obtain acceptance, and hence, delay or even avert rejection as
in (Mira 2001, Green and Mira 2001). To describe the XHMC algorithm,
it suffices to describe its accept/reject mechanism, which we state in terms
of a symplectic and reversible integrator ψh, and its n-step map, Ψλ = ψnh
where n = bλ/hc. Given a user-prescribed number of extra chances K and
(q, p) ∈ R2d, define Γ0(q, p) = 0, ΓK+1(q, p) = 1, and

Γj(q, p) = α(q, p) ∨ · · · ∨ αj(q, p) , 1 ≤ j ≤ K ,

where αj(q, p) = min
{

1, e−(H(Ψjλ(q,p))−H(q,p))
}

. Note that Γj is monotoni-

cally increasing with j. Instead of flipping a coin at every step as in Algo-
rithm 5.3, XHMC rolls a (K+1)-sided die with probabilities {Γj−Γj−1}K+1

j=1 .

Given the current state of the chain (q0, p0) ∈ R2d, the transition in Step 3
of Algorithm 5.3 is accordingly replaced by

(q1, p1) =

{
Ψj
λ(q0, ξ0) if j-th side of die comes up

(q0,−ξ0) if (K + 1)-th side of die comes up

where ξ0 ∼ N (0,M). It is straightforward to show that XHMC leaves
ΠBG invariant (Campos and Sanz-Serna 2015, Appendix A). Moreover,
thanks to the possibility of extra chances, the probability of rejection at
every step drops from α(q0, p0) to 1 − ΓK(q0, p0). As its name suggests,
the accept/reject mechanism in XHMC can be implemented recursively, so

that the proposal move Ψj
λ(q0, p0) and its associated transition probability

Γj − Γj−1 are only computed if Ψj−1
λ (q0, p0) is not accepted. One can also

easily incorporate a partial momentum randomization into XHMC.

Tempering techniques
Probability distributions with multiple modes arise frequently in practice.
Different modes may represent metastable conformations of a large molecu-
lar system (Frantz, Freeman and Doll 1990, Hansmann and Okamoto 1993,
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Hansmann 1997, Sugita and Okamoto 1999, Wales 2003) or important fea-
tures of posterior distributions in Bayesian inference problems (Geyer and
Thompson 1995, Neal 1996, Liang and Wong 2001, Ji and Wong 2006, Kou,
Zhou and Wong 2006). Unfortunately, HMC may not converge well in sit-
uations where the potential energy has multiple minima separated by large
barriers. This is a well-known limitation of HMC. It may be due to the
low probability of the momentum randomizations in HMC to produce an
initial condition whose kinetic energy is high enough so that the correspond-
ing solution to Hamilton’s equations crosses the potential energy barriers.
Also the momentum randomization may have difficulties to produce an ini-
tial momentum ξ0 with the right direction for the solution to Hamilton’s
equation to exit the current potential well. For such multi-modal target
distributions, it is advantageous to use HMC in conjunction with a tem-
pering technique such as parallel tempering, simulated tempering, and tem-
pered transition methods (Geyer 1991, Marinari and Parisi 1992, Geyer and
Thompson 1995, Neal 1996). Tempering methods typically introduce an ar-
tificial inverse temperature parameter β and apply HMC to the Boltzmann-
Gibbs distribution at multiple values of this parameter. The basic idea is
that at sufficiently high temperature, the tempered Boltzmann-Gibbs dis-
tribution becomes flat enough that barrier crossings in the Hamiltonian
integration legs become more likely. Of course, the states of the tempered
chains cannot be directly used to compute sample averages with respect
to ΠBG, which emphasizes that the computational cost of these tempering
techniques is by no means negligible.

No-U-Turns

A practical difficulty with HMC is tuning the durations of the Hamiltonian
integration legs. The No-U-Turn Sampler (NUTS) adaptively chooses this
parameter by increasing the length of the numerical orbit until the distance
between the endpoints of the orbit stops increasing. Unfortunately, this
procedure breaks reversibility, since, roughly speaking, if this criterion is
applied in the reverse direction starting from the end of a trajectory, one
does not expect to land at the start of the trajectory. Since reversibility is
a key ingredient to the accept/reject mechanism in Algorithm 5.1, and the
proof of the associated Theorem 5.2, NUTS uses a different approach: it
applies the criterion to the discrete trajectory obtained by integrating the
Hamiltonian dynamics in the forward and backward directions. Starting
with a single step, the number of forward and backward integration steps
is doubled until a U-turn first occurs. NUTS then ends the simulation and
samples from all of these points in a way that ensures that the algorithm
leaves ΠBG invariant. The procedure does not use the Metropolis-Hastings
method, but a variant of the slice sampling method (Neal 2003). Since
this sampling step involves all of the states produced by this procedure,
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the algorithm is thought to have some of the appealing properties of the
windowed HMC method, which employs an accept/reject mechanism based
on windows of states (Neal 1994, Neal 2011).

Shadow HMC

Given a symplectic and reversible integrator ψh for the Hamiltonian dy-
namics, shadow HMC is an importance sampling technique that replaces

the Boltzmann-Gibbs density exp(−H) with a shadow density exp(−H̃ [µ]
h )

where H̃
[µ]
h is the modified (or shadow) Hamiltonian of ψh up to order µ

(Izaguirre and Hampton 2004, Sweet, Hampton, Skeel and Izaguirre 2009,
Akhmatskaya and Reich 2008). In so doing, shadow HMC samples from a
different target density and the samples have to be reweighed in order to
compute averages with respect to the target distribution. This method is not
to be confused with the so-called surrogate transition method (Liu 2008),
since in shadow HMC the target density is altered. The rationale for shadow
HMC is that exp(−H̃h) is easy to sample from, in the sense that ψh preserves
H̃h much more accurately than H, and hence, for a given duration param-
eter, shadow HMC increases the acceptance probability without having to
reduce the time step h. There is also a shadow generalized HMC method,
which similarly replaces the target density in GHMC with exp(−H̃h). Sev-
eral aspects of shadow HMC have not been sufficiently analyzed from a

mathematical viewpoint. For instance the integrability of exp(−H̃ [µ]
h ) has

not been studied in depth. Moreover, shadow HMC requires estimating the
modified Hamiltonian to order µ, which is nontrivial since it requires com-
puting (or estimating) higher derivatives of U (Skeel and Hardy 2001). The
momentum randomization step in Algorithm 5.3 must be modified, since

the p-marginal of exp(−H̃ [µ]
h ) is no longer a Gaussian distribution.
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