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1 Introduction

In this paper, we study word series and extended word series, classes of formal series
of functions for the analysis of some dynamical systems and their discretizations. We
exemplify the use of extended word series by studying the reduction to normal form
of some perturbed integrable problems. We also provide a detailed analysis of the
behavior of splitting numerical methods for those problems. Word series are patterned
after B-series [23], a commonly used tool in the study of numerical integrators; while
B-series are parametrized by rooted trees, word series are parametrized by words
built from the letters of an alphabet. Series of differential operators parametrized by
words (including the Chen-Fliess series) are very common in control theory [25] and
dynamical systems [18] and have also been used in numerical analysis (see among
others [16,27,28]). Word series are mathematically equivalent to series of differential
operators, but being series of functions, they are handled in a way very similar to
the way B-series are used by numerical analyst. Word series, as defined here, have
appeared before in the literature, explicitly [14,15] or implicitly [13]. Extended word
series are introduced in this paper.

B-series, introduced by Hairer and Wanner [23], provided the first example of
the application of formal series of functions to the theory of numerical integrators
(see [36] for a historical survey). B-series, particularly adapted to Runge–Kutta and
related methods, give a convenient, systematic way of performing the non-trivial alge-
braic manipulations needed to write the expansion of the local error in powers of the
stepsize. In addition, they facilitate the construction of integrators found by composing
simpler integrators; such a construction is required, for example, when investigating
the effective order of Runge–Kutta methods [7,8]. The usefulness of B-series stems
from the fact that the composition of two B-series is again a B-series whose coef-
ficients may be written down explicitly and are universal in the sense that they are
independent of the particular differential system being integrated. B-series and their
extensions grew more important within the notion of geometric integration [33]. In
1994, Calvo and one of the present authors [10] showed how the conditions for a
Runge–Kutta scheme to be symplectic may be advantageously derived by examining
the corresponding B-series. Hairer’s article [21] started the use of B-series to find
explicitly modified systems. Since those pioneering contributions, the role of B-series
and its generalizations [27] in geometric integration has kept growing as it may be
seen in the treatise [22].

The word series and extended word series considered here are, when applicable,
more convenient than B-series. A reason for this convenience is that they are more
compact; in fact the coefficients of a B-series are parametrized by (possibly colored
or decorated) rooted trees, and there are many more rooted trees with n vertices than
words with n letters. A second advantage of word series and extended word series over
B-series is that for words, the composition rule [see (11) and (13)] is much simpler
than for rooted trees.

An overview of the contributions of this paper is as follows.
Section 2 gives a summary of the rules to manipulate word series. A group G is

introduced that plays the role played by the Butcher group in the theory of B-series.
The solution of the differential system being integrated and some numerical methods,
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including splitting algorithms, may be represented by elements of G. We also identify
the Lie algebra g associated with G and the corresponding bracket. This material is
very much related to the theory of Hopf algebras [6,28]; however, Sect. 2 has been
written with an audience of computational scientist in mind, and a number of more
algebraic considerations have been postponed to Sect. 6.

Extended word series are introduced in Sect. 3 to cope with perturbed integrable
problems; roughly speaking we treat problems that may be seen as arbitrary pertur-
bations of systems that, in suitable variables, may be cast in the form (d/dt)y =
0, (d/dt)θ = ω (in the language of classical mechanics [2] y/θ would correspond to
action/angle variables). We describe the relevant group G and algebra g.

In Sect. 4, we show how to use extended word series to bring perturbed integrable
problems to normal form, i.e., how to change variables to reduce the system being
analyzed to a form as simple as possible. As distinct from standard ways of finding
normal forms, the extended word series approach does not rely on the vector field
being polynomial. Furthermore, the computations required here are universal (in the
sense of [14]): they are independent of the particular system under consideration.

For highly oscillatory problems, the reduction to normal form is very much related
to the process of averaging out the oscillatory components of the solution and therefore
Sect. 4 extends thematerial in the series of papers [12–15]. Furthermore, normal forms
readily lead to the explicit computation of (formal) invariant quantities of dynamical
systems and their discretizations, an issue not covered in this paper and treated in the
follow-up article [30].

Section 5 is devoted to the study of general splitting algorithms to simulate per-
turbed integrable problems.We showhowour algebraic approach leads to a convenient
expansion of the local error. It is well known that the behavior of the corresponding
global error as h varies is unfortunately extremely complex, as it depends on arithmetic
relations between h and the periods present in the solution. Extended word series pro-
vide a powerful instrument to analyze that behavior. In fact, two different approaches
are put forward here. In the first, the integrator is processed, i.e., subjected to changes
of variables, to remove oscillatory components. The second approach is based on con-
structing a modified system for the integrator and then bringing the modified system
to normal form. Of much interest is the fact that the validity of the modified system
holds even if h is not small relative to the periods in the problem (cf. the use by Hairer
and Lubich of modulated Fourier expansions [22]). The techniques in this section may
be readily applied to the construction and analysis of improved integrators, such as
those considered in, for example, [19,34]; this will be the subject of future work.

Section 6 contains proofs and technicalmaterial, and there is an “Appendix” devoted
to the practical applicability of splitting integrators.

2 Word Series

This section presents word series and provides a summary of the rules for their appli-
cation. The presentation has computational scientist in mind and focuses on essential
features; additional details and proofs are given in Sect. 6.1, where the approach is
more algebraic. Until further notice, all functions are assumed to be smooth.
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2.1 Definition of Word Series

We consider the D-dimensional initial value problem given by

x(0) = x0 (1)

and
d

dt
x =

∑

a∈A

λa(t) fa(x), (2)

where t is the (real) independent variable, A is a finite or infinite countable set of
indices, and for each a ∈ A, λa is a scalar-valued function and fa a D-vector-valued
map.

It is well known that the solutions of (2) may be expanded formally as follows.
Associated with each vector field fa in (2), there is a first-order linear differen-
tial operator Ea : if g is a scalar-valued function, then the function Eag is defined
by

Eag(x) =
D∑

j=1

f j
a (x)

∂

∂x j
g(x) (3)

(superscripts denote components of vectors). We shall also let Ea act on vector-valued
mappings; it is then understood that the operator is applied componentwise. If x(t)
satisfies (2), the chain rule yields

d

dt
g(x(t)) =

∑

a∈A

λa(t)(Eag)(x(t))

or

g(x(t)) = g(x(0)) +
∑

a∈A

∫ t

0
dt1 λ(t1)(Eag)(x(t1)).

The same proceduremay be now appliedwith (Eag)(x(t1)) in lieu of g(x(t)) to rewrite
the last equation as

g(x(t)) = g(x(0)) +
∑

a∈A

∫ t

0
dt1 λ(t1)(Eag)(x(0))

+
∑

a∈A

∑

b∈A

∫ t

0
dt1 λ(t1)

∫ t1

0
dt2 λ(t2)(Eb(Eag))(x(t2)).

Bycontinuing this Picard iteration and setting g equal to the identity function g(x) = x ,
we find that the solution of (1)–(2) has the formal expansion

x(t) = x0 +
∞∑

n=1

∑

a1,...,an∈A

αa1...an (t) fa1...an (x0), (4)
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where the vector-valued mappings fa1...an (x) and the scalar-valued functions αa1...an
satisfy the recursions

fa1...an (x) = ∂x fa2...an (x) fa1(x), n > 1, (5)

(∂x fa2...an (x) denotes the value at x of the Jacobian matrix of fa2...an ) and

αa1(t) =
∫ t

0
λa1(t1) dt1, (6)

αa1...an (t) =
∫ t

0
λan (tn) αa1...an−1(tn) dtn, n > 1.

For future reference, we note that

αa1...an (t) =
∫ t

0
dtn λan (tn)

∫ tn

0
dtn−1 λan−1(tn−1) . . .

∫ t2

0
dt1 λa1(t1),

or

αa1...an (t) =
∫

· · ·
∫

Sn(t)
λa1(t1) . . . λan (tn) dt1 . . . dtn, (7)

where the n-fold integral is taken over the simplex

Sn(t) = {
(t1, . . . , tn) ∈ R

n : 0 ≤ t1 ≤ · · · ≤ tn ≤ t
}
.

Let us present some examples (more may be seen in [28]):

1. In the simplest illustration, the set A has only one element a and the corresponding
λ takes the value 1 for each t . Then, (2) is the autonomous system (d/dt)x =
fa(x). For each n, the inner sum in (4) comprises a single term and from (7), the
corresponding coefficient is found to be αa...a(t) = tn/n!. In this case, (4) is the
standard Taylor expansion of x(t).

2. The autonomous system (d/dt)x = F(x)with the right-hand side split as F(x) =
fa(x)+ fb(x) is of the form (2) with A = {a, b} and λa(t) = λb(t) = 1. For each
n, the inner sum in (4) comprises 2n terms and each of them has a coefficient tn/n!.
The expansion (4) is the Taylor series for x(t) written in terms of the pieces fa
and fb rather than in terms of F , a format that is useful in the analysis of splitting
numerical integrators. It is of course possible to split F in m > 2 parts or even in
infinitely many parts; then, A has m or infinitely many elements. In all cases, the
integral (7) has the value tn/n!.

3. Let ω > 0 be a fixed number. If A = Z (the set of all integers) and, for k ∈
Z, λk(t) = exp(ikωt), then (2) is a non-autonomous system 2π/ω-periodic in t
with the right-hand side expanded in Fourier series. Here the functions λk possess
complex values; if the system (2) is real, then the mappings fk take values in C

D

and fk is the complex conjugate of f−k for each k ∈ Z. The expansion (4) has
been used in [12–15] to study analytically periodic problems.
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4. Also treated in [13–15] are quasiperiodic problems. If ω ∈ Z
d is a vector of

frequencies, these are of the form (2) with A = Z
d and

λk(t) = exp(ik · ωt), k ∈ Z
d . (8)

This case will be taken up in the next section.

The notation in (4) may be made slightly more compact by considering A as an
alphabet and the strings a1 . . . an as words with n letters. Then, if Wn represents the
set of all words with n letters, (4) reads

x(t) = x0 +
∞∑

n=1

∑

w∈Wn

αw(t) fw(x0).

If we, furthermore, introduce the emptyword∅ and setW0 = {∅}, α∅ = 1, f∅(x) =
x , then the last expansion becomes

x(t) =
∞∑

n=0

∑

w∈Wn

αw(t) fw(x0) =
∑

w∈W
αw(t) fw(x0), (9)

where W represents the set of all words.
Subsequent developments will make much use of the set CW of all mappings

δ:W → C; if δ ∈ C
W and w is a word, then δw is a complex number. This set is

obviously a vector space for the usual operations between maps: if μ1, μ2 are scalars
and δ1, δ2 ∈ C

W , then (μ1δ1 + μ2δ2) ∈ C
W is defined by (μ1δ1 + μ2δ2)w =

μ1(δ1)w + μ2(δ2)w for each w ∈ W .
The expansion (9) motivates the following definition:

Definition 1 If δ ∈ C
W , then its corresponding word series is the formal series

Wδ(x) =
∑

w∈W
δw fw(x). (10)

The scalars δw and the functions fw will be called the coefficients of the series and
word-basis functions, respectively.

Clearly the word-basis functions change with the mappings fa in the system (2)
being studied. With this terminology, for each fixed t , the formal series (9) for the
solution x(t) of (1)–(2) is a word series whose coefficients αw(t) are given by (7) and
α∅(t) = 1 (these coefficients are independent of the mappings fa). Also, for each t ,
the right-hand side of (2) is a word series with coefficients βa(t) = λa(t) for words
with one letter and βw(t) = 0 for all other words. As we shall see later, word series
Wδ corresponding to other choices of coefficients δw are useful in the analysis of
dynamical systems and their numerical integrators.
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Remark 1 (Word series andmolds) In Ecalle’s terminology, word series aremolds, see
[17,18], and the convolution product considered below is themold product (Ecalle [17]
also considered a composition of molds—not discussed in this paper—that is analo-
gous to the substitution of B-series [11]).

Remark 2 (Word series and B-series) Each fw,w �= ∅, is built up from partial deriv-
atives of the fa, a ∈ A, for example, if a, b, c ∈ A,

fba(x) = ∂x fa(x) fb(x),

fcba(x) = ∂x fba(x) fc(x)

= ∂xx fa(x)[ fb(x), fc(x)] + ∂x fa(x) ∂x fb(x) fc(x).

The functions ∂x fa(x) fb(x), ∂xx fa(x)[ fb(x), fc(x)], ∂x fa(x) ∂x fb(x) fc(x) in these
expressions are examples of elementary differentials; eachword-basis function fw(x),
with w ∈ Wn, n > 0, is a linear combination with integer coefficients of elementary
differentials of order n [i.e., containing n functions fa(x)]. There is an elementary
differential corresponding to each A-colored (or A-decorated) rooted tree, i.e., to each
rooted tree where to each vertex it has been assigned an element of A. By expanding
each word-basis function in terms of elementary differentials, the series (10) becomes
a so-called B-series

∑

τ

�τFτ (x),

where the summation is extended to all A-colored rooted trees and Fτ (x) is the
elementary differential corresponding to τ . B-series were introduced by Hairer and
Wanner [23] in the simplest case where the alphabet A has only one letter. B-series
corresponding to this and larger alphabets are often used in numerical analysis; word
series being more compact are better suited to analyze some integrators. For the rela-
tion between word series and B-series see [28] and [18] (Ecalle used in this connection
the terminology arborifaction–coarborification).

Remark 3 (Word series as power series) For a system (d/dt)x = ε
∑

a λa(t) fa(x),
where ε is a scalar parameter, (10) becomes the formal power series

∞∑

n=0

εn
∑

w∈Wn

γw fw(x).

Note that when the alphabet A is infinite the coefficient of εn is itself an infinite series
that has to be understood formally. The format (10) is of course recovered from the
power series by setting ε = 1; therefore, both formats are equivalent. While the papers
[13,15] use the power series format, we prefer to work with (10) as it leads to more
compact formulae. Some readers may find it useful to mentally substitute ε fa for
fa everywhere in what follows; this may be particularly the case for the perturbed
integrable problems considered in Sect. 3.
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2.2 Operations with Word Series

2.2.1 The Convolution Product

Given δ, δ′ ∈ C
W , we associate with them its convolution product δ�δ′ ∈ C

W defined
by

(
δ � δ′)

a1...an
= δ∅δ′

a1...an +
n−1∑

j=1

δa1...a j δ
′
a j+1...an + δa1...anδ

′
∅ (11)

(here it is understood that (δ � δ′)∅ = δ∅δ′
∅). The convolution product is not commuta-

tive, but it is associative and has a unit (the element 1 ∈ C
W with 1∅ = 1 and 1w = 0

for w �= ∅).
As we shall see, the operation � plays an essential role in the manipulation of word

series.

2.2.2 The Group G

If w ∈ Wm and w′ ∈ Wn are words, m, n ≥ 1, their shuffle product w 

w′ [31]
is the formal sum of the (m + n)!/(m!n!) words with m + n letters that may be
obtained by interleaving the letters of w and w′ while preserving the order in which
the letters appear in each word (Examples: for the words ab, cd, the shuffle product
is ab 

cd = abcd + acbd + cabd + acdb + cadb + cdab, for the words ab, a, the
product is ab 

a = aba + aab + aab). In addition, ∅ 

w = w 

∅ = w for each
w ∈ W . The operation 

 is commutative and associative and has word ∅ as a unit.

We denote by G the set of those γ ∈ C
W that satisfy the so-called shuffle relations:

γ∅ = 1 and, for each w,w′ ∈ W ,

γwγw′ =
N∑

j=1

γw j if w 

w′ =
N∑

j=1

w j . (12)

The set G with the operation � may be regarded in a formal sense (cf. [5]) as a non-
commutative Lie group (see Sect. 6.1.2). For each fixed t , the family of coefficients
defined by (7) and α∅(t) = 1 is an element of the group G (to prove this, consider (12)
for w ∈ Wm and w′ ∈ Wn and use (7) to write αwαw′ and each αw j as integrals over
subsets of Rm+n , cf. [31, Corollary 3.5]).

When γ belongs to G, the word series Wγ (x) has properties that are not shared
by general word series. For γ ∈ G, changes of variables x = C(X) commute with
the formation of word series as described in [13, Proposition 3.1]. Moreover, for
γ ∈ G,Wγ (x) may be substituted in an arbitrary word series Wδ(x), δ ∈ C

W , to get
a new word series; more precisely

Wδ

(
Wγ (x)

) = Wγ �δ(x), (13)

i.e., the coefficients of the word series resulting from the substitution are given by
the convolution product γ � δ (this is proved in Sect. 6.1.3). A similar rule exists

123



Found Comput Math (2017) 17:675–712 683

of course for B-series, but the recipe there is more complicated than (11) [23],
[22, Chapter III].

In the numerical analysis of differential equations, word series with coefficients in
G appear, for example, as expansions in powers of the stepsize of splitting integrators,
see Sect. 5. Then, (13) provides the recipe to compose integrators or to compose an
integrator and a mapping. For each fixed t , the right-hand side of (2) is an example of
a word series with coefficients in the Lie algebra g of the group G that we study next.

2.2.3 The Lie Algebra g

We denote g the set of elements β ∈ C
W such that β∅ = 0 and for each pair of

non-empty words w,w′,

N∑

j=1

βw j = 0 if w 

w′ =
N∑

j=1

w j .

It is clear that g is a vector subspace of the vector space CW ; furthermore, g is closed
for the skew-symmetric product defined by

[β, β ′] = β � β ′ − β ′ � β. (14)

This product satisfies the Jacobi identity and therefore endows gwith a structure of Lie
algebra (see Sect. 6.1.2). In fact g is the Lie algebra of the Lie group G: the elements
β ∈ g coincide with the velocities at 1 ∈ G of curves in G. In symbols, if γ (t), t ∈ R

is a curve in G such that γ (0) = 1, then β ∈ C
W defined by

β = d

dt
γ (t)

∣∣∣∣
t=0

(15)

(i.e., βw = (d/dt)γw(0) for each w ∈ W) belongs to g. Moreover, any β ∈ g arises
in this way: the exponential

exp�(tβ) = 1 +
∞∑

j=1

t j

j !β
� j (16)

(β� j is the convolution product of j factors all equal to β) defines a curve of elements
of G with velocity β at t = 0. The points of this curve actually form a one-parameter
subgroup of G since exp�(tβ) � exp�(t

′β) = exp�((t + t ′)β). The exponent β may be
retrieved from the exponential γ = exp�(β) by means of the logarithm

β = log�(γ ) =
∞∑

j=1

(−1)( j+1)

j
(γ − 1)� j . (17)
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Just as the convolution product with an element of G corresponds to the operation
of substitution of the associated word series [see (13)], the convolution bracket (14)
corresponds to the Jacobi bracket (commutator) of the associated word series, for
β, β ′ ∈ g:

(
∂xWβ ′(x)

)
Wβ(x) − (

∂xWβ(x)
)
Wβ ′(x) = W[β,β ′](x).

To prove this, let γ (t) be a curve with velocity β as above; then, for any δ ∈ C
W ,

(∂xWδ(x))Wβ(x) = d

dt
Wδ

(
Wγ (t)(x)

)∣∣∣∣
t=0

= d

dt
Wγ (t)�δ(x)

∣∣∣∣
t=0

= Wβ�δ(x). (18)

(we have successively used the chain rule, (13), and the bilinearity of �).
Since for β ∈ g, the word series Wβ(x) belongs to the Lie algebra (for the Jacobi

bracket) generated by the mappings (vector fields) fa , the Dynkin–Specht–Wever
formula [24] may be used to rewrite the word series in terms of iterated commutators
of these mappings:

Wβ(x) =
∞∑

n=1

1

n

∑

a1,...,an∈A

βa1...an

[[
. . .

[[
fa1 , fa2

]
, fa3

]
. . .

]
, fan

]
(x). (19)

[for n = 1 the terms in the inner sum are of the form βa1 fa1(x)].

2.2.4 Non-autonomous Differential Equations in G

Initial value problems

d

dt
x(t) = Wβ(t)(x(t)), x(0) = x0, (20)

where for each t, β(t) ∈ g, are a natural generalization of (1)–(2) [we recall that the
right-hand side (2) does not include contributions from basis functions associated with
words with more than one letter]. These problems may be solved formally by using
the ansatz x(t) = Wα(t)(x0) with α(t) ∈ G for each t . In view of (13), we may write

d

dt
Wα(t)(x0) = Wβ(t)

(
Wα(t)(x0)

) = Wα(t)�β(t)(x0), Wα(0)(x0) = x0,

which leads to the linear, non-autonomous initial value problem

d

dt
α(t) = α(t) � β(t), α(0) = 1. (21)

For the empty word, according to (11), (d/dt)α∅ = α∅(t)β∅(t); since β(t) ∈ g
implies β∅(t) = 0, we see that α∅(t) = 1. For a word a ∈ W1, (d/dt)αa(t) =
α∅(t)βa(t) + αa(t)β∅(t), which leads to αa(t) = ∫ t

0 βa(t1) dt1. The process may be
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continued in an obvious way and induction on the number of letters shows that (21)
uniquely determines αw(t) for each w ∈ W . Furthermore, for each t , the element
α(t) ∈ C

W defined in this way belongs to G; while this may be established by means
of the Magnus expansion (see for example [3], [22, Chapter IV]), we provide an
elementary proof in Sect. 6.

Conversely, any curve α(t) of group elements with α(0) = 1 solves a problem of
the form (21) with

β(t) = α(t)−1 �

(
d

dt
α(t)

)
.

Since

α(t)−1 �

(
d

dt
α(t)

)
= d

ds

(
α(t)−1 � α(t + s)

)∣∣∣∣
s=0

,

for each t , the element β(t) defined in this way is a member of g.
The investigation of normal forms below is based on changing variables. A change

of variables x = Wκ(X), κ ∈ G, transforms the problem (20) into

d

dt
X (t) = WB(t)(X (t)), X (0) = X0,

with B(t) � κ = κ � β(t) (or B(t) = κ � β(t) � κ−1), X0 = Wκ−1(x0) (κ−1 is the
inverse of κ in the group G); this is a direct consequence of (13) and (18).

2.2.5 The Hamiltonian Case

Consider now the particular case where the dimension D of (2) is even and each fa(x)
is aHamiltonian vector field [35], i.e., fa(x) = J−1∇Ha(x), where J−1 is the standard
symplectic matrix. Recall [2] that the Jacobi bracket (commutator) [J−1∇A, J−1∇B]
of two Hamiltonian vectors fields is again a Hamiltonian vector field and that the
corresponding Hamiltonian function is the Poisson bracket of the Hamiltonians A and
B, defined by {A, B}(x) = ∇A(x)T J−1B(x). According to (19), for each β ∈ g, the
vector field Wβ(x) is Hamiltonian

Wβ(x) = J−1∇Hβ(x)

with Hamiltonian function

Hβ(x) =
∑

w∈W, w �=∅
βwHw(x),

where, for each non-empty word w = a1 . . . an ,

Hw(x) = 1

n

{{
. . .

{{
Ha1 , Ha2

}
, Ha3

}
. . .

}
, Han

}
(x). (22)
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For Hamiltonian systems, changes of variables x = Wκ(X), κ ∈ G, are canonically
symplectic; after the change of variables, the system is again Hamiltonian and the
new Hamiltonian function is obtained by changing variables in the old Hamiltonian
function [2].

3 Extended Word Series

In this section, we adapt the precedingmaterial to cover perturbed integrable problems.

3.1 Perturbed Integrable Problems

We now consider systems of the form

d

dt

[
y
θ

]
=

[
0
ω

]
+ f (y, θ),

where y ∈ R
D−d , 0 < d ≤ D, ω ∈ R

d is a vector of frequencies ω j > 0, j =
1, . . . , d, and θ comprises d angles, so that f (y, θ) is 2π -periodic in each component
of θ with Fourier expansion

f (y, θ) =
∑

k∈Zd

exp(ik · θ) f̂k(y)

( f̂k(y) and f̂−k(y) are mutually conjugate, so as to have a real problem). Systems of
this form appear in many applications, perhaps after a change of variables (see the
“Appendix”). When f ≡ 0 the system is integrable (the angles rotate with uniform
angular velocity and y remains constant) and accordingly we refer to problems of this
class as perturbed integrable problems and to f as the perturbation (some readers may
prefer to substitute ε f for f , see Remark 3).

After introducing the functions

fk(y, θ) = exp (ik · θ) f̂k(y), y ∈ R
D−d , θ ∈ R

d , (23)

that satisfy the fundamental identity

fk(y, θ1 + θ2) = exp (ik · θ1) fk(y, θ2), (24)

the system takes the form

d

dt

[
y
θ

]
=

[
0
ω

]
+ f (y, θ) =

[
0
ω

]
+

∑

k∈Zd

fk(y, θ). (25)

To find the solution with initial conditions

y(0) = y0, θ(0) = θ0, (26)
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we perform the time-dependent change of variables θ = η + tω to get

d

dt

[
y
η

]
=

∑

k∈Zd

exp(ik · ωt) fk(y, η), (27)

a particular instance of the problem considered in Sect. 2. The alphabet A coincides
with Zd , and, for each ‘letter’ k, λk(t) is given by (8). The formula (4) yields

[
y(t)
η(t)

]
=

[
y(0)
η(0)

]
+

∞∑

n=1

∑

k1,...,kn

αk1...kn (t) fk1...kn (y(0), η(0)), (28)

where the coefficients α are still given by (7) (but recall that now the letters a are
multiindices k) and the word-basis functions are defined by (23) and (5) (the Jacobian
in (5) is taken with respect to the D-dimensional variable (y, θ)). We conclude that,
in the original variables, the solution flow of (25) has the formal expansion

φt (y0, θ0) =
[
y(t)
θ(t)

]
=

[
y0
θ0

]
+

[
0
tω

]
+

∞∑

n=1

∑

k1,...,kn

αk1...kn (t) fk1...kn (y0, θ0). (29)

Note that the word-basis functions are independent of the frequencies ω and the coef-
ficients α are independent of f . Also from (24), we have the identity:

fk1...kn (y, θ1 + θ2) = exp (i (k1 + · · · + kn) · θ1) fk1...kn (y, θ2), (30)

and, in particular

fk1...kn (y, θ) = exp (i (k1 + · · · + kn) · θ) fk1...kn (y, 0), (31)

With the notation of Sect. 2, we write (29) in the following form (here and later
x = (y, θ)):

x(t) =
[
0
tω

]
+ Wα(t)(x0).

In order to make the formula even more compact, we introduce the vector space
C = C

d ⊕ C
W and define:

Definition 2 If (v, δ) ∈ C, then its corresponding extended word series is the formal
series

W (v,δ)(x) =
[
0
v

]
+

∑

w∈W
δw fw(x).
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Then, the solution (29) of (25)–(26) has the expansion

x(t) = W (tω,α(t))(x0), (tω, α(t)) ∈ C,

with α(t) ∈ G ⊂ C
W as defined in Sect. 2. Also the right-hand side of (25) is an

extended word series W (ω,β)(x) with β ∈ g ⊂ C
W defined by

βw = 1 if w ∈ W1, βw = 0 if w /∈ W1. (32)

3.2 Operations with Extended Word Series

3.2.1 The Operation �

The following two linear operators will appear repeatedly. If v is a d-vector, Ξv is the
linear operator in C

W that maps each δ ∈ C
W into the element of CW defined by

(Ξvδ)∅ = δ∅ and
(Ξvδ)w = exp (i(k1 + · · · + kn) · v) δw. (33)

for w = k1 . . . kn . The linear operator ξv on C
W is defined as follows: (ξvδ)∅ = 0,

and for each word w = k1 . . . kn ,

(ξvδ)w = i (k1 + · · · + kn) · v δw.

Thus, Ξv and ξv are diagonal operators with eigenvalues exp(i(k1 + · · · + kn) · v)

and i(k1 + · · · + kn) · v, respectively. Observe that Ξv(γ � δ) = (Ξvγ ) � (Ξvδ) if
γ, δ ∈ C

W and that:
d

dt
Ξtv = Ξtvξv = ξvΞtv.

The symbol G denotes the subset of C comprising the elements (u, γ ) with u ∈ C
d

and γ ∈ G. For each t , the solution coefficients (tω, α(t)) ∈ C found above provide
an example of element of G. With the help ofΞu we define an operation� as follows.
If (u, γ ) ∈ G and (v, δ) ∈ C, then

(u, γ )�(v, δ) = (γ∅v + δ∅u, γ � (Ξuδ)) ∈ C.

By using (13) and (30), it is a simple exercise to check that G acts by substitution on
extended word series as follows:

W (v,δ)

(
W (u,γ )(x)

) = W (u,γ )�(v,δ)(x), γ ∈ G. (34)
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In fact we have defined the operation � so as to ensure this property. The set G is a
group for the product � and C

d and G may be viewed as subgroups of G.1 The unit
of G is the element 1 = (0,1).

3.2.2 The Lie Algebra g

As a set, the Lie algebra g of the group G consists of the elements (v, δ) ∈ C with
δ ∈ g. Let us describe the bracket in g. Given v ∈ C

d and δ ∈ g, we have the trivial
decomposition

W (v,δ) =
[
0
v

]
+ Wδ(x) = W (v,0) + W (0,δ).

By using (31), one can check that the Jacobi bracket of the vector fields W (λ,0) and
W (0,δ) is [

W (v,0),W (0,δ)
] = W (0,ξvδ).

From these relations we conclude that, for arbitrary (v, δ), (u, η) ∈ C
d ⊕g, the Jacobi

bracket of the vector fields W (v,δ),W (u,η) is given by

[
W (v,δ),W (u,η)

] = W (0,ξvη−ξuδ+δ�η−η�δ).

Accordingly the bracket of g has the expression

[(v, δ), (u, η)] = (0, ξvη − ξuδ + δ � η − η � δ) .

The 0 reflects the fact that Cd is an Abelian subgroup of G.

3.2.3 Non-autonomous Differential Equations in G

The initial value problem

d

dt
x(t) = W (ω,β(t))(x(t)), x(0) = x0,

where (ω, β(t)) ∈ g for each t , may be formally solved in a manner that is exactly
parallel to treatment given above to (20): x(t) = W (tω,α(t))(x0), where α(0) = 1 and

d

dt
(tω, α(t)) = (tω, α(t))�(ω, β(t)).

Observe that the right-hand side of this equation is, by definition of �, equal to
(tω, α(t) � (Ξtωβ(t))), so that α(t) is the solution of an initial value problem of the
form (21) with β(t) replaced by Ξtωβ(t).

1 Consider the group homomorphism from the additive group Cd to the group of automorphisms of G that
maps each μ ∈ C

d into Ξμ. Then, G is the (outer) semidirect product of G and the additive group Cd with
respect to this homomorphism.
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A change of variables x = W (v,κ)(X), (v, κ) ∈ G, can be seen to transform the
problem into

d

dt
X (t) = W (ω,B(t))(X (t)), X (0) = X0,

where now B(t) is determined from

B(t) � κ + ξωκ = κ � (Ξvβ(t))

and, of course, x0 = W (v,κ)(X0) or X0 = W (v,κ)−1(x0) [Note that (v, κ)−1 =
(−v,Ξ−vκ

−1)].

3.2.4 Perturbed Hamiltonian Problems

Toend this section, assume in (25), that the dimension D is evenwith D/2−d = m ≥ 0
and that the vector of unknowns takes the form

x = (y, θ) =
(
p1, . . . , pm; q1, . . . , qm; a1, . . . , ad ; θ1, . . . , θd

)
,

where p j is the momentum canonically conjugate to the co-ordinate q j and a j is the
momentum (action) canonically conjugate to the co-ordinate (angle) θ j . If each fk(x)
in (23) is a Hamiltonian vector field with Hamiltonian function Hk(x), then the system
(25) is itself Hamiltonian for the Hamiltonian function

d∑

j=1

ω j a
j +

∑

k∈Zd

Hk(x).

For each (ω, β) ∈ g, the extended word series W (ω,β)(x) is a Hamiltonian formal
vector field, with Hamiltonian function

d∑

j=1

ω j a
j +

∑

w∈W, w �=∅
βwHw, (35)

with Hw(x) as in (22). Note that the Lie bracket in g can be used to compute the
Poisson bracket of formal Hamiltonian functions of the form (35).

4 Normal Forms and Averaging

In this section, we show how the algebraic machinery introduced above may be
applied to build a theory of normal forms [1,32] for the perturbed integrable prob-
lems of the form (25). This theory hinges on the fact that the linear operator
W (0,δ) �→ [W (ω,0),W (0,δ)] (δ ∈ g) coincides, as we have seen in Sect. 3.2.2, with the
diagonal operator W (0,δ) �→ W (0,ξωδ).
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Let us consider an autonomous system

d

dt
x = d

dt

[
y
θ

]
=

[
0
ω

]
+ Wβ(x) = W (ω,β)(x), β ∈ g. (36)

As noted before, this format yields the perturbed problem (25) when β is chosen as in
(32). The more general case where β is any element in gwill be necessary to deal with
splitting integrators later.We shall change variables x = Wκ(X) = W (0,κ)(X), κ ∈ G,
in order to simplify (36) as much as possible.

Remark 4 There is nothing lost by assuming that x = Wκ(X) is a (not extended)
word series in the new variables X—or equivalently an extended word series of the
special format x = W (0,κ)(X). More general changes x = W (v,κ)(X) do not allow
for additional simplifications in (36).

From Sect. 3.2.3, we know that the transformed system is

d

dt
X = d

dt

[
Y
Θ

]
=

[
0
ω

]
+ Wβ̂ (X) = W (ω,β̂)(X), (37)

with
ξωκ + β̂ � κ = κ � β. (38)

Our aim is to choose β̂ ∈ g and κ ∈ G subject to (38) and such that β̂ is as simple as
possible; then the system is said to have been brought to normal form. Of course the
maximum simplification would be obtained by setting β̂ = 0, but for this choice of β̂

it is not possible to find an appropriate κ; this will be clear in the proof of Theorem 1
and is to be expected from general results on normal forms [1,32]. More precisely,
perturbations that commute with W (ω,0) cannot be eliminated by changing variables.
One then has to restrict the attention to β̂ ∈ g such that in (37) the unperturbed vector
field and the perturbation commute, i.e., [W (ω,0),W (0,β̂)] = 0. This is equivalent to

W (0,ξωβ̂) = 0, or, in terms of the coefficients,

i (k1 + · · · + kn) · ω β̂k1...kn = 0, (39)

for each non-empty word k1 . . . kn . We have then the following result, which is proved
constructively in Sect. 6.2.

Theorem 1 There is a change of variables x = Wκ(X), κ ∈ G, that reduces the
system (36) to the form (37), where β̂ ∈ g and β̂w = 0 for all words w = k1 . . . kn
such that (k1 + · · · + kn) · ω �= 0. Furthermore, the vector fields W (ω,0)(X) and
W (0,β̂)(X) commute and the solutions of (37) satisfy

X (t) = φt

(
X (0) +

[
0
tω

])
= φt (X (0)) +

[
0
tω

]
,
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where φt is the solution flow of the system (d/dt)X = Wβ̂ (X). Equivalently, X (t) =
W (tω,̂α(t))(X (0)), where

(tω, α̂(t)) = (
tω, exp�(t β̂)

) = exp�(t β̂)�(tω,1) = (tω,1)� exp�

(
t β̂

)
.

If the system (36) is Hamiltonian, the change of variables is canonical symplectic
and the transformed system (37) is Hamiltonian.

When ω is non-resonant, i.e., k · ω �= 0 for k �= 0, the theorem implies, in view
of (31), that the transformed vector field W (ω,β̂)(X) is independent of the angular
variables Θ . In other words, (37) is a system where the angles have been averaged
[1,2,32]. In the general situation with a non-trivial resonant module

Mω =
{
k ∈ Z

d : k · ω = 0
}

,

the transformed vector field depends on Θ . However, this dependence is only through
a number of combinations l1 · Θ ,…, lr · Θ, r < d, where l1, …, lr ∈ Z

d are linearly
independent and span the resonant module.

Remark 5 Consider the highly oscillatory case where (36) depends on a small para-
meter δ and ω = O(1/δ),Wβ(x) = O(1). The combinations not eliminated by the
change of variables have the property that their velocities (d/dt)li · Θ are O(1), as
distinct from the situation for the original angles with (d/dt)θ = O(1/δ). In this
sense, the fast angles have been averaged when forming (37).

For convenience,we shall use the expression oscillatoryword to refer to thosewords
k1 . . . kn for which (k1 + · · · + kn) · ω �= 0. Thus, the theorem may be rephrased
as saying that the contributions to the vector field corresponding to oscillatory words
may be removed from (36) by means of a change of variables. Note that the set g0
of all β̂ ∈ g such that β̂w = 0 for all oscillatory words is a Lie subalgebra of g; this
follows from the fact that β̂ is in g0 if and only if (ω, 0) and (0, β̂) commute.

If we now express the commuting vector fields W (ω,0)(X) and W (0,β̂)(X) in terms
of the original variables x by applying the recipe for changing variables given in
Sect. 3.2.3, we obtain a decomposition of the right-hand side of (36) as a commuting
sum of two terms:

W (ω,β)(x) = W (ω,κ−1�ξωκ)(x) + Wκ−1�β̂�κ (x).

The second of these generates a flow

x(t) = Wκ−1�exp�(t β̂)�κ (x(0))

where the motion of the fast angles has been averaged. The former generates a quasi-
periodic flow

x(t) = W (0,κ−1)�(tω,1)�(0,κ)(x(0)) = W (tω,κ−1�Ξtωκ)(x(0)).
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Finally, the flow of (36) is given by

x(t) = W (tω,κ−1�exp�(t β̂)�κ�Ξtω)(x(0)).

Remark 6 In the non-resonant case, the commuting decomposition of W (ω,β)(x) has
been obtained in [13, Theorem 5.5] by means of a different (but related) technique.

5 Splitting Methods

Splitting algorithms [22,35] are natural candidates to integrate perturbed integrable
problems. In this connection, it is extremely important to emphasize that the practical
implementation of splitting methods is not necessarily based on the simple format
(25). Such a simple format is typically reached after suitable changes of variables and
is quite convenient for the analysis. These points are discussed in the “Appendix.”

Given real coefficients, a j and b j , j = 1, . . . , r , we study the splitting integrator
for (25) defined by

φ̃h = φ
(P)
br h

◦ φ
(U )
ar h

◦ · · · ◦ φ
(P)
b1h

◦ φ
(U )
a1h

. (40)

Here h is the step-length, φ̃h the mapping in RD that advances the numerical solution
over one time step, and φ

(U )
t and φ

(P)
t denote, respectively, the exact t-flows of the

split systems corresponding to the unperturbed dynamics

d

dt

[
y
θ

]
=

[
0
ω

]
, (41)

and the perturbation
d

dt

[
y
θ

]
= f (y, θ). (42)

If we set

a =
r∑

j=1

a j , b =
r∑

j=1

b j ,

the integrator is consistent if a = b = 1.
Since the unperturbed dynamics with frequencies ω j is reproduced exactly by (40),

one would naively hope that the accuracy of the integrator would be dictated for the
size of f uniformly in ω. It is well known that such an expectation is unjustified, see
for example [19,34].

5.1 Extended Word Series Expansion of the Local Error

Clearly, the mapping φ
(U )
t has an expansion in extended word series

φ
(U )
t (x) = W (tω,1)(x), (tω,1) ∈ G;
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furthermore, using Example 2 in Sect. 2,

φ
(P)
t (x) = W (0,τ (t))(x), (0, τ (t)) ∈ G,

where τ(t) ∈ G comprises the Taylor coefficients, i.e., τw(t) = tn/n! if w ∈ Wn .
The following result makes use of the algebraic formalism to provide explicitly the
expansion of the numerical solution.

Theorem 2 The splitting integrator φ̃h in (40) possesses the expansion

φ̃h(x) = W (haω,̃α(h))(x),

where α̃(h) ∈ G is specified by α̃∅(h) = 1 and, for n = 1, 2, . . .,

α̃k1...kn (h) = hn
∑

1≤ j1≤···≤ jn≤r

b j1 . . . b jn

σ j1... jn
exp

(
i (c j1k1 + · · · + c jnkn) · ωh

)
. (43)

Here,

c j = a1 + · · · + a j , 1 ≤ j ≤ r,

and,

σ j1... jn = 1
n! if j1 = · · · = jn,

σ j1... jn = 1
�! σ j�+1... jn if � < n, j1 = · · · = j� < j�+1 ≤ · · · ≤ jn .

Proof From (34), we know that φ̃h has an expansion in extended word series and that
the family of coefficients is given by (pay attention to the ordering)

(
a1hω,1

)
�

(
0, τ (b1h)

)
� · · · �(

arhω,1
)
�

(
0, τ (brh)

);

it is enough to compute, according to the definition, the products� in this expression.
�

Remark 7 (The associated quadrature rule) For words with one letter, the theorem
yields:

α̃k(h) = h
∑

1≤ j≤r

b j exp
(
i c jk · ωh

)
.

This obviously corresponds to the approximation of the exact coefficient αk(h)

[defined in (6) and (8)] by the (univariate) quadrature rule that on the unit interval
has abscissas c j and weights b j . This rule will be consistent if b = 1, which is implied
by the consistency of the integrator.
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Remark 8 (Associated cubature rules) Similarly, for n > 1, (43) corresponds to
approximating (7) with a cubature rule for the simplex. If the univariate quadrature is
consistent, so is the cubature rule for each n > 1, because, by using the multinomial
expansion,

∑

1≤ j1≤···≤ jn≤r

b j1 . . . b jn

σ j1... jn
=

∑

n1+···+nr=n

bn11 . . . bnrr
n1! . . . nr !

= 1

n!
( r∑

j=1

b j
)n = ( r∑

j=1

b j
)n Vol(S(1)).

Discussions perhaps become clearer by introducing scaled coefficients Aw and Ãw

such that

αk1...kn (h) = hn Ak1...kn (h), α̃k1...kn (h) = hn Ãk1...kn (h).

Note that, by performing the change of variables t j = ht ′j , j = 1, . . . , n, in (7),

Ak1...kn (h) =
∫

. . .

∫

Sn(1)
exp

(
i(t ′1k1 + · · · + t ′nkn) · ωh

)
dt ′1 . . . dt ′n, (44)

and that, therefore,

| Ak1...kn (h) |≤ Vol (Sn(1)) = 1

n! .

With these preparations, we have proved our next result:

Theorem 3 The local error of the splitting integrator φ̃h in (40) possesses the expan-
sion

φ̃h(x) − φh(x) = W (h(a−1)ω,̃α(h)−α(h))(x).

i.e.,

φ̃h(x0) − φh(x0) =
[

0
h
(
a − 1

)
ω

]
+

∞∑

n=1

hn
∑

k1,...,kn∈Zd

(
Ãk1...kn (h) − Ak1...kn (h)

)
fk1...kn (x0). (45)

5.2 Estimates

In order to obtain error estimates, it is now necessary to truncate the infinite series in
(45) and we shall do so in the next theorem, whose proof is given in Sect. 6.3. We
assume hereafter that:
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1. The function f (x) = f (y, θ) is defined in a setΩ = BR(y0)×T
d , where BR(y0)

is the ball {y : |y − y0| < R} ⊂ R
D−d .

2. There exists a finite set of indices I ⊂ Z
d such that for k /∈ I, the Fourier

coefficient f̂k vanishes.
3. There exists an integer N ≥ 2, such that the Fourier coefficients f̂k and their

partial derivatives of order ≤ N − 1 are continuous and bounded in BR(y0).

In the first of these hypotheses, the form of the domain Ω is natural since f (y, θ)

is periodic in each of the components of θ . As shown in, for example, [14], the
second hypothesis may be relaxed for the conclusions of the theorem to hold; it makes,
however, possible to avoid distracting technicalities. In this connection, it should be
noted that, for nonlinear problems, even if f has a finite number of Fourier modes the
solution x(t) in (29) will include arbitrarily high frequencies [the product of λ’s in (7)
adds the corresponding wave numbers k].2

Theorem 4 Assume that the system (25) being integrated satisfies the assumptions
above. Then, there exist positive constants h0,C, both independent of ω, such that:

1. For |h| < h0 and arbitrary θ0, the true solution φh(x0), x0 = (y0, θ0) and the
numerical solution φ̃h(x0) are well defined and lie in Ω .

2. The local error at x0 satisfies

φ̃h(x0) − φh(x0) =
[

0
h
(
a − 1

)
ω

]

+
N−1∑

n=1

hn
∑

k1,...,kn∈I

(
Ãk1...kn (h) − Ak1...kn (h)

)
fk1...kn (x0)

+Rh(x0), (46)

where |Rh(x0)| ≤ C |h|N .
The theorem reduces the estimation of the local error to the estimation of the

quantities Ãk1...kn (h)− Ak1...kn (h). These are errors arising in the quadrature of scalar
smooth trigonometric functions and are completely independent of the function f .

It is assumed hereafter that the integrator is consistent. We first analyze the local
error in the limit h → 0. The condition a = 1 implies that the first term in the right-
hand side of (46) vanishes. Furthermore, from Remark 7, Ãk(h) − Ak(h) = O(h) as
h → 0 and we conclude that φ̃h(x) − φh(x) = O(h2). Note that, for the word with
0 ∈ Z

d as its only letter, Ã0(h)− A0(h) = 0. Moreover, in view of Remark 8, for each
n ≤ N − 1, the nth term in the sum in (46) is actually O(hn+1) rather than O(hn).

If, additionally, the underlying univariate quadrature rule is second-order accurate,
i.e.,

∑
b j c j = 1/2, then Ãk(h) − Ak(h) = O(h2), and the integrator will be second-

order accurate, φ̃h(x)−φh(x) = O(h3), provided that hypothesis 3 holds with N ≥ 3.
The argumentmay be taken further to translate accuracy properties of the associated

quadrature and cubature rules into accuracy properties of the integrator in the limit

2 For smooth solutions, terms with high frequency must have small amplitude, a fact that may be exploited
in the derivation of error bounds [19,34]. This point will not be studied here.
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h → 0. In this way, one recovers the order conditions for splitting methods listed in
[4] (cf. [29]). We shall not pursue that path: our interest lies in the size of the local
error when h is not small relative to the periods present in the dynamics, a scenario
that we discuss next.

It is well known that for a quadrature rule that is exact for polynomials of degree
≤ σ ,

| Ãk(h) − Ak(h)| ≤ C |k · ω|σ+1hσ+1,

for a constant C that only depends on the rule. Therefore, for the quadrature errors
to be small it is necessary that |h| be small with respect to min(1/|k · ω|), where the
minimum is extended to all kwith k ·ω �= 0.We reach the unwelcome conclusion that
the size of the bound in (46) depends both on the size of the perturbation f and on ω.

Example 1 Consider the familiar Strang splitting, r = 2,

a1 = 1/2, a2 = 1/2, b1 = 1, b2 = 0. (47)

The underlying quadrature formula is the second-order accurate midpoint rule. For
this integrator, for each k such that k · ω �= 0,

Ãk(h) − Ak(h) = exp ((1/2)ik · ωh) − exp (ik · ωh) − 1

ik · ωh
(48)

(for k · ω = 0, Ãk(h) = Ak(h) = 1). An elementary computation leads to the bound

| Ãk(h) − Ak(h)| ≤ 1

24
|k · ω|2h2,

where the constant 1/24 cannot be improved if the inequality has to hold for arbitrary
h. �

Remark 9 The dependence on ω of the local error is not an artifact introduced by
our method of analysis. Here is an example. Consider the forced spring (see the
“Appendix”), (d/dt)p = −ω2q + F, dq/dt = p, where F �= 0 is a time-independent
force and ω > 0.

This is the Hamiltonian system with Hamiltonian H = (1/2)p2 + (ω2/2)q2 − qF
or, in action-angle variables

H = ωa −
√
2a

ω
sin θ F = ωa − 1

2i

√
2a

ω
exp(iθ)F + 1

2i

√
2a

ω
exp(−iθ)F.

There are two Fourier modes k = ±1 in the perturbation.
Choose initial conditions p0 = 1, q0 = 0 (with kinetic energy 1/2 and no potential

energy in the spring). If h/(1/ω) = 2π , after one time step, the true solution has
p(h) = 1 andStrang’smethod (47) yields an approximation p̃(h) = 1−hF ; therefore,
a bound of the form | p̃(h) − p(h)| ≤ C |h|σ+1, |h| < h0, with C and h0 independent
of ω cannot exist for σ > 0. Note that, after m steps, the error in p will be mh!
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Example 2 In order to observe the behavior of the Strang’s method (47) in problems
more involved than the scalar example in the last remark, we have integrated the
Hamiltonian problem with d = 5 degrees of freedom with Hamiltonian function from
[22, Chapter XIII.9]

1

2

5∑

j=1

(
(p j )2 + ω j

2(q j )2
) +U (q),

with

U (q) = 1

8
(q1q2)2 +

(
1

20
+ q2 + q3 + q4 + 5

2
q5

)4

and ω1 = 1, ω2 = ω3 = 70, ω4 = 70
√
2, ω5 = 2ω2. The system is split by dividing

the Hamiltonian into its harmonic (quadratic) part, with linear dynamics, and the
perturbation corresponding to U (see the “Appendix”). We integrated this problem
over the (very long) interval 0 ≤ t ≤ 35,000 with the initial condition (also taken
from [22])

p0 =
(

−1

5
,
3

5
,
7

10
,− 9

10
,
4

5

)
,

q0 =
(
1,

3

10ω2
,

4

5ω2
,−11

√
2

10ω4
,

7

10ω2

)
,

for which the energy in the harmonic part is 4.225. Figure 1 gives the error in the
Hamiltonian at time t = 50 as a function of h. Two different regimes are apparent in
the figure:

1. For h small, the error in the Hamiltonian is very approximately Ch2, as it corre-
sponds to the second order of accuracy of Strang’s splitting. In this regime, the
oscillatory nature of the problem is not relevant and the integrator may be ana-
lyzed by standard techniques, i.e., expansion of the local error in powers of h and
transference, using stability, of local error bounds to bounds of the global error.

2. For h large, the error presents a very irregular behavior. This is due to the highly
oscillatory character of the solution and, aswe shall nowdescribe,may be analyzed
via the word series expansion of the local error.

Fig. 1 Energy error at time T = 50 as a function of h (in doubly logarithmic scale) for Example 2. The
discontinuous straight lines correspond toO(h2) (left) andO(h) (right). Small circles have been located at
points whose abscissa is a value of h that leads to a first-order numerical resonance (Sect. 5.3). It is apparent
that those points give rise to local maxima of the error

123



Found Comput Math (2017) 17:675–712 699

5.3 Processing

It is clear that, as distinct from the global error, the quadrature error in (48) varies
regularly as h varies. The irregularities in Fig. 1 stem from cancelations, due to the
oscillations, of local errors in consecutive time steps. For this reason, sharp error
estimates in highly oscillatory problems (see for example [19,34]) do not bound the
local error and then sum the bounds; they rather sum first and bound later, so as to take
advantage of possible cancelations. We use here an alternative approach that exploits
the idea of processing that goes back to Butcher [7]. The presentation here follows
[26].

If χh is a near-identity mapping in RD and φ̃h is an integrator, the mapping

φ̂h = χ−1
h ◦ φ̃h ◦ χh (49)

defines a processed numerical integrator. For m ≥ 1

φ̂m
h = (

χ−1
h ◦ φ̃h ◦ χh

)m = χ−1
h ◦ φ̃m

h ◦ χh; (50)

therefore to advance m steps with φ̂h one may preprocess the initial condition to find
χh(x0), advance m steps with the original method and then postprocess the numerical
solution by applying χ−1

h . Postprocessing is only performed when output is desired,
not at every time step. In practice, the idea of processing is useful ifχh maybe chosen in
such away that φ̂h ismore accurate in some sense than the original φ̃h : one then obtains
extra accuracy at the (hopefully small) price of having to perform the processing
(this gives rise to Butcher’s notion of effective order [7,8]). Here we use the idea of
processing as a technique of analysis. We shall process the splitting method (40) by
means of amappingχh with an expansion inword series:χh(x) = Wκ(h)(x), κ(h) ∈ G
(see Remark 4). Then, the processed integrator will be expressible as an extendedword
series with coefficients of the form (hω, α̂(h)) ∈ G. By implication, the local error will
be of the form (45)with Âk1...kn (h)−Ak1...kn (h) in lieu of Ãk1...kn (h)−Ak1...kn (h). (We
have used the obvious notation hn Âk1...kn (h) = α̂k1...kn for the scaled coefficients of
the processed method and will similarly set hnKk1...kn (h) = κk1...kn (h).) Our policy is
to determine the processing, i.e., to determineκ(h) ∈ G, in such away that Âk1...kn (h)−
Ak1...kn (h) = 0, for all oscillatory words. We then may hope that the analysis of
the processed integrator would be free from the difficulties usually associated with
integrators of oscillatory problems. Finally, the results on the processed integrator
obtained in this way will be translated into results for the original φ̃h .

5.3.1 First-Order Numerical Resonances

The conjugation (49) of the mappings may be translated with the help of (34) into the
equation

(hω, α̂(h))�(0, κ(h)) = (0, κ(h))� (hω, α̃(h)) (51)
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for the coefficients. For words with one letter, (51) implies, according to the definition
of �:

exp(ik · ωh) Kk(h) + Âk(h) = Ãk(h) + Kk(h).

There are two cases to be analyzed. We first look at words (including k = 0) that are
not oscillatory, i.e., k ·ω = 0. The value Kk(h) drops from (51) andmay be regarded as
a free parameter. In addition, Âk(h) = Ãk(h) = 1 and therefore Âk(h) − Ak(h) = 0.
We then consider oscillatory one-letter words k,k ·ω �= 0, and according to our policy,
we try to get Âk(h) = Ak(h). This leads to

Kk(h) = Ãk(h) − Ak(h)

exp(ik · ωh) − 1
, (52)

provided that exp(ik · ωh) �= 1. If k · ω �= 0 and exp(ik · ωh) = 1, we say that a
first-order numerical resonance occurs. When this happens, Kk(h) drops from (51)
and Âk(h) = Ãk(h). As a consequence, in general, Âk(h) − Ak(h) will not vanish.

If, for given h, there is no first-order numerical resonance, then the expansion of
the local error only contains terms corresponding to words with two or more letters.
In analogy with Theorem 4 (details will not be given), it is then possible to bound
the local error of the processed integrator by Ch2, with C independent of ω. This in
turn will lead to a C ′h bound for the global error of the processed integrator and, after
taking into account the pre- and postprocessing to a C ′′h bound for the global error in
the method φ̃h being analyzed. The constant C ′′ may be chosen to be independent of
h, provided that h is bounded away from the resonances; it worsens as h gets closer
to a numerical resonance in view of (52). This explains the troughs in Fig. 1.

On the other hand, if for given h there is at least one numerically resonant k ∈ I,
then processing is of no help in removing the ω-dependent quadrature error of the
original, unprocessed method. This was only to be expected because at a numerical
resonance, as shown in Remark 9, the global error in φ̃h may actually be large (cusps
in Fig. 1).

Remark 10 By using the operation � to compute the expansion of the m-fold com-
positions φ̃m

h and φm
h , we find after some simple algebra that if ±l are numerically

resonant wavenumbers and exp(ik · ωh) �= 1 for k �= 0,±l, then the error over m
steps has an expansion

φ̃m
h (x0) − φm

h (x0) = mh
(
Ãl(h) fl(x0) + Ã−l(h) f−l(x0

)

+ h
∑

k∈I\{0,±l}

exp(ik · ωmh) − 1

exp(ik · ωh) − 1
(
Ãk(h) − Ak(h)

)
fk(x0) + · · ·

Thus, themh growth asm increases with fixed h we already encountered in Remark 9
holds for general integrators and general differential equations.
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5.3.2 Higher-Order Resonances

Assuming that h does not satisfy any first-order numerical resonance, one may go a
step further and look at words with two letters kl; these are oscillatory if (k+l)·ω �= 0.
Now (51) implies

exp(i(k + l) · ωh) Kkl(h) + Âk(h) exp(i l · ωh)Kl(h) + Âkl(h)

= Ãkl(h) + Kk(h) Ãl(h) + Kkl(h).

Whenever exp(i(k + l) · ωh) = 1 (second-order numerical resonance), the value of
Kkl(h) cannot be chosen to ensure that Âkl(h) = Akl(h). A similar consideration
applies for non-oscillatory words with n letters when exp(i(k1 + · · · + kn) · ωh)=1.
When no numerical resonance takes place, Eq. (51) may be used to find values
κw(h), w∈W such that, on the one hand, define an element κ(h) that belongs toG, (i.e.,
the shuffle relations hold) and, on the other, ensure that Âk1...kn (h) − Ak1...kn (h)=0,
for all oscillatory words. This will be proved in Remark 13 below by using modified
systems.

Remark 11 Since pre- and postprocessing introduce in any case O(h) errors, the
processing technique used here yields O(h) bounds for the global error of φ̃h even
for values of h where there is no first-order or second-order numerical resonances.
Figure 1 shows that, for this simulation, O(h2) global error bounds cannot exist if h
is large relative to the periods present in the dynamics.

5.4 Modified Equations and Modified Hamiltonians

Modified equations [9,20,22,35] provide a useful means to describe the behavior of
numerical integrators.

5.4.1 Modified System Using One-Letter Words

We look for a (one-letter word) modified system

d

dt
x̃ = W (ω,β̃(h))(̃x), (53)

where β̃ ∈ g, β̃w = 0 forw ∈ Wn, n > 1 and the coefficients β̃k(h),k ∈ I are chosen
in such a way that, for words with one letter, the extended word series expansion of
the h-flow φ̃

[1]
h of (53) matches the corresponding expansion for the integrator φ̃h .

We recall that the system being solved is also of the form (53) with the coefficients β

given in (32).
By integrating the system (53) by the procedure outlined in Sect. 3 and imposing

that its flow matches φ̃h to the desired order, we find the condition

exp(ik · ωh) − 1

ik · ωh
β̃k(h) = Ãk(h) (54)
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(it is understood that the fraction takes the value 1 if k · ω = 0). For k = 0 or for
any one-letter word that is not oscillatory, this implies β̃k(h) = 1. For an oscillatory
one-letter word k �= 0,k ∈ I, if h is such that ik · ωh = 2π j for some integer j �= 0
(first-order numerical resonance), then the fraction in (54) vanishes and the equation
for β̃k(h) will in general not be solvable. Thus, first-order numerical resonances are
obstructions to the construction of the modified system (in fact the counterexample
in Remark 9 proves that modified systems of the form envisaged here do not exist at
numerical resonances). When h is bounded away from resonances, φ̃[1]

h − φ̃h = O(h2)
with the implied constant independent of ω (as in Theorem 4).

Example 3 For Strang’s method, if k is oscillatory and there is not a numerical reso-
nance, (54) yields the value

β̃k(h) = k · ωh

2 sin(k · ωh/2)
.

�

Remark 12 Assume that, for given h, the modified system above has been found. We
may then try to find a change of variables x̃ = Wκ(h)(X̃) so that in the new variables the
modified vector fieldmatches the fieldW (ω,β)(X) for wordswith one letter. According
to Sect. 3, we have to impose that β � κ(h) + ξωκ(h) and κ(h)�β̃(h) coincide for
words with one letter. This leads to

i(k · ω) κk(h) + 1 = β̃k(h).

If k is not oscillatory, κk(h) is free because, as noted above, β̃k(h) = 1. For k
oscillatory, κk(h) is uniquely determined. By using (54), a little algebra shows that the
value of κk(h) found in this way is the same we obtained in (52). Thus, the change of
variablesWκ(h) we used for processing may be seen as determined by the requirement
that, in the new variables and for non-oscillatory one-letter words, the modified vector
field of the unprocessed integrator reproduces the vector field being integrated.

5.4.2 Other Modified Systems

More precise modified systems may be constructed by successively adding to the
modified vector field contributions from words of 2, 3, . . . letters. For the nth of these
modified systems, the modified vector field has β̃w = 0 for words with more than n
letters and we impose that, for words with n or fewer letters, the extended word series
expansionof theh-flow φ̃

[n]
h matches the corresponding expansion for the integrator φ̃h .

For two-letter words, proceeding as in the case of one-letter wordmodified systems,
we obtain the condition

exp(i(k + l) · ωh) − 1

i(k + l) · ωh
β̃kl(h) + hAkl(h)β̃k(h)β̃l(h) = h Ãkl(h).

In general, the resulting equation is of the form

exp (i (k1 + · · · + kn) · ωh) − 1

i (k1 + · · · + kn) · ωh
β̃k1...kn (h) − hn−1 Ãk1...kn (h) = O(hn−1),
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where the right-hand side depends polynomially on the coefficients β̃w(h) of words
w with less than n letters. Such an equation can be solved for β̃k1...kn (h) provided
that there is no numerical resonance, (k1 + · · · + kr ) · ωh = 2π j, r ≤ n, j �= 0. In
the limit where the length of the words increases indefinitely one obtains, if there is
no numerical resonance of any order, a modified system whose formal h-flow exactly
reproduces the expansion of φ̃h .

As explained in Sect. 2, the modified systems found in this way are Hamiltonian
whenever the system being integrated is Hamiltonian. Furthermore, the modified
Hamiltonian functions are easily expressible in terms of brackets.

Example 4 For the linear forced oscillator in Remark 9, each word-basis functions
associated with words with two or more letters vanishes. In this case, the modified
systems above with n > 1, coincide with the modified system using only one-letter
words and the latter is exact, i.e., φ̃[1]

h = φ̃h . The (exact) modified Hamiltonian is

1

2
p2 + ω2

2
q2 − q β̃1(h) F,

and therefore in the particular case of Strang’s method we have

1

2
p2 + ω2

2
q2 − q

ωh

2 sin(ωh/2)
F.

For non-resonant h, the effect of using the splitting method is to alter the value of the
applied force. Unless |ωh| � 1, the misrepresentation of the force introduced by the
discretisation will be large. We emphasize that, as distinct from the situation when
using conventional modified equations based on series of powers of h, the analysis
here does not require h to be small. �

Example 5 For the problem in Example 2, we have measured the variation as t
increases in the true energy H of the numerical solution and of the corresponding
variations of the energies in the modified one-letter-word Hamiltonian and two-letter-
word Hamiltonians. We used h = 0.7974 as this, which is more than 12 times larger
than the period of the fastest oscillator, avoids first- and second-order resonances. The
results given in Figs. 2 and 3 clearly bear out how the one-word-letter modified system
matches the numerical solution much better than the system being integrated, but not
as well as the two-word-letter modified system (Fig. 4).

Remark 13 The idea inRemark 12maybe extended.Assume that there is no numerical
resonance of any order so that it is possible to find a modified equation whose formal
flow exactly reproduces the expansion of the integrator. By using Theorem 1, we may
bring the modified system to a normal form where the contribution of all oscillatory
words have disappeared. This implies that a processor has been found such that the
expansion of the local error of the processed method does not contain contributions
of oscillatory words.
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Fig. 2 Variation of the true Hamiltonian (energy) evaluated at the numerical solution as a function of t for
Example 2 (h = 0.7974)

Fig. 3 Variation of the one-letter-word Hamiltonian evaluated at the numerical solution as a function of t
for Example 2 (h = 0.7974). The vertical scale is 100 times larger than in Fig. 2

Fig. 4 Variation of the two-letter-word Hamiltonian evaluated at the numerical solution as a function of t
for Example 2 (h = 0.7974)

We close this section with an observation. As noted before, numerical resonances
((k1 + · · · + kr ) · ωh = 2π j , j �= 0) obstruct the construction of modified systems;
non-oscillatory words ((k1 + · · · + kr ) · ω = 0) cause no trouble in that connection.
On the other hand, the non-oscillatory character of a word is an obstruction to its
elimination by changing variables. Processing, that aswe have just seen is equivalent to
findingmodified problems and then changing variables, is hampered byboth numerical
resonances and non-oscillatory terms. See in this connection (52), whose denominator
vanishes both at numerical resonances and for non-oscillatory words.

6 Technical Results

This section is devoted to more technical material.

6.1 Algebraic Results

6.1.1 Differential Operators

In (3) we associated with each vector field fa in (2) a first-order linear differential
operator Ea . With each word w = a1 . . . an, n > 0, we now associate the nth-order
(linear) differential operator Ew obtained by composition:
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Ea1...an g(x) = Ea1 · Ea2 . . . Ean g(x);

E∅ is defined as the identity operator. Finally, with each γ ∈ C
W we associate the

formal series of linear differential operators

Dγ =
∑

w∈W
γwEw.

Two non-empty words w = a1 . . . am, w′ = a′
1 . . . a′

n may be concatenated [31] to
give rise to the word ww′ = a1 . . . ama′

1 . . . a′
n . In addition, ∅w = w∅ = w for each

w ∈ W . Clearly, concatenation of words corresponds to composition of the associated
operators: Eww′ = Ew · Ew′ .

Each word a1 . . . an may be deconcatenated in n + 1 different ways: ∅(a1 . . . an),
(a1)(a2 . . . an), …, (a1 . . . an)∅; these feature in the definition (11) of the convolution
product. This observation leads to the following rule for the composition of two series
of operators:

Dγ · Dγ ′ = Dγ �γ ′ . (55)

6.1.2 The Shuffle Algebra

The product 

 may be extended in a bilinear way from words to linear combinations
of words, i.e., if μ j , μ j ′ are scalars:

⎛

⎝
∑

j

μ jw j

⎞

⎠ 



⎛

⎝
∑

j ′
μ j ′w j ′

⎞

⎠ =
∑

j, j ′
μ jμ j ′w j 

w j ′ .

When endowed with this operation, the vector space C〈A〉 of all such linear com-
binations is a unital, commutative, associative algebra, the shuffle algebra, denoted
by sh(A) (see [18,28,31]). Note that sh(A) is graded by the number of letters of the
words.

Deconcatenation defines a coproduct and turns sh(A) into a (commutative, con-
nected, graded)Hopf algebra [6]. It is well known that the dual vector space of a Hopf
algebra is automatically endowed with a product operation. Here the dual of sh(A)

may be identified in a natural way with C
W by associating with each linear form �

on sh(A) the family of coefficients γw = �(w),w ∈ W . After this identification, the
product in the dual of sh(A) coincides with the convolution product � defined in (11).
The sets G and g in Sect. 2 are then, respectively, the group of characters and the Lie
algebra of infinitesimal characters of the Hopf algebra sh(A); well-known results on
Hopf algebras show that exp� in (16) maps g onto G and has an inverse given by log�

in (17), see for example [18,28].

6.1.3 The Actions of G and g on Word Series

As shown, for example, in [14], there is a narrow connection between the word-basis
functions fw(x) and the operators Ew,w ∈ W:
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fw(x) = Ewx,

(in the right-hand side, with an abuse of notation, x denotes the identity function that
maps each D-vector into itself). As a consequence, we have the following correspon-
dence between word series and series of operators

Wγ (x) = Dγ x . (56)

The use of series of operators is common in control theory and dynamical systems;
word series, being series of functions, provide a more convenient way to study numer-
ical integrators.

The operators Ea, a ∈ A, are derivations: Ea(gh) = (Eag)h + g(Eah) for each
pair of scalar functions g, h. Iteration yields:

Eab(gh) = (Eabg)(E∅h) + (Ebg)(Eah) + (Eag)(Ebh) + (E∅g)(Eabh),

Eabc(gh) = (Eabcg)(E∅h) + (Ebcg)(Eah) + (Eacg)(Ebh) + (Ecg)(Eabh)

+ (Eabg)(Ech) + (Ebg)(Each) + (Eag)(Ebch) + (E∅g)(Eabch),

etc. Note that, in the first of these identities, the pairs of words (ab,∅), (a, b), (b, a),

(∅, ab) that feature in the right-hand side are precisely those whose shuffle product
gives rise to thewordab that appears in the left-hand side.A similar observationmaybe
made in the second identity. In general, if w ∈ Wm, w′ ∈ Wn and w 

w′ = ∑

j w j ,
then the w j ∈ Wm+n are precisely those words for which (Ewg)(Ew′h) is one of the
2m+n terms of the expansion of Ew j (gh).3 This result may be used in combination
with the shuffle relations (12) to prove (see for example [18], Theorem 2) that, for
γ ∈ G,

Dγ (gh) = Dγ (g) Dγ (h).

By considering the coordinate mappings g(x) = x j , h(x) = x� and (56), we conclude
that

xi
(
Wγ (x)

)
xi

(
Wγ (x)

) = Dγ (xi )Dγ (x�) = Dγ

(
xi x�

)

and then linearity shows that, for each polynomial mapping P, P(Wγ (x)) = Dγ P(x).
It follows that

g(Wγ (x)) = Dγ g(x), γ ∈ G; (57)

for any (scalar or vector valued) smoothmapping g. Thus, Dγ g(x) provides the formal
expansion of the composition g(Wγ (x)) provided that the coefficients γ belong to the
group G.

3 Algebraically, the action of the operators Ew on products gh defines a coproduct [6]; the shuffle product
is obtained from this coproduct by duality [31, Section 1.5].
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The proof of the formula (13) that defines an action of the group G on the vector
space of all word series is now easy:

Wδ(Wγ (x)) = Dγ Wδ(x) = (Dγ · Dδ) x = Dγ �δ x = Wγ �δ(x);

we have successively used (57), (56), (55) and once more (56).
In (18), the expression (∂xWδ(x))Wβ is the result of applying to the word series

Wδ(x), the first-order differential operator associated with the formal vector field
Wβ(x). The formula then reveals that the action of the algebra g on word series
corresponds to the operation β � δ.

6.1.4 Linear Differential Equations

In Sect. 2, it was proved that the initial value problem (21) has a unique solution with
α(t) ∈ C

W for each t . We show here that in fact α(t) ∈ G. We use the following
auxiliary result:

Lemma 1 Assume that η ∈ C
W is such that, for some positive integer n, and for each

w ∈ Wl , w
′ ∈ Wm, l + m ≤ n, the shuffle relation (12) hold. Then, for β ∈ g, w ∈

Wl , w
′ ∈ Wm, l + m ≤ n, with w 

w′ = ∑

j w j :

∑

j

(η � β)w j = ηw(η � β)w′ + (η � β)wηw′ .

Proof Since β ∈ g, there exists a curve γ (t) in G such that (15) holds. The hypothesis
of the lemma then allows us to write:

∑

j

(η � γ (t))w j = (η � γ (t))w(η � γ (t))w′ .

The result is obtained by applying d/dt |t=0 to both sides of this equality. �

Now consider the solution α(t) ∈ C

W of (21). We shall prove by induction on n
that for each t ∑

j

α(t)w j = α(t)wα(t)w′ (58)

for w ∈ Wl , w
′ ∈ Wm, l + m ≤ n, with w 

w′ = ∑

j w j .
This trivially holds for n = 0, since α(t)∅ = 1 for all t . Assume that (58) is satisfied

for some n ≥ 0, and choosew ∈ Wl , w
′ ∈ Wm, l+m ≤ n+1,withw 

w′ = ∑

j w j .
From (21) we find

d

dt

⎛

⎝
∑

j

α(t)w j − α(t)wα(t)w′

⎞

⎠ =
∑

j

(α(t) � β(t))w j − (α(t) � β(t))wα(t)w′

−α(t)w(α(t) � β(t))w′
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and the lemma implies that the right-hand side of this equality vanishes. Since (58)
holds at t = 0, it does so for each value of t .

6.2 Proof of Theorem 1

We simplify the system (36) by performing a sequence of changes of variables with
coefficients κ([1]), κ([2]), . . . in G so that the change defined by κ([n]) simplifies the
coefficients of the vector field associatedwithwords with n letters and leaves unaltered
the coefficients associated with shorter words. The element κ([n]) is sought in the form
exp�(λ

([n])) where λ([n]) ∈ g and λ
([n])
w = 0 if w ∈ W\Wn . If β[n−1] and β[n]

are, respectively, the vector fields before and after the nth change of variables, and
w = k1 . . . kn , Eq. (38) implies, after taking into account that κ([n]) vanishes for
non-empty words with less than n letters

i ((k1 + · · · kn) · ω) κw = β[n−1]
w − β[n]

w .

If (k1 + · · · kn) · ω �= 0 we may choose λ
[n]
w to enforce β

[n]
w = 0. In other case, we

set β
[n]
w = β

[n−1]
w and λ

[n]
w = 0. The element λ[n] constructed in this way belongs to

g because the required shuffle relations hold (if shuffling two words leads to resonant
words all the coefficients in λ[n] vanish; in the non-resonant case the coefficients λ[n]
are proportional to the corresponding coefficients in β[n−1], which satisfy the shuffle
relations). In turn β([n] ∈ g because

β[n] = κ [n] � β[n−1] �
(
κ [n])−1 − (ξωκ [n]) �

(
κ [n])−1;

both terms of the right-hand side are in g (the second is the value at t = 0 of

(d/dt)
((

Ξωtκ
[n]) �

(
κ [n])−1

)

and, as noted above Ξωtκ
[n] ∈ G).

6.3 Proof of Theorem 4

For (y, θ) ∈ Ω the function f in (25) is bounded and Lipschitz continuous. Therefore,
for |t | small (y(t), θ(t)) = φt (y0, θ0) is well defined and |y(t) − y0| ≤ C1|t |, where
C1 is a bound for | f |. A simple contradiction argument shows that |y(h) − y0| < R
for |h| < R/C1.

To deal now with the numerical solution, define the intermediate points (stages),
j = 1, . . . , r ,

(
y j , θ j

) = φ
(P)
b j h

(
φ

(U )
a j h

(y j−1, θ j−1)
)

= φ
(P)
b j h

(y j−1, θ j−1 + a j hω).

123



Found Comput Math (2017) 17:675–712 709

If |b j h| < R/(C1/r), the iteration of the argument used above ensures that
|y j − y j−1| < R/r, j = 1, . . . , r and then the triangle inequality implies that
φ̃h(y0, θ0) ∈ Ω .

We shall use the notations W
(N )

(tω,α(t))(x),W
(N )

(hω,̃α(t))(x), to refer to the result of
suppressing all terms corresponding to words with N or more letters of the extended
word series with coefficients α(t), α̃(h), respectively (of course the alphabet is now I
rather than Z

d ). In addition, we set

R(T )
h (x) = φh(x) − W

(N )

(hω,α(h))(x),

R(S)
h (x) = φ̃h(x) − W

(N )

(hω,̃α(h))(x)

(the superscripts T and S mean ‘true’ and ‘splitting’). Our task is to boundRh(x0) =
R(S)

h (x0)−R(T )
h (x0). ForR(T )

h (x0), by stopping the iterative procedure (see for exam-
ple [14]) that leads to (28) we find the following representation:

R(T )
h (x0) =

∑

k1...kN∈WN

∫ h

0
dtN exp(ikN · ωtN ) · · ·

∫ t2

0
dt1 exp (ik1 · ωt1) fk1...kN

(
φt1(x0)

)
.

We know that φt1(x0) ∈ Ω for |h| ≤ h0, and therefore, we may guarantee that
|R(T )

h (x0)| ≤ C |h|N , with C depending only on I and bounds for the derivatives of
the Fourier coefficients.

For R(S)
h (x0) we use a similar device. The key point is that [cf. (28)–(29)]

φ̃h(y0, θ0) = (0, h(a1 + · · · + ar )ω) + (y(h), η(h)) ,

where (y(t), η(t)) is the solution of

d

dt

[
y
η

]
=

∑

k∈Zd

λ̃k(t) fk(y, η),

with piecewise constant functions defined by

λ̃k(t) = rb j exp
(
ik · ω(a1 + · · · + a j )h

)
, ( j − 1)h/r ≤ t < jh/r, 1 ≤ j ≤ r.

This differential system associatedwith φ̃h is very similar to the system (27) associated
with φh , the difference being that for the former, the complex exponentials are frozen
at the times (a1 + · · · + a j )h. After this observation, the residual for φ̃h is bounded
with the technique used for the true φh .
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Appendix: Examples of Perturbed Integrable Problems

Any system
d

dt
w = Mw + F(w), (59)

where M is a skew-symmetric D × D constant matrix, may be brought by a linear
change of variables to the form:

(d/dt)z j = f j (z, P, Q), 1 ≤ j ≤ D − 2d,

(d/dt)P� = −ω2
�Q

� + g�(z, P, Q), 1 ≤ � ≤ d, (60)

(d/dt)Q� = P� + h�(z, P, Q), 1 ≤ � ≤ d

Here d is the number of nonzero eigenvalue pairs ±iω�, ω� > 0, of M . In the unper-
turbed case, f i ≡ 0, g� ≡ 0, h� ≡ 0, the system consists of d uncoupled harmonic
oscillators with frequencies ω�, together with D − 2d trivial equations (d/dt)z j = 0.
The introduction of the variables a�, θ� such that

P� =
√
2ωa� cos θ�, Q� =

√
2a�

ω�

sin θ�, 1 ≤ � ≤ d, (61)

takes now the system to the format (25) with y = (z1, . . . , zD−2d , a). The system (59)
or (60) is a natural candidate to integration by splitting methods based on separating
the linear part (that may be integrated in closed form) from the perturbation. The
later may perhaps be treated by means of a numerical integrator with a very fine time
step. In favorable instances, the perturbation may be integrated analytically in closed
form; this is the situation in the following particular case of (60), commonly found in
mechanics (D is even and z = (p, q)),

(d/dt)p j = f j (q, Q), 1 ≤ j ≤ D/2 − d,

(d/dt)q j = p j ,

(d/dt)P� = −ω2
�Q

� + g�(q, Q), 1 ≤ � ≤ d,

(d/dt)Q� = P�.

(62)

Under the dynamics of the perturbation, p and P remain constant and q and Q grow
linearly with t .

The system (62) is Hamiltonian if the forces f j , g� derive from a potential. When
that happens, the introduction of the canonical (dP j ∧dQ j = da j ∧dθ j ) action/angle
variables in (61) preserves the Hamiltonian character of the equations of motion and
even the value of the Hamiltonian function.

So far the unperturbed problem has been linear, but nonlinear cases may also be
treated. Typically, integrable nonlinear problems may be brought to the form (41) with
ω = ω(y); a device commonly used, for example, in dynamical astronomy consists
in fixing a relevant value y0 of y, decomposing ω(y) = ω(y0) + �(y) and seeing
(0,�(y)) as part of the perturbation.
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There are many instances of perturbations of nonlinear integrable systems, after
the introduction of suitable action/angle variables take the form (25). A well-known
example is provided by perturbations of the Keplerian motion of a celestial body.

Remark 14 For (62), as we just noticed, the system corresponding to the perturbation
may be solved in closed form in the variables (p, q, P, Q). On the other hand, the
analysis in Sect. 5 operated with a different set of variables x = (y, θ) = (p, q, a, θ).
This causes no difficulty: it is standard practice when using splitting methods that the
different split systems are integrated employing different sets of dependent variables.
In partial differential equations, parts corresponding to linear, constant-coefficient
differential operators are typically integrated in Fourier space and nonlinearities in
physical space. Splitting methods are based on true solution flows, which of course
commute with changes of variables. The situation is very different for, say, Runge–
Kutta schemes,where (except for affine changes) changingvariables does not commute
with the application of the numerical method, and the performance of the integrator
very much depends on the choice of dependent variables. For instance, any consistent
Runge–Kutta method integrates exactly the unperturbed problem when written as in
(41) but incurs in errors when dealing with the unperturbed version of (60) ( f i ≡
0, g� ≡ 0, h� ≡ 0).

References

1. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed., Springer,
New York, 1988.

2. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Springer, New York, 1989.
3. S. Blanes, F. Casas, J. A. Oteo, and J. Ros, TheMagnus expansion and some of its applications, Physics

Reports 470 (2009), 151–238.
4. S. Blanes, F. Casas, A. Farrés, J. Laskar, J. Makazaga, and A. Murua, New families of symplectic

splitting methods for numerical integration in dynamical astronomy, Appl. Numer. Math., 68 (2013),
58–72.

5. G. Bogfjellmo, and A. Schmeding, The Lie group structure of the Butcher group. Found. Comput.
Math., to appear.

6. Ch. Brouder, Trees, renormalization and differential equations, BITNumericalMathematics 44 (2004),
425–438.

7. J. Butcher, The effective order of Runge–Kutta methods, in Conference on the numerical solution of
differential equations (J. Ll. Morris ed.), Lecture Notes in Math. Vol. 109, Springer, Berlin, 1969,
pp. 133–139.

8. J. C. Butcher and J. M. Sanz-Serna, The number of conditions for a Runge–Kutta method to have
effective order p, Appl. Numer. Math., 22 (1996), 103–111.

9. M. P. Calvo, A. Murua, and J. M. Sanz-Serna, Modified equations for ODEs, in Chaotic Numerics
(P. E. Kloeden and K. J. Palmer eds.), Contemporary Mathematics, Vol. 172, American Mathematical
Society, Providence, 1944, pp. 63–74.

10. M. P. Calvo and J. M. Sanz-Serna, Canonical B-series, Numer. Math., 67 (1994), 161–175.
11. P. Chartier, E. Hairer, and G. Vilmart, Algebraic structures of B-series, Found. Comput. Math., 10

(2010), 407–427.
12. P. Chartier, A. Murua, and J.M. Sanz-Serna, Higher-Order averaging, formal series and numerical

integration I: B-series, Found. Comput. Math. 10 (2010), 695–727.
13. P. Chartier, A. Murua, and J.M. Sanz-Serna, Higher-Order averaging, formal series and numerical

integration II: the quasi-periodic case, Found. Comput. Math., 12 (2012), 471–508.
14. P. Chartier, A. Murua, and J.M. Sanz-Serna, A formal series approach to averaging: exponentially

small error estimates, DCDS A, 32 (2012), 3009–3027.

123



712 Found Comput Math (2017) 17:675–712

15. P. Chartier, A. Murua, and J.M. Sanz-Serna, Higher-Order averaging, formal series and numerical
integration III: error bounds, Found. Comput. Math., 15 (2015), 591–612.

16. K. Ebrahimi-Fard, A. Lundervold, S. J. A. Malham, H.Munte-Kaas, and A.Wiese, Algebraic structure
of stochastic expansions and efficient simulation, Proc. R. Soc. A, 468 (2012), 2361–2382.

17. J. Ecalle, Les Fonctions Résurgentes, Vols. I, II, III, Publ. Math. Orsay (1981–1985).
18. F. Fauvet, and F. Menous, Ecalle’s arborification-coarborification transforms and Connes–Kreimer

Hopf algebra, arXiv:1212.4740v2.
19. B. García-Archilla, J. M. Sanz-Serna, and R. D. Skeel, Long-time-step methods for oscillatory differ-

ential equations, SIAM J. Sci. Comput., 20 (1998), 930–963.
20. D. F. Griffiths and J. M. Sanz-Serna, On the scope of the method of modified equations, SIAM J. Sci.

Statist. Comput., 7 (1986), 994–1008.
21. E. Hairer, Backward error analysis of numerical integrators and symplectic methods, Annals Numer.

Math., 1 (1994), 107–132.
22. E. Hairer, Ch. Lubich, and G. Wanner, Geometric Numerical Integration, 2nd ed., Springer, Berlin,

2006.
23. E. Hairer and G. Wanner, On the Butcher group and general multi-value methods, Computing, 13

(1974), 1–15.
24. N. Jacobson, Lie Algebras, Dover, New York, 1979.
25. M. Kawski and H. J. Sussmann, Nonommutative power series and formal Lie algebraic techniques in

nonlinear control theory, in Operators, Systems, and Linear Algebra (U. Helmke, D. Pratzel-Wolters,
E. Zerz eds.), Teubner, Stuttgart, 1997, pp. 111–118.

26. M. A. Lopez-Marcos, R. D. Skeel and J. M. Sanz-Serna, Cheap enhancement of symplectic integra-
tors, in Numerical Analysis 1995 (D. F. Griffiths and G. A. Watson eds.), Pitman Research Notes in
Mathematics 344, Longman Scientific and Technical, London, 1996, pp. 107–122.

27. A.Murua, Formal series and numerical integrators, Part I: Systems ofODEs abd symplectic integrators,
Appl. Numer. Math., 29 (1999), 221–251.

28. A. Murua, The Hopf algebra of rooted trees, free Lie algebras and Lie series, Found. Comput. Math.,
6 (2006), 387–426.

29. A. Murua and J. M. Sanz-Serna, Order conditions for numerical integrators obtained by composing
simpler integrators, Phil. Trans. R. Soc. Lond. A, 357 (1999), 1079–1100.

30. A.Murua, and J. M. Sanz-Serna, Computing normal forms and formal invariants of dynamical systems
by means of word series, Nonlinear Analysis, Theory, Methods and Applications, to appear.

31. C. Reutenauer, Free Lie Algebras, Clarendon Press, Oxford, 1993.
32. J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (2nd.

ed.), Springer, New York, 2007.
33. J. M. Sanz-Serna, Geometric integration, in The State of the Art in Numerical Analysis (I. S. Duff and

G. A. Watson eds.), Clarendon Press, Oxford, 1997, pp. 121–143.
34. J. M. Sanz-Serna, Mollified impulse methods for highly oscillatory differential equations, SIAM J.

Numer. Anal., 46 (2008), 1040–1059.
35. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall, London,

1994.
36. J. M. Sanz-Serna, and A. Murua, Formal series and numerical integrators: some history and some new

techniques, in Proceedings of the 8th International Congress on Industrial and Applied Mathematics
(ICIAM 2015) (Lei Guo and Zhi-Ming eds.), Higher Education, Press, Beijing, 2015, pp. 311–331.

123

http://arxiv.org/abs/1212.4740v2

	Word Series for Dynamical Systems and Their Numerical Integrators
	Abstract
	1 Introduction
	2 Word Series
	2.1 Definition of Word Series
	2.2 Operations with Word Series
	2.2.1 The Convolution Product
	2.2.2 The Group mathcalG
	2.2.3 The Lie Algebra mathfrakg
	2.2.4 Non-autonomous Differential Equations in mathcalG
	2.2.5 The Hamiltonian Case


	3 Extended Word Series
	3.1 Perturbed Integrable Problems
	3.2 Operations with Extended Word Series
	3.2.1 The Operation 
	3.2.2 The Lie Algebra overlinemathfrakg
	3.2.3 Non-autonomous Differential Equations in overlinemathcalG
	3.2.4 Perturbed Hamiltonian Problems


	4 Normal Forms and Averaging
	5 Splitting Methods
	5.1 Extended Word Series Expansion of the Local Error
	5.2 Estimates
	5.3 Processing
	5.3.1 First-Order Numerical Resonances
	5.3.2 Higher-Order Resonances

	5.4 Modified Equations and Modified Hamiltonians
	5.4.1 Modified System Using One-Letter Words
	5.4.2 Other Modified Systems


	6 Technical Results
	6.1 Algebraic Results
	6.1.1 Differential Operators
	6.1.2 The Shuffle Algebra
	6.1.3 The Actions of mathcalG and mathfrakg on Word Series
	6.1.4 Linear Differential Equations

	6.2 Proof of Theorem 1
	6.3 Proof of Theorem 4

	Acknowledgements
	Appendix: Examples of Perturbed Integrable Problems
	References




