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Abstract

The modified Hamiltonian Monte Carlo (MHMC) methods, i.e. importance sam-

pling methods that use modified Hamiltonians within a Hybrid Monte Carlo (HMC)

framework, often outperform in sampling efficiency standard techniques such as molec-

ular dynamics (MD) and HMC. The performance of MHMC may be enhanced further

through the rational choice of the simulation parameters and by replacing the standard

Verlet integrator with more sophisticated splitting algorithms. Unfortunately, it is not

easy to identify the appropriate values of the parameters that appear in those algo-

rithms. We propose a technique, that we call MAIA (Modified Adaptive Integration
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Approach), which, for a given simulation system and a given time step, automatically

selects the optimal integrator within a useful family of two-stage splitting formulas.

Extended MAIA (or e-MAIA) is an enhanced version of MAIA, which additionally

supplies a value of the method-specific parameter that, for the problem under con-

sideration, keeps the momentum acceptance rate at a user-desired level. The MAIA

and e-MAIA algorithms have been implemented, with no computational overhead dur-

ing simulations, in MultiHMC-GROMACS, a modified version of the popular software

package GROMACS. Tests performed on well-known molecular models demonstrate

the superiority of the suggested approaches over a range of integrators (both standard

and recently developed), as well as their capacity to improve the sampling efficiency of

GSHMC, a noticeable method for molecular simulation in the MHMC family. GSHMC

combined with e-MAIA shows a remarkably good performance when compared to MD

and HMC coupled with the appropriate adaptive integrators.

Introduction

The role of numerical integrators in enhancing the performance of Hybrid/Hamiltonian

Monte Carlo (HMC) has been a subject of active research in recent years.1–4 It has been

demonstrated that replacing the standard Verlet integrator with a splitting integrator spec-

ified by a suitable value of a parameter may significantly improve, for a range of step sizes,

the conservation of the Hamiltonian and thus the acceptance rate of the proposals.1,2 Such

integrators however possess shorter stability limits than the familiar Verlet algorithm. In

addition, the user is confronted with the problem of how best to choose the value of the

parameter. The drawbacks of the use of splitting integrators more sophisticated than Verlet

may be alleviated by resorting to the Adaptive Integration Approach, AIA.5 For a user-chosen

time step, this approach automatically identifies an optimal, system-specific integrator, by

using information on the highest frequencies of the harmonic interactions present in the sys-

tem. The term ‘optimal’ refers to the fact that the selected integrator minimizes, within
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a family of two-stage integrators, the expectation of the energy error for harmonic forces.

When stability is an issue, AIA automatically chooses the Verlet integrator and, as the time

step is reduced below the Verlet limit, AIA moves to more accurate integrators.

Another way to improve the performance of HMC is to introduce importance sampling

as suggested in Refs.6–11 Taking advantage of the fact that symplectic integrators preserve

modified Hamiltonians more accurately than they preserve the true Hamiltonian, the au-

thors proposed to sample with respect to modified/shadow Hamiltonians and to recover the

desired distribution by re-weighting. The resulting algorithms are capable of maintaining

high acceptance rates and usually exhibit better efficiency than their predecessor HMC.11–14

Moreover, in many applications, the Verlet integrator is sufficient to provide an amount of

accepted proposals adequate to generate good statistics, even with parameter settings for

which HMC fails. Thus, the methods seem to be less sensitive than HMC to the choice of

numerical integrator. However, it was shown that, for importance sampling HMC applied

to high-dimensional statistical problems, replacing Verlet with optimised two-stage splitting

integrators can improve the observed sampling efficiency by a factor of up to 4.11 That ref-

erence, however, does not offer a recipe for the rational choice of the integrator for a given

system and step size.

In this paper we propose an adaptive integration approach, MAIA, which extends the

ideas of AIA, in order to automatically select, for a given system and step size, the integrator

with optimal conservation of the modified Hamiltonian, and therefore with the highest accep-

tance rate, in modified Hamiltonian Monte Carlo methods. Extended MAIA (or e-MAIA)

offers the extra feature of a control on the stochasticity introduced in the momentum re-

freshment.
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Modified Hamiltonian Monte Carlo methods

The family of modified Hamiltonian Monte Carlo (MHMC) methods consists of HMC algo-

rithms which, instead of sampling from the target canonical distribution

π(q,p) ∝ exp (−βH(q,p)) (1)

(β = 1/kBT is the inverse temperature and kB the Boltzmann constant), known up to a

multiplicative constant, sample from an auxiliary importance canonical density

π̃(q,p) ∝ exp
(
−βH̃ [k](q,p)

)
, (2)

whereH is a Hamiltonian and H̃ [k] denotes a truncated modified Hamiltonian to be described

later. The familiar notations q and p are used for positions and momenta respectively. Such

methods take advantage of two facts in order to enhance sampling efficiency of HMC. First,

the closeness of H̃ [k] to H makes it possible to implement an importance sampling approach

and use samples of π̃ as a means towards computing expectations with respect to π. Second,

the fact that the integrator preserves H̃ [k] better than it does preserve H leads to a more

favourable value of the acceptance probability in the algorithms.

Symplectic integrators for the Hamiltonian dynamics with Hamiltonian function H(q,p),

while not preserving the value of H exactly along the computed trajectory, do preserve

exactly the value of a so-called modified Hamiltonian15–17

H̃ = H + ∆tH2 + ∆t2H3 + · · · ,

where ∆t is the integration time step. For an integrator of order p, H̃ = H + O(∆tp), so

that H2, . . . , Hp vanish. In (2), H̃ [k], k > p, is the truncation of H̃ given by

H̃ [k] = H + ∆tpHp+1 + · · ·+ ∆tk−1Hk.
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The expectation of the increment of H in an integration leg satisfies

Eπ[∆H] = O
(
D∆t2p

)
, (3)

(D is the dimension), while

Eπ̃[∆H̃ [k]] = O
(
D∆t2k

)
, (4)

with k > p (see Ref.18 and section MAIA below) and therefore MHMC algorithms may

benefit from high acceptance rates due to the better conservation of H̃ [k].

The objective of a modified Hamiltonian Monte Carlo method is to sample from a dis-

tribution with probability density function

π(q) ∝ exp(−βU(q)).

This is achieved indirectly, through sampling from the modified distribution (2). In this

paper we consider Hamiltonians of the form

H(q,p) =
1

2
pTM−1p + U(q),

where M is a positive definite mass matrix and U is the potential, so that, under the target

(1), the variable q has the marginal density ∝ exp(−βU(q)).

Since in MHMC methods the samples are generated with respect to the modified or

importance density, the computation of averages with respect to the target density after

completion of the sampling procedure requires re-weighting. If Ωn, n = 1, 2, . . . , N , are the

values of an observable along a sequence of states (qn,pn) drawn from π̃ (2), the averages

with respect to π (1) are calculated as

〈Ω〉 =

∑N
n=1wnΩn∑N
n=1wn

,
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where the importance weights are given by

wn = exp
(
−β
(
H(qn,pn)− H̃ [k](qn,pn)

))
.

If the target density π and the importance density π̃ were not close, one would typically

encounter high variability among weights, which would lead to large errors in the expectation,

as many samples would not contribute significantly to the computation of 〈Ω〉.

Let us now describe a generic MHMC algorithm. Given a sample (q,p) from the distri-

bution π̃, the next sample (qnew,pnew) is defined as follows:

• Obtain the new momentum p∗ by applying a momentum update procedure that pre-

serves the importance density π̃.

• Generate a proposal (q′,p′) by simulating the Hamiltonian dynamics with Hamilto-

nian function H and with initial condition (q,p∗) using a symplectic and reversible

numerical integrator.

• Choose the next sample (qnew,pnew) to be (q′,p′) (acceptance) with probability

α = min

{
1,
π̃(q′,p′)

π̃(q,p∗)

}
. (5)

Otherwise (rejection) set (qnew,pnew) = (q,−p∗), i.e. carry out a momentum flip.

Since

π̃(q′,p′)

π̃(q,p∗)
= exp

(
−β
(
H̃ [k](q′,p′)− H̃ [k](q,p∗)

))
= exp

(
− β∆H̃ [k](q,p∗)

)
,

one may expect, in view of (3)-(4), fewer rejections/momentum flips, and thus better sam-

pling/more accurate dynamics when sampling with H̃ [k] instead of H.

The first methods of the MHMC class were derived for atomistic simulations and dif-

fered from each other in the ways of refreshing the momentum, computing modified Hamil-
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tonians and integrating the Hamiltonian dynamics. For example, in (Separable) Shadow

Hybrid Monte Carlo6,7 methods, a full momentum update is used, whereas in Targeted

Shadow Hybrid Monte Carlo19 and Generalized Shadow Hybrid Monte Carlo (GSHMC),8

suitable modifications of the partial momentum update of Horowitz20 are advocated in or-

der to better mimic the dynamics and enhance sampling. More recent MHMC methods

aim at specific applications, such as multi-scale and meso-scale simulations (MTS-GSHMC

and meso-GSHMC respectively)9,10 and computational statistics (Mix&Match Hamiltonian

Monte Carlo).11 As demonstrated in the original papers, for some particular problems, the

use of MHMC methods resulted in a sampling efficiency several times higher than that ob-

served with the conventional sampling techniques, such as MD, Monte Carlo (MC) and HMC.

Further improvements can be achieved through the use of adaptive integration schemes as

indicated in Ref.5 The proposed in this work MAIA is an adaptive approach which can suc-

cessfully replace the Verlet integrator in MHMC techniques with more powerful integration

schemes.

In this paper we follow the momentum update procedure used in GSHMC,8 which is

based on ideas from Refs.20,21 We generate trial values

ptrial = cosϕp + sinϕu

utrial = − sinϕp + cosϕu

(6)

where ϕ ∈ (0, π/2] is a parameter and the noise vector u is drawn from the normal distribu-

tion N (0, β−1M). A low value of ϕ will result in ptrial being close to p and the behaviour of

the algorithm will be close to conventional MD. For ϕ near π/2, ptrial will be very different

from p. The proposed trial momentum ptrial is accepted (p∗ = ptrial) with probability

αp = min

{
1,
π̂(q,ptrial,utrial)

π̂(q,p,u)

}
(7)
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where π̂ is the extended p.d.f.

π̂(q,p,u) ∝ exp
(
− βĤ(q,p,u)

)
corresponding to the extended Hamiltonian

Ĥ(q,p,u) = H̃ [k](q,p) +
1

2
uTM−1u. (8)

In case of rejection we set p∗ = p.

In the present study, we use splitting methods to integrate the Hamiltonian dynamics.

We use the symbols A and B to refer to the split systems

q̇ = 0, ṗ = −∇U(q)

and

q̇ = M−1p, ṗ = 0,

respectively. These have solution flows

φAt (q,p) = (q,p− t∇U(q)) (9)

and

φBt (q,p) = (q + tM−1p,p). (10)

We limit our attention to the family of two-stage integrators where the map that advances

the solution over a step of length ∆t is defined as

ψ∆t = φBb∆t ◦ φA∆t/2 ◦ φB(1−2b)∆t ◦ φA∆t/2 ◦ φBb∆t. (11)

Here 0 < b < 1/2 is a parameter that specifies the individual integrator within the family.
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These integrators are symplectic, as compositions of flows of Hamiltonian systems, and

reversible due to their palindromic structure. When b = 1/4, a step of length ∆t of the

integrator in (11) is equivalent to two successive steps of the velocity Verlet integrator each

of length ∆t/2.

When the error of the integrator is measured with respect to the modified Hamiltonian,

the choice of parameter leading to the minimum error method is b ≈ 0.2306;11 we shall

use the acronym M-ME (modified minimum error) to refer to this value. A minimization

procedure parallel to the one used in Ref.2 suggests the value b ≈ 0.238011 that we shall call

M-BCSS. Due to well known properties of the Verlet method, the choice b = 1/4 yields the

longest linear stability interval achievable in the family (11). Therefore, generally speaking,

one would select b close to 1/4 if the value of ∆t is so large that stability is the main concern

and choose lower values of b, allowing for more accuracy in the conservation of the modified

Hamiltonian, when the user is prepared to operate with smaller values of ∆t.

In the next section we introduce algorithms which allow a rational choice of a value b in

order to achieve the best accuracy of integration in a simulation of a given problem.

In our analysis we shall rely on the computationally efficient procedures for the calculation

of modified Hamiltonians for the integrators of the family (11) recently proposed in Ref.11

The modified Hamiltonians are evaluated through numerical time derivatives ∇U̇(q) of the

gradient of the potential function U , which are computed from quantities available during

the simulation. This makes feasible the use of those families of integrators in MHMC. For

the two-stage family (11) of interest here the 4th order modified Hamiltonian is given by:11

H̃ [4](q,p) =
1

2
pTM−1p + U(q) + ∆t2

(
λpTM−1∇U̇(q) + µ∇U(q)TM−1∇U(q)

)
, (12)

with

λ =
6b− 1

24
, µ =

6b2 − 6b+ 1

12
.
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Adaptive algorithms

In this section we describe two adaptive algorithms: the Modified Adaptive Integration

Approach (MAIA) and the extended MAIA (e-MAIA).

MAIA

MAIA is an algorithm which adapts the parameter b in (11) to the problem being solved

and the value of ∆t chosen by the user so as to maximize the expected acceptance rate α of

the proposal (q′,p′) in (5) or, equivalently, to minimize the expectation of the energy error

function

∆H̃ [4](q,p∗) = H̃ [4](q′,p′)− H̃ [4](q,p∗).

The analysis is based on a detailed study of the one-dimensional harmonic oscillator with

potential U(q) = (k/2)q2 (k > 0 a constant). For an integrator of the family (11), the

modified Hamiltonian in (12) takes the form

H̃ [4](q, p) =
1

2

p2

M
+

1

2
kq2 + ∆t2λ

k

M2
p2 + ∆t2µ

k2

M
q2. (13)

As it is shown in the section S1 in the supporting information, if ω =
√
k/M is the angular

frequency of the harmonic oscillator and h denotes the non-dimensional step size h = ω∆t,

then for the expected ∆H̃ [4] it holds

0 ≤ E[∆H̃ [4]] ≤ 1

β
ρ(h, b), (14)

where ρ is the function

ρ(h, b) =
h8
(
b
(
12 + 4b(6b− 5) + b(1 + 4b(3b− 2))h2

)
− 2
)2

4
(
2− bh2

)(
4 + (2b− 1)h2

)(
2 + b(2b− 1)h2

)(
12 + (6b− 1)h2

)(
6 + (1 + 6(b− 1)b)h2

) . (15)

Note that the expectation E[∆H̃ [4]] is taken with respect to the probability π̃ (2) sampled
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by the algorithm. For a model consisting of D, possibly coupled, harmonic oscillators with

angular frequencies ωi, i = 1, . . . , D, the bound becomes

E[∆H̃ [4]] ≤
D∑
i=1

1

β
ρ(hi, b),

with hi = ωi∆t. Minimization of the right hand-side will therefore ensure optimal conserva-

tion of the modified Hamiltonian in the harmonic model.

In MAIA, given a physical problem which includes non-harmonic forces and a value of

∆t, we estimate the fastest of the angular frequencies, ω̃, of the two-body interactions5 and

compute the nondimensional quantity

h̃ =
√

3ω̃∆t (16)

(
√

3 is a safety factor to be discussed presently). We then find the value of b that minimizes

max
0<h<h̃

ρ(h, b). (17)

Note that (0, h̃) is the shortest interval that contains all the values hi =
√

3ωi∆t, where ωi

are the frequencies in the problem. In contrast to AIA,5 where the factor of
√

2 had to be

used to avoid resonances of up to 4th order,22 in MAIA, the factor
√

3, covering resonances

of up to 5th order, was found to be appropriate.

The MAIA algorithm can be summarised as follows:

Given a physical system and a value of ∆t, the MAIA algorithm determines the value of

the parameter b to be used in (11) in the following way:

1. Find the periods or frequencies of all two-body interactions in the system. Deter-

mine the minimum period T̃ = 2π/ω̃, with the fastest frequency ω̃, and compute the

nondimensional quantity h̃ in (16).

2. Check whether h̃ < 2
√

2, which is the usual stability limit in molecular simulation for
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Verlet integrators.23 If not, there is no value of b for which the scheme (11) is stable

for the attempted step size ∆t and the integration is aborted.

3. Find the optimal value of the parameter b by minimizing (17) with the help of an

optimization routine.

When ∆t is ‘large’ for the problem at hand, in the sense that stability is the primary

concern, MAIA will choose b = 1/4, i.e. the Verlet integrator. Smaller values of ∆t allow

MAIA to reduce b and increase accuracy in the conservation of the modified Hamiltonian

(see Figure 1). Figure 1 also shows the advantage of MAIA when compared with the older

algorithm AIA,5 developed for the HMC method, which does not use modified Hamiltonians

and samples with respect to the target canonical density.
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Figure 1: Parameter b for different integrators as a function of h̃ (left) and bounds of the
expected energy error measured with respect to the true, in solid lines, or modified Hamil-
tonian, in dashed lines (right). There are two lines for VV, as it may be used to sample
from the true (HMC) or the importance density (GSHMC). AIA operates with respect to
the true energy and MAIA with respect to its modified counterpart. Clearly the algorithms
that operate with modified Hamiltonians possess smaller expected errors. This explains why,
in general, VV GSHMC has higher acceptance rates than VV HMC and MAIA improves on
AIA.
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e-MAIA

The overall performance of an MHMC method depends not only on the acceptance rate α

of the proposal made after each MD integration leg (see (5)), but also on the momentum

update acceptance rate αp in (7). The latter may play an important role in the quality

of sampling.8,13 So far, we have looked for the integrator that maximizes α and our next

objective is to find a way to control αp.

As we did above, we build the analysis on the use of a harmonic oscillator model. For the

scalar harmonic potential, the stationary marginal p.d.f.’s of the (stochastically independent

variables) p and u (see (6)) are

π(p) ∝ exp

(
−β
(

1

2

p2

M
+ ∆t2λ

k

M2
p2

))
, π(u) ∝ exp

(
−β

2

u2

M

)
, (18)

respectively, and the extended Hamiltonian in (8) reads

Ĥ(q, p, u) = H̃ [4](q, p) +
1

2

u2

M
,

with H̃ [4] given in (13). As it was shown in Ref.,11 the difference in extended Hamiltonian

satisfies
∆Ĥ = Ĥ(q, ptrial, utrial)− Ĥ(q, p, u)

= ∆t2λ

(
sin2 ϕ

(
k

M2
u2 − k

M2
p2

)
+ 2 cosϕ sinϕu

k

M2
p

)
,

(19)

and from here it is found that

E[β∆Ĥ] = ∆t2βλ sin2 ϕ
ω2

M

(
E[u2]− E[p2]

)
.

From (18) we have

E[p2] = β−1M
(
1 + 2∆t2λω2

)−1
, E[u2] = β−1M,
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and then
E[β∆Ĥ] = ∆t2λ sin2 ϕω2

(
1−

(
1 + 2∆t2λω2

)−1
)

=
2∆t4λ2 sin2 ϕω4

1 + 2∆t2λω2
.

In terms of the dimensionless time step h = ω∆t, one obtains

E[β∆Ĥ] =
2h4λ2 sin2 ϕ

1 + 2h2λ
. (20)

For the model consisting of D harmonic oscillators with angular frequencies ωi, i = 1, . . . , D,

the equivalent of (20) is

E[β∆Ĥ] =
D∑
i=1

2h4
iλ

2 sin2 ϕ

1 + 2h2
iλ
≥ D

2h̄4λ2 sin2 ϕ

1 + 2h̄2λ
, (21)

where hi = ωi∆t are the dimensionless time steps and h̄ = ω̄∆t with ω̄ equal to the slowest

angular frequency among all the oscillators.

Using αp ≤ exp (−β∆Ĥ) (see (7)), from the inequality (21) and for a concrete choice of

the angle ϕp, we can find the approximation

− logE[αp]

D
≈ 2h̄4λ2 sin2 ϕp

1 + 2h̄2λ
. (22)

It has to be remarked that the fastest oscillation frequency features in the analyses of MAIA

and in its predecessor AIA5 but the slowest frequency is used in (22).

From (22), the expected acceptance rate in the momentum update may be controlled

by three parameters: the parameter λ = λ(b) that depends on the specific integrator being

used, the parameter h̄, which for a given problem is a function of ∆t, and the angle ϕ. This

fact motivates the algorithm that we call extended MAIA or e-MAIA. For a user-chosen

∆t, e-MAIA first finds an integrator within the family of two-stage schemes that maintains

the smallest expected modified energy error in the molecular dynamics part of the MHMC

algorithm and then adjusts the value of ϕ so as to achieve a desired acceptance rate for the
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momentum update step. As it is explained above, the acceptance rates in the momentum

update step depend on the choice of an angle ϕ whereas the MAIA analysis does not depend

on ϕ. This means that, for some fixed values of ϕ and ∆t, the nominated by MAIA integrator

may be not favourable for maintaining an appropriate acceptance rate in the momenta. The

goal of e-MAIA is to provide an adaptive choice of the angle ϕ to achieve a target, user-

specified acceptance rate in the momentum update step while keeping the highest acceptance

rate for positions.

While a high acceptance rate in the MD part has a positive effect on sampling with

modified Hamiltonians, a too frequent acceptance of momentum (close to 100 %) could lead to

the negative effect of the thermalization of the simulation, deteriorating its accuracy.13,24 The

rationale for introducing e-MAIA is the possibility of simultaneously adapting the parameters

b and ϕ to control both the acceptance probabilities α and αp of the MD integration legs

and the momentum updates.

The algorithm e-MAIA is as follows:

1. For a given physical problem, choose a time step ∆t for the integration of the equations

of motion, a target acceptance rate ARp for the momentum update and an initial value

ϕ0 of the angle ϕ.

2. Find the slowest and the fastest angular frequencies in the harmonic interactions, ω̄

and ω̃ respectively.

3. The integrator parameter b∗ is obtained as in MAIA by optimization of the function ρ

in (15). This choice of b∗ guarantees the highest possible acceptance rate for harmonic

interactions in the MD step.

4. The function which bounds the expected extended Hamiltonian error is given by (see

(22))

τ(h̄, b∗, ϕ) =
2h̄4λ∗2 sin2 ϕ

1 + 2h̄2λ∗
,
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where λ∗ is the value of λ when b = b∗ and

h̄ = ω̄∆t. (23)

The angle ϕ∗ is chosen as

ϕ∗ = arg min
ϕ∈(0,π/2]

θ(ϕ), (24)

with

θ(ϕ) =

∣∣∣∣− log (ARp)

D
− τ(h̄, b∗, ϕ)

∣∣∣∣ .
5. If the selected ϕ∗ is smaller than ϕ0, then either decrease the target ARp and go to

step 4 or, alternatively, define the function

σ(h, b, ϕ0) = ρ(h, b) + τ(h, b, ϕ0) (25)

and choose b∗∗ that minimizes max
0<h<h̃

σ(h, b, ϕ0). (The fastest oscillation is used again

for the momentum update part since in this case we are constructing an upper bound

of the expected energy error.)

We stress that for very small values of ϕ, an MHMC method looses its extra sampling

abilities and behaves similarly to standard molecular dynamics. In e-MAIA this possibility

is eliminated in step 5 of the algorithm in two optional ways. One way is to keep decreasing

the target ARp till ϕ∗ rises above ϕ0. Another option is to optimize the joint bound function

constructed for both expected errors, E[β∆H̃] and E[β∆Ĥ]. Though this sacrifices the

position acceptance rates, the expected loss is small provided that ϕ0 � π/2.

The reader should notice that, whereas MAIA in principle works for any method that

samples with respect to modified Hamiltonians, e-MAIA only works for those MHMC meth-

ods which perform the momentum update step in the way described in this paper (6).
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Implementation

MultiHMC-GROMACS

MAIA and e-MAIA have been implemented in the MultiHMC-GROMACS5,25,26 software

package. MultiHMC-GROMACS is a modified version of the popular molecular simulation

code GROMACS27,28 and offers a set of recently developed algorithms that aim at improv-

ing the accuracy and sampling performance of the original GROMACS without sacrificing

computational efficiency and parallel scaling properties. From the user’s point of view, there

is no difference in setting up a simulation with MultiHMC-GROMACS and doing so with

GROMACS, except for the need to specify a few additional parameters in the MultiHMC-

GROMACS input file .mdp.

A detailed description of the MultiHMC-GROMACS package may be found elsewhere;5,25,26

here we briefly review those features that are relevant to the present study.

• Hybrid Monte Carlo methods.

Hybrid Monte Carlo (HMC),29 Generalized Hybrid Monte Carlo (GHMC)20,21 and

Generalized Shadow Hybrid Monte Carlo (GSHMC)8 are all available in MultiHMC-

GROMACS. The implementation of GSHMC in GROMACS has been discussed in

detail in Refs.25,26 The other methods, i.e. HMC and GHMC, are implemented as

special cases of GSHMC as described in Ref.5

• Modified Hamiltonians.

Two types of modified Hamiltonians are currently available in MultiHMC-GROMACS:

the shadow Hamiltonian in a Lagrangian formulation8 for the Verlet/leapfrog integrator

and the modified Hamiltonian (12)11 for two-stage integrators of the family (11).

• Two-stage integrators.

The two-stage integrators of the family (11) have been implemented in MultiHMC-

GROMACS as a concatenation of alternating updates of velocities and positions in the
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routine do_md() inmd.c. The v-rescale thermostat30 available in GROMACS has been

adapted to work with the two-stage schemes.5 In addition, the two-stage integrators are

optionally coupled with the SHAKE algorithm for simulation of constrained dynamics.5

At present MultiHMC-GROMACS may carry out simulations with the BCSS integra-

tor,2 the McLachlan’s method,1 their counterparts for modified Hamiltonians11 and

the velocity Verlet two-stage integrator. These integrators are given by specific choices

of the parameter b in (11). In addition, the MultiHMC-GROMACS code implements

the AIA integrator,5 where the algorithm tunes b to the particular simulation being

carried out.

Implementing MAIA and e-MAIA

Similarly to AIA,5 MAIA and e-MAIA have been implemented in the GROMACS prepro-

cessing module grompp. The preprocessing module is run only once before any simulation

and, thus, does not introduce computational overheads in the simulation itself.

In the original GROMACS package, the module grompp reads the input files that contain

the essential information about the simulated system, such as topology and structure, and

makes the necessary adaptation of that information for its use in the molecular dynamics

module mdrun. The module grompp also checks the .mdp file for choices of input parame-

ters for the simulation algorithms and, if necessary, generates warnings that allow users to

reconsider the chosen setup. The grompp module finishes by producing the file .tpr to be

used as input in the mdrun module for running molecular dynamics simulation.

In addition to these functionalities, a more advanced analysis of the harmonic interac-

tions is included in grompp in MultiHMC-GROMACS. As it has been explained in Ref.,5

the fastest harmonic interaction predetermines a maximal step size allowed for the stable

numerical integration of the equations of motion. On the other hand, the slowest harmonic

interactions are used in the e-MAIA algorithm to identify the best choice of the parameter

ϕ. In MultiHMC-GROMACS, grompp searches for the periods corresponding to the fastest
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and slowest oscillations, T̃ and T̄ respectively. The value T̃ is used to define the upper limit

of the dimensionless time step, h̃ =
√

3(2π/T̃ )∆t, following MAIA algorithm. The optimal

value of the parameter b for a MAIA or e-MAIA integrator is then found as the argument

that minimizes the maximum of ρ (15) for the range of dimensionless time steps from zero

to h̃. As in Ref.,5 the minimization is performed with a particle swarm optimization algo-

rithm driven by a golden section search.31 The value T̄ is used to determine the angle ϕ, as

explained in the e-MAIA algorithm.

Both b and ϕ are stored in the input record structure introduced by GROMACS for

keeping all the input data during the whole simulation. Thus, b and ϕ can be accessed from

every routine in the package.

The flow chart in Figure S1 summarizes MAIA and e-MAIA algorithms.

Numerical experiments

In order to evaluate the efficiency of the proposed (e-)MAIA algorithm, we first compared

its performance with that of several integration schemes which potentially can compete with

it. Then we estimated the performance of GSHMC combined with (e-)MAIA in comparison

with other popular sampling methods. More precisely:

• e-MAIA was compared with fixed parameters integrators specifically derived for MHMC

methods. The counterpart of BCSS2 for modified Hamiltonians (M-BCSS) and the

equivalent to the scheme of McLachlan1 that minimizes the errors of modified Hamil-

tonians (M-ME) were included in the comparison. Both M-BCSS and M-ME have been

recently derived11 and implemented in MultiHMC-GROMACS. All three integrators

were combined with the GSHMC method. In addition, e-MAIA was compared with

integrators successfully used for molecular simulation in MD, HMC and GSHMC. The

velocity Verlet and AIA combined with GSHMC were selected in this case.

• e-MAIA was compared with MAIA when both were implemented within GSHMC.

19



• GSHMC was compared with HMC and MD. For each tested sampling method the most

efficient integrator was used: e-MAIA was chosen for GSHMC and AIA was employed

in MD and HMC.

To provide a fair comparison, the following issues have been taken into account while

producing the numerical results. To equalise the time spent on force calculations using

Verlet and two-stage integrators, Verlet was always run with half a step size and twice a

number of steps. Also, in the simulations with HMC and GSHMC, the number of Metropolis

tests was kept constant regardless of the acceptance/rejection output. The computational

overhead due to evaluation of modified Hamiltonians in GSHMC8 was taken into account by

normalising calculated integrated autocorrelation functions with respect to computational

times.

The tests were performed using two benchmark systems (see below), both run over a

range of time steps ∆t. The aim was to monitor the evolution of the parameters b and ϕ

(6) automatically chosen for each ∆t in (e-)MAIA, and estimate their effect on the overall

sampling performance of GSHMC. In all plots in section Results, values of time steps

correspond to two-stage integrators and assume twice smaller time steps for velocity Verlet.

Different lengths of MD trajectories L in GSHMC simulations were also tested. This

parameter may play an important role in the sampling efficiency of GSHMC simulations

when too small or too large values are chosen.13 However, for the sake of clarity, in all tests

presented in this work, the length of MD trajectories was fixed to 2000 steps when two-stage

integrators were used and to 4000 otherwise. These values were found to be good choices

for both GSHMC and HMC with different integration schemes and this is also confirmed by

findings in Ref.5

With the obvious exception of e-MAIA, the angle used for the momentum refreshment

(6) was set to 0.2 for all tests unless stated otherwise.

Each individual test has been repeated 10 times and every result reported in this paper

was obtained by averaging over the multiple runs to reduce statistical errors.
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Benchmarks and simulation setup

The numerical experiments were performed using two benchmark systems: the coarse-grained

VSTx1 toxin in a POPC bilayer32 and the atomistic 35-residue villin headpiece protein

subdomain.33,34 In what follows we shall refer to these systems as toxin and villin respectively.

Toxin is a coarse-grained system of 7810 particles. Four heavy particles were represented

on average as one sphere.35,36 Coulomb and Van der Waals interactions were solved using the

shift algorithm. Both potential energies were shifted to 0 kJmol−1 at the radius of 1.2 nm.

Periodic boundary conditions were considered in all directions. The target temperature was

chosen to be 310 K and it was controlled in MD simulations by the v-rescale algorithm

whereas no additional thermostat was required in HMC and GSHMC. No constraints were

defined for this system. The total length of all simulations was 20 ns, which was sufficient for

equilibration of the system for those choices of time steps that provided a stable integration.

The villin protein is a 9389 atoms system, composed of 389 atoms solvated with 3000

water molecules. Coulomb interactions were solved with the PME algorithm of order 6.

Van der Waals interactions were considered as in the toxin system but with a radius of

0.8 nm. Periodic boundary conditions were defined in all directions. As in the previous

study,5 the bonds involving hydrogens were constrained using SHAKE/RATTLE. The use

of these constraints does not affect the accuracy of simulations but allows for longer time

steps which, due to the atomistic nature of the system, still are significantly shorter than

in the coarse-grained toxin system. The temperature of 300 K was maintained using the

v-rescale algorithm in MD and through the Metropolis tests in HMC and GSHMC.

Similarly to Ref.,5 an exhaustive study of the complete folding process of the villin protein

is out of the scope of this work. Instead, the aim is to show the beneficial effect of (e-)MAIA

on the accuracy and performance of the simulation of a constrained atomistic system. For

our purposes, the length of 5 ns for each villin experiment was found sufficient.

Earlier reported studies of the villin system have suggested that the use of a weak coupling

thermostat and a barostat may lead to a better agreement with experiments.37 Barostats
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are not considered, however, in this study, since the primary target of the algorithms pre-

sented here are modified Hamiltonian Monte Carlo methods, which if no extra variations are

introduced,8,26 sample in the NVT ensemble.

Results

Toxin

We start by measuring the acceptance rates of positions and momenta in the GSHMC sim-

ulations with different integration schemes. For the sake of clarity, we excluded from the

plots the results for the MAIA algorithm, leaving only the data for e-MAIA. This makes

sense because the position acceptance rates for MAIA and e-MAIA are always very similar

(see step 3 of the e-MAIA algorithm), while e-MAIA has an obvious advantage over MAIA

as far as the acceptance rates for momenta are concerned. We shall provide more details on

this issue later.
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Figure 2: Toxin. Acceptance rates for positions (left) and momenta (right) observed in
GSHMC simulations when using M-BCSS, M-ME, VV, AIA (all dashed lines) and e-MAIA
(solid line). e-MAIA maintains the target ARp of 90 % for each value of ∆t (right).

The primary objective of the MAIA algorithm is to maximize the acceptance of position

proposals in an MHMC method by minimizing the expected errors in modified Hamiltonians.
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Then, the first natural test for MAIA is to check whether the position acceptance rates

observed in GSHMC simulations combined with MAIA are not below those observed with

other two-stage integrators. In Figure 2, the effect of various integrators such as e-MAIA, the

modified versions of BCSS2 (M-BCSS) and ME1 (M-ME),11 the standard VV, and AIA,5 on

the acceptance rates in GSHMC simulations is investigated. The trends presented in the left

plot are in good agreement with the theoretical prediction in Figure 1 (right panel). Indeed,

the acceptance rates obtained with the modified adaptive approach e-MAIA, over the range

of time steps considered, are never lower than the ones provided by the other integrators

tested. For small time steps, all integrators, except AIA, guarantee high acceptance rates,

but the situation changes as the time step increases and the shorter stability intervals of

M-BCSS and M-ME result in acceptance rates well below those achieved with e-MAIA and

VV. The low acceptance rates for AIA are not surprising, since this method was developed

for sampling with respect to the true Hamiltonian and provides the lowest expected errors

in Hamiltonian rather than in modified Hamiltonian. However, for the largest time step of

50 fs, the parameter b in AIA becomes equal to 1/4 and thus AIA is equivalent to VV (see

Figure 1 (left)). The same applies to MAIA/e-MAIA for the longest time step, as can be

also seen in Figure 1 (left). This simply reflects the fact that the velocity Verlet integrator

possesses the longest stability interval among the two-stage integrators and the adaptive

methods AIA and MAIA select velocity Verlet when the time step goes beyond the stability

limit of other two-stage integrators.

The acceptance rates for momenta are shown in the right panel of Figure 2. For e-MAIA,

we fixed the target acceptance ARp to 90 % bearing in mind that too high (near 100 %)

acceptance rates may deteriorate accuracy, whereas low acceptance rates normally reduce

the sampling efficiency of GSHMC. With this target set, e-MAIA chose an appropriate value

of ϕ for each time step being tested. The simulations with other integrators were run with

the fixed value ϕ = 0.2. This was selected to achieve a good performance for the longest time

steps. Obviously, with any integrator, the parameter ϕ can be adapted, by trial and error,
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to each simulation and time step, but we have to stress that, in practice, tuning blindly the

value of ϕ is rather time consuming and not necessarily results in the optimal choice of ϕ.

That is why the ability of e-MAIA to optimize automatically such a choice is very welcome.

As follows from Figure 2 (right), for all tested time steps, e-MAIA maintained well the target

ARp by varying ϕ. The other integrators being combined with GSHMC led to very high,

unwelcome acceptance rates for most time steps tested.

We shall see next how the trends observed above for the acceptance rates impact the

sampling efficiency of GSHMC. In the case of toxin, this efficiency was measured in terms of

the integrated autocorrelation function IACF of the toxin drift d to the preferred interfacial

location over the “convergence period". The IACF is defined as

IACFΩ =
K′∑
l=0

ACF(τl), (26)

where ACF(τl), l = 0, ..., K ′ < K is the standard autocorrelation function for the time

series Ωk of K samples, k = 1, ..., K.21,38 For GSHMC, the ACF’s are calculated taking

into account the weights collected during simulations.11 We notice that in all performed

simulations the normalized weights are close to 1 due to small differences between modified

and true Hamiltonians observed in the simulations as well as the choice of temperatures

(common for molecular simulations of biological systems) leading to β < 1. This means

that the metrics designed for weighted and non-weighted methods would not generate too

different data. This however is not expected in a general case and is not common in statistical

applications.39 The IACF gives a quantitative measure of the time required, on average, to

generate an uncorrelated sample. Low values of measured IACFs imply low correlations

between samples and thus more efficient sampling.

Figure 3 (left) presents the IACFs (normalized with respect to computational time) ob-

tained from GSHMC simulations using different integrators and time steps. Clearly, the

simulations with e-MAIA provided the lowest values of IACFs and thus the best sampling
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Figure 3: Toxin. Sampling efficiency of GSHMC combined with the integrators used in
Figure 2. On the left, IACF of the drift, d, of the toxin to the preferred interfacial location
evaluated as a function of ∆t in GSHMC tests. On the right, the distribution of d observed in
GSHMC simulations with various integrators using a time step of 30 fs. The solid black line
(right) presents the “true” distribution produced with a ten times longer simulation (200 ns).

for all choices of time step. All methods showed the good performance at ∆t = 40 fs and,

for this time step, the simulations with e-MAIA resulted in an efficiency (as measured by

IACF) from 5 (vs. M-BCSS, VV) to 9 (vs. AIA) times higher than the simulations with

other integration schemes. For the largest time step, ∆t = 50 fs, the performance achieved

using e-MAIA was 12 times better than in the simulations with M-BCSS and M-ME, but it

did not differ anymore from those observed in the simulations with VV and AIA, because

for this long time step both AIA and e-MAIA chose velocity Verlet as integrator.

The right panel of Figure 3 compares the distributions of the distance d between the

c.o.m. of the toxin and the c.o.m. of the bilayer, collected from simulations with ∆t = 30 fs

with different integrators, against the “true” distribution obtained from an MD simulation

with velocity Verlet, over a time interval of length 200 ns, i.e. ten times longer. As for

all tests in this section, the plots have results averaged over 10 repetitive runs. The curve

corresponding to the simulation with e-MAIA (in red) shows the best match with the “true”

distribution (in black).

The performances of e-MAIA and MAIA are compared in Figure 4. We chose the target
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Figure 4: Toxin. e-MAIA (solid) vs. MAIA (dashed). Acceptance rates for positions and
momenta (left), IACFs (center) and the angle ϕ found by e-MAIA as a function of the time
step (right) observed in GSHMC simulations. The angle ϕ used in MAIA was 1.1 and the
target ARp for e-MAIA was 90 %.

ARp in e-MAIA to be 90 % and the angle ϕ in MAIA to be equal to 1.1, which was the

value found by e-MAIA for achieving the target ARp = 90 % in GSHMC simulations at the

smallest time step tested, ∆t = 20 fs. Figure 4 reveals that, even though both e-MAIA and

MAIA find the same integrator parameter b, leading to similar acceptance rates for positions,

a good choice of the angle ϕ may visibly improve the sampling performance of GSHMC. The

improvement is by factors of 8 and 2 for ∆t = 40 fs and ∆t = 50 fs respectively. The

evolution, as the time step increases, of the optimal parameter ϕ as calculated by e-MAIA

is also shown in Figure 4.

To finalize the numerical experiments on the toxin benchmark, we compared, using the

normalized IACF metrics, the performance of three sampling methods, MD, HMC and

GSHMC. For each method, the best performing integrator was selected. Thus, GSHMC

was combined with e-MAIA, based on the findings discussed above, whereas the AIA in-

tegrator was used for HMC and MD, according to the recommendations in Ref.5 Figure 5

(left) demonstrates the superiority of GSHMC over the other two methods, regardless the

choice of time step. For the optimal choice of time step for this system, namely, ∆t = 40 fs,

the sampling efficiency of GSHMC is 4 times higher than that of HMC and 11 times better

than that of MD. For the longest time step, ∆t = 50 fs, the difference is even more dramatic

and expressed in improvement factors of 17 and 30 over HMC and MD respectively. Plotted
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Figure 5: Toxin. Sampling efficiency: GSHMC (e-MAIA) vs. HMC (AIA) vs. MD (AIA).
The best integrator for each sampling method was employed. Sampling efficiency was mea-
sured by means of IACFs (left) and the distribution of the distance between the toxin and
the membrane bilayer (right). The solid black line (right) presents the “true” distribution
produced with a ten times longer simulation (200 ns).

in Figure 5 (right) are the distributions of the distance d between the c.o.m. of the toxin

and the c.o.m. of the bilayer produced by GSHMC, HMC and MD simulations using a time

step of 30 fs; they also confirm the better convergence of the GSHMC results to the “true”

distribution.

Villin

As in the toxin case, we first inspected the acceptance rates for positions and momenta in

GSHMC simulations with different integrators and found that the e-MAIA method worked

as expected, i.e. provided the best position acceptance rates (Figure 6, left) and maintained

the target momenta acceptance rate of 90 % (Figure 6, right) for all choices of time steps.

In contrast to the coarse-grained toxin benchmark, a quantitative analysis of the MAIA’s

contribution to the GSHMC performance gain is not feasible with the atomistic villin bench-

mark. This is because such an analysis would require a long, computationally demanding

series of simulations, for a range of time steps, integrators and sampling methods. It is

however possible to find evidence of the positive impact of MAIA on the sampling efficiency

of GSHMC by using comparatively short simulation runs of 5 ns and metrics directly related
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Figure 6: Villin. Acceptance rates for positions (left) and momenta (right) observed in
GSHMC simulations when using M-BCSS, M-ME, VV, AIA (all dashed lines) and e-MAIA
(solid line). e-MAIA maintains the target ARp of 90 % for each value of ∆t (right).

to the quality of sampling.

One of such metrics is the Radius of Gyration (RG), which provides an estimation of the

compactness of the desired structure, and is computed as

RG =

(∑n
i=1‖ri‖2Mi∑n

i=1Mi

)1/2

,

where n is the number of atoms in the structure, ri the distance between atom i and the

center of mass of the structure, and Mi the mass of atom i. As in Ref.,37 we considered the

experimental value of 0.94 nm as a target value and investigated the level of convergence

to this value in short simulations when using different time steps, numerical integrators and

simulation methods.

Another metrics used in this study relates to the positional root-mean-squared deviation

(RMSD). The RMSD of a group of atoms in a molecule with respect to a reference structure

can be calculated as

RMSD =

√√√√ 1

n

n∑
i=1

δ2
i ,

where δi is the distance between the positions of atom i in the two structures being compared.
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Following the ideas from Ref.,37 we calculated the maximal RMSD of the α-carbon be-

tween any two visited structures in each simulation in order to judge the level of exploration

of conformational space during the simulation.
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Figure 7: Villin. Sampling efficiency of GSHMC combined with the integrators used in
Figure 6: radius of gyration (left) and maximum RMSD of the α-carbon of the protein
(right). The black solid line (left) represents the target experimental value of 0.94 nm.

In Figure 7 we plot, as functions of the time step, the radii of gyration and maximal

RMSDs of the α-carbon calculated from the data collected in GSHMC simulations using

e-MAIA, M-BCSS, M-ME, VV and AIA integrators. Clearly, the simulations with e-MAIA

(red solid line) produced the best approximations to the experimental data (left plot), the

highest values of maximal RMSD (right plot) (implying better sampling) and the smallest

performance degradation at the longest time steps.

The comparison of the results obtained using MAIA and e-MAIA in GSHMC simulations

of villin confirmed the trends observed earlier in the toxin tests. Both methods achieved

almost the same position acceptance rates, whereas the momenta acceptance rates were

significantly higher in the simulations with e-MAIA (Figure 8, left). The latter was possible

due to the automatic tuning of the parameter ϕ provided by e-MAIA for maintaing the

target ARp = 90% (Figure 8, right); its positive effect can be noticed in Figure 8, center.

Figure 9 compares the radii of gyration (left) and maximal RMSDs of the α-carbon (right)

obtained from the simulations of villin using three different sampling methods, GSHMC,
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Figure 8: Villin. e-MAIA (solid) vs. MAIA (dashed). Acceptance rates for positions and
momenta (left), radii of gyration (center) and the angle ϕ found by e-MAIA as a function of
the time step (right) observed in GSHMC simulations. The angle ϕ used in MAIA was 0.9
and the target ARp for e-MAIA was 90 %.
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Figure 9: Villin. Sampling efficiency: GSHMC (e-MAIA) vs. HMC (AIA) vs. MD (AIA). The
best integrator for each sampling method was employed. Sampling efficiency was measured
through the radius of gyration (left) and the maximum RMSD of the α-carbon of the protein
(right). The black solid line (left) represents the target experimental value of 0.94 nm.

HMC and MD. As in the toxin case, the best performing integrator was used for each

sampler, i.e. e-MAIA was selected for GSHMC and AIA was combined with HMC and MD.

For both metrics, GSHMC demonstrated the best results over the range of time steps. Its

advantage over HMC and MD is most visible at longer time steps, when both HMC and MD

loose accuracy and sampling efficiency.

Additionally, we have generated Ramachandran plots considering all residues of the pro-

tein except for glycine. In Figure 10 the Ramachandran plots, obtained for the largest time

step ∆t = 6 fs, are presented as two-dimensional joint distributions of ϕ and Ψ angles.
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Figure 10: Villin. Sampling efficiency: GSHMC (e-MAIA) vs. HMC (AIA) vs. MD (AIA).
Ramachandran plots for all residues of the protein except for glycine with ϕ torsion on the
horizontal axis and Ψ on the vertical axis. The best integrator for each sampling method
was employed. The time step was 6 fs, the largest in these tests.

Figure 10 confirms the advantages of GSHMC over other tested methods. Indeed, GSHMC

combined with e-MAIA is the only method capable of sampling all regions including the less

populated basins in the ϕ, Ψ > 0 region, which were out of reach for HMC and MD sampling.

Obviously, a deep atomistic study of the villin folding requires significantly longer runs

than those presented here, as well as the incorporation of additional sampling techniques,

such as, for example, parallel tempering, to the simulations. The latter can be implemented in

a similar way, with similar cost for all three methodologies considered in our study. However,

the simulations will clearly be more efficient if the underlying sampling method provides

higher sampling efficiency, which is the case for GSHMC with e-MAIA.

Conclusions

We have proposed an adaptive approach for enhancing the accuracy and sampling efficiency

of modified Hamiltonian Monte Carlo (MHMC) methods, with the aim of making them

strong competitors of popular techniques such as molecular dynamics (MD) and hybrid

Monte Carlo (HMC). Given a system to be simulated and a user-chosen time step, the new

method, which we call Modified Adaptive Integration Approach or MAIA, identifies the
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two-stage numerical integrator which, when used in the Hamiltonian dynamics step of an

MHMC method, provides the best conservation of the relevant modified Hamiltonian and

thus the highest acceptance rate of the proposed trajectories. An enhanced variant of MAIA,

e-MAIA, tailored to Generalized Shadow Hybrid Monte Carlo (GSHMC) methods, addition-

ally supplies a value of the parameter ϕ that, for the problem under consideration, keeps

the momentum acceptance at a user-desired level. The MAIA algorithm has been imple-

mented, with no computational overhead during simulations, in MultiHMC-GROMACS, a

modified version of the popular software package GROMACS. The effect of the use of MAIA

on the sampling efficiency of GSHMC has been demonstrated by using constrained atomistic

and unconstrained coarse-grained benchmarks, and compared with the performance of other

suitable integration schemes, including the popular velocity Verlet integrator. The tests

revealed that the replacement in GSHMC of any fixed, two-stage integrator with e-MAIA

leads systematically to improvements in sampling efficiency of up to an order of magnitude.

The performance comparison of GSHMC, HMC and MD combined with their best choices of

numerical integrators (e-MAIA, AIA, AIA respectively) confirmed the efficiency and robust-

ness of the GSHMC-MAIA combination, whose advantages are especially noticeable when

using the longest possible simulation time steps. For such cases, GSHMC, while maintaining

good accuracy in simulation, provided a sampling efficiency (as measured with IACF) up to

30 times higher than the efficiency that may be achieved with MD.
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1 Derivation of the function ρ used in MAIA and e-MAIA algo-
rithms

In order to derive integrators with optimal conservation properties, we adopt a strategy similar to
the one proposed in ref 1, namely to find the parameters of integrators that minimize the expected
value of the energy error. In the present study, the energy error resulting from numerical integration
is in terms of the modified Hamiltonian and the expected value is taken with respect to the modified
density

π̃(q,p) ∝ exp
(
−βH̃ [k](q,p)

)
.

As in the case when considering the error in the true Hamiltonian,1 one may prove that the
expected error in the modified Hamiltonian E[∆H̃ [4]] is also positive. Our objective is, therefore, to
find a function ρ(h, b) that upperbounds E[∆H̃ [4]], i.e.,

0 ≤ E[∆H̃ [4]] ≤ 1
β
ρ(h, b),

where b is the parameter of the two-stage integrators family

ψ∆t = φB
b∆t ◦ φA

∆t/2 ◦ φ
B
(1−2b)∆t ◦ φ

A
∆t/2 ◦ φ

B
b∆t. (S1)

∗E-mail: akhmatskaya@bcamath.org
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Such family is defined in terms of solution flows of the equations of motion1

φA
t (q,p) = (q,p− t∇U(q)) (S2)

and
φB

t (q,p) = (q + tM−1p,p). (S3)

We consider the one-dimensional harmonic oscillator with potential U(q) = (k/2)q2 (k > 0 a
constant) and mass M , whose equations of motion are

dq
dt = p

M
,

dp
dt = −kq. (S4)

Using a linear change of variables q̄ =
√
kq, p̄ = p/

√
M and denoting the non-dimensional time step

as h = ω∆t, where ω =
√
k/M , lead to the dynamics

dq̄
dt = ωp̄,

dp̄
dt = −ωq̄, (S5)

with Hamiltonian
H(q̄, p̄) = 1

2 p̄
2 + 1

2 q̄
2

and the fourth order modified Hamiltonian for integrators of the family eq S1

H̃ [4](q̄, p̄) = 1
2 p̄

2 + 1
2 q̄

2 + h2λp̄2 + h2µq̄2. (S6)

The numerical integration of the system eq S5 in the new variables q̄, p̄ is equivalent to the application
of the above change of variables to the numerical solution q, p obtained by integration of the system
eq S4.

In order to find the error in the modified Hamiltonian after L integration steps of the dynamics
eq S5 with a time step h, i.e.,

∆H̃ [4] = H̃ [4](Ψh,L(q̄, p̄))− H̃ [4](q̄, p̄), (S7)

we first find the numerical solution to the dynamics eq S5 for a single time step (q̄n+1, p̄n+1) =
ψh(q̄n, p̄n). In matrix form this is given by[

q̄n+1
p̄n+1

]
= M̃h

[
q̄n

p̄n

]
, M̃h =

[
Ah Bh

Ch Ah

]
,

where the coefficients Ah, Bh, Ch depend on the integrator. After L integration steps the state of the
system (q̄L, p̄L) = Ψh,L(q̄, p̄) is given by[

q̄L

p̄L

]
= M̃h . . . M̃h︸ ︷︷ ︸

L times

[
q̄
p̄

]
= M̃L

h

[
q̄
p̄

]
. (S8)

For the two-stage family of integrators the matrix M̃h can be calculated as

M̃h = B (b) ·A
(1

2

)
·B (1− 2b) ·A

(1
2

)
·B (b) ,

where
A(a) =

[
1 ah
0 1

]
, B(b) =

[
1 0
−bh 1

]
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correspond to the flows φA
h and φB

h , respectively (eqs S2 and S3). The resulting entries of M̃h are

Ah = h4

4 b(1− 2b)− h2

2 + 1

Bh = −h
3

4 (1− 2b) + h (S9)

Ch = −h
5

4 b
2(1− 2b) + h3b(1− b)− h.

It is well known that if time step h is such that |Ah| < 1 the integration is stable.2,3 In that case
one may define variables

ζh := arccosAh, χh := Bh/ sin ζh,

for which the one-step and L-steps integration matrices M̃h and M̃L
h , respectively, are

M̃h =
[

cos(ζh) χh sin(ζh)
−χ−1

h sin(ζh) cos(ζh)

]

and
M̃L

h =
[

cos(Lζh) χh sin(Lζh)
−χ−1

h sin(Lζh) cos(Lζh)

]
. (S10)

In order to calculate the expected value of the error eq S7 we follow ideas from the proof of
Proposition 3 in ref 1 and denote

c = cos(Lζh),
s = sin(Lζh),
S1 = 1 + 2h2µ,

S2 = 1 + 2h2λ.

Substituting eqs S6, S10 and S8 into eq S7 leads to

2∆H̃ [4] = S1 (cq̄ + χhsp̄)2 + S2

(
− 1
χh
sq̄ + cp̄

)2
− S1q̄

2 − S2p̄
2

= s2
(

1
χ2

h

S2 − S1

)
q̄2 + s2

(
χ2

hS1 − S2
)
p̄2 + 2sc

(
S1χh − S2

1
χh

)
q̄p̄.

Since the expectations are taken with respect to the modified density π̃,

E[q̄2] = 1
βS1

, E[p̄2] = 1
βS2

, E[q̄p̄] = 0,

it follows that
2E[∆H̃ [4]] = 1

β
s2
( 1
χ2

h

S2
S1

+ χ2
h

S1
S2
− 2

)
.

The last expression can be simplified by defining

χ̃2
h := χ2

h

S1
S2

= χ2
hS,

to obtain
E[∆H̃ [4]] = 1

β
s2ρ(h, b),
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where

ρ(h, b) = 1
2
(
χ̃h −

1
χ̃h

)2
=

(
SBh + Ch

)2

2S(1−A2
h)

(S11)

and
S = 1 + 2h2µ

1 + 2h2λ
.

We note that the conditions for stable integration and positivity of ρ(h, b) are that |Ah| < 1 and
S > 0. For the two-stage integrators and the fourth order modified Hamiltonian this is equivalent to
the following conditions

h <
√

12/(1− 6b) for b < 1
6 ,

h >
√

12/(1− 6b) for b > 1
6 ,

0 < h < min
{√

2/b,
√

1/(1− 2b)
}
,

which are always satisfied for b ∈ (0, 1
2).

Finally, by substituting eq S9 into eq S11 we obtain the expression

ρ(h, b) =
h8
(
b
(
12 + 4b(6b− 5) + b(1 + 4b(3b− 2))h2)− 2

)2

4
(
2− bh2

)(
4 + (2b− 1)h2

)(
2 + b(2b− 1)h2

)(
12 + (6b− 1)h2

)(
6 + (1 + 6(b− 1)b)h2

) , (S12)

which bounds the expected error in the modified Hamiltonian. This function is then used within
an optimization routine to find the value b that provides the optimal conservation of the modified
Hamiltonian for a specific system.

S4



2 Flowchart of MAIA and e-MAIA algorithms

Input
* Modified .mdp file
* Standard GROMACS input

Adaptivity

MAIA
1. As 1. in No adaptivity case
2. Calculate the fastest period T̃ and

the dimensionless time step h̃ (16)
3. Set ψ(h, b) = ρ(h, b) (15)
4. Find b∗ as arg min

b∈(0,1/4]
max

h∈(0, h̃)
ψ(h, b)

5. Set ϕ∗ = ϕ0

e-MAIA

e-MAIA
1. Calculate the slowest period T̄ and

the dimensionless time step h̄ (23)
2. Calculate ϕ∗ from (24)

1. Set new ARp

2. Go to e-MAIA step 2

1. Set ψ(h, b) = σ(h, b, ϕ0) (25)
2. Go to MAIA step 4

ϕ∗ < ϕ0

Decrease ARp

No adaptivity
1. For all pairs of particles:

1.a. Calculate period T
1.b. If 5∆t ≥ T , STOP
1.c. If 10∆t ≥ T , WARNING

2. Pass value of ‘integrator’ to .tpr

Pass b∗ and ϕ∗ to .tpr

.tpr file

* Define the integrator in the Trotter
factorization form

* Run MD

yes no

no

yes

yes

no

no

yes

Runner (mdrun)

Preprocessor (grompp)

Figure S1: Flowchart of the Modified Adaptive Integration Approach (MAIA) and the extended
MAIA (e-MAIA) as implemented in MultiHMC-GROMACS. The references (15)-(16) and (23)-(25)
correspond to the equations in the paper.
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3 Validation of the chosen simulation length for the villin bench-
mark
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Figure S2: Evolution with time of the relative radii of gyration (RG) observed for each simulation
method with respect to the RG found in MD simulations. The dashed lines represent the RG at half
of the simulation time (2.5 ns) whereas the solid lines are used for the full simulations of 5 ns. The
efficiency of GSHMC with e-MAIA, relative to MD, expressend in terms of radii of gyration, increases
with simulation time. This suggests that simulations longer than those presented in this study are at
least as favorable to the proposed algorithms as we claim; they may be even more favorable as the
simulations become longer.
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