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1 Introduction
The aim of this series of papers is to relate the method of averaging to the formal series
expansions that are nowadays used as a powerful tool in the analysis of numerical
integrators of time-dependent problems. The present work is restricted to B-series and
systems with a single fast frequency; Part II will deal with other types of formal series
and with quasiperiodic problems.

The method of averaging [14], [26], [27] has a long history that goes back to the
work in celestial mechanics of Gauss and Laplace [2]. The aim is to study the long-
time behavior of highly-oscillatory systems by constructing an averaged system that
approximately captures that behavior and ignores the details of the oscillations with
small periods.

In 1974 Hairer and Wanner [19] introduced the concept of B-series. They associ-
ated with each numerical integrator (within a very broad class) its B-series, a formal
series in powers of the step-length, and showed that the properties of the integrator are
easily studied by manipulating the corresponding B-series. The importance of the no-
tion of B-series and other similar formal series [25] has grown steadily in recent years
[17], in particular since the discovery of their relevance in connection to symplectic
integration [5] and modified equations [15] (see also the recent contribution [9]). Even
though B-series are formal series they may lead to rigorous error bounds when suitably
truncated [17].

In Sections 2–4 of this paper we show how B-series may be used to derive in a
systematic way the analytical expressions of high-order averaged equations. This is
probably the first example of the application of B-series outside the field of numerical
ordinary differential equations. Section 2 describes the general idea and Sections 3 and
4 provide the details for large classes of first order and second order differential sys-
tems respectively. For first order systems we give explicitly the form of the averaged
systems withO(εj) errors, j = 1, 2, 3, (2πε denotes the period of the fast oscillations).
When the original oscillatory problem is Hamiltonian, so are the averaged systems and
explicit expressions for the corresponding Hamiltonian functions are also provided.
For second order systems with large, O(ε−1) forces, we give the explicit form of the
averaged systems with O(εj) errors, j = 1, 2. A family of Hamiltonian problems that
includes a variant of the Fermi-Pasta-Ulam model is employed to illustrate the mate-
rial in Section 3. We show that our methodology, in addition to determining averaged
equations of high order, yields as a byproduct the adiabatic invariance of the oscilla-
tory energy. The material in Section 4 is exemplified in the case of Kapitsa’s inverted
pendulum.

The final Section 5 deals with the analysis of numerical multiscale methods such as
those introduced by E and Engquist [10], [11]. While the scope of application of those
methods widely exceeds the oscillatory problems considered in the present article, they
are of particular relevance to our research because, when applied to the classes of sys-
tems studied here, they may be considered as numerical implementations of the idea
of averaging. We shall construct multiscale methods that are able to approximate not
only the simplest, lowest order averaged equation but also its high-order counterparts.

We end this introduction by pointing out that there are of course analogies be-
tween the B-series approach considered here and both the modulated Fourier expan-
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sions methodology pioneered by Hairer and Lubich [16] and the WKB and Magnus
expansion techniques [20].

2 A modified equation approach to averaging
This section relates well-known ideas from the theory of averaging [14], [26], [27] to
modified equations as used in the analysis of numerical integrators [30], [17].

We are concerned with initial value problems for differential systems of the form

d

dt
y = f(y,

t

ε
; ε), (1)

where y is a D-dimensional real vector, ε is a small parameter and the indefinitely
differentiable function f is assumed to depend 2π-periodically on the variable t/ε. Our
interest is in situations where, as ε → 0, the solutions or some of their derivatives
with respect to t become unbounded. Such is the case, for instance, when f and its
partial derivatives are O(1) and the partial derivative of f with respect to t/ε does not
vanish (so that (1) is effectively non-autonomous); then differentiation in (1) shows
that (d2/dt2)y = O(1/ε). But even in cases where (1) is autonomous, so that there
is no effective dependence of f on the fast time t/ε, the derivatives of y will become
unbounded as ε → 0 if f itself behaves like a negative power of ε.

For the analysis it is useful to rewrite the system in terms of the scaled (non-
dimensional) time τ = t/ε:

d

dτ
y = εf(y, τ ; ε). (2)

If we denote by ϕτ0,τ ;ε : RD → RD the solution operator of (2), so that

y(τ) = ϕτ0,τ ;ε(y0)

is the solution that satisfies the initial condition y(τ0) = y0, then a simple but important
observation is that the map Ψτ0;ε = ϕτ0,τ0+2π;ε depends on τ0 in a 2π-periodic manner;
this follows from the fact that both ϕτ0,τ ;ε(y0) and ϕτ0+2π,τ+2π;ε(y0) satisfy the initial
value problem

{
d
dτ y(τ) = εf(y(τ), τ ; ε) = εf(y(τ), τ + 2π; ε),
y(τ0) = y0.

From this observation, it follows that, at the stroboscopic times τn = τ0 + 2πn, n =
0,±1,±2, . . .,

y(τn) = ϕτ0,τn;ε(y0) = ϕτn−1,τn;ε(ϕτ0,τn−1;ε(y0)) = ϕτ0,τ0+2π;ε(ϕτ0,τn−1;ε(y0))

and, hence, we arrive at the fundamental formula:

y(τn) = (Ψτ0;ε)
n(y0), n = 0,±1,±2, . . . (3)
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In Sections 3 and 4 we shall describe general situations where the exact solution of
(2) with initial value y(τ0) = y0, sampled at τn = τ0+2πn, admits a formal expansion
of the form

y(τn) = y0 +
∞∑

j=1

εj

j∑

l=1

(τn − τ0)lGj,l(y0), (4)

with suitable indefinitely differentiable maps Gj,l : RD → RD independent of ε. In
particular, this implies that

Ψτ0;ε(y0) = y0 +
∞∑

j=1

εj

j∑

l=1

(2π)lGj,l(y0),

and thus Ψτ0;ε is a smooth near-to-identity map. Standard backward error analysis [30],
[17] shows then the existence of an autonomous system (the modified system of Ψτ0;ε)

d

dτ
Y = F (Y ; ε) = εF1(Y ) + ε2F2(Y ) + ε3F3(Y ) + · · · (5)

or
d

dt
Y =

1
ε
F (Y ; ε) = F1(Y ) + εF2(Y ) + ε2F3(Y ) + · · · (6)

(F and the Fj depend on τ0, but this has not been incorporated into the notation) whose
(formal) solutions satisfy that Y (τn) = Ψτ0;ε(Y (τn−1)) for n = 0,±1,±2, . . . so that

Y (τn) = (Ψτ0;ε)
n(Y0) n = 0,±1,±2, . . . (7)

We conclude from (3) and (7) that, if one chooses Y (τ0) = y(τ0), then Y (τ) exactly
coincides with y(τ) at the stroboscopic times τn = τ0 + 2πn. In this way it is possible
in principle to find y(τn) by solving the system (5) or (6), where all t-derivatives of
Y remain bounded as ε → 0. When τ does not coincide with one of the stroboscopic
times, we note that obviously

y(τ) = (ϕτn,τ ;ε ◦ Φτn−τ ;ε)Y (τ),

where τn is the largest stroboscopic time ≤ τ and Φ·;ε denotes the flow of (5). In this
way, y is ‘enslaved’ to Y through the mapping ϕτn,τ ;ε ◦Φτn−τ ;ε whose dependence on
τ is easily seen to be 2π-periodic.

It is well known that the series (5) does not converge in general, and in order to get
rigorous results one has to consider truncated versions

d

dτ
Y = εF1(Y ) + ε2F2(Y ) + ε3F3(Y ) + · · ·+ εJFJ(Y ), (8)

whose solutions satisfy that Y (τn)−Ψτ0;ε(Y (τn−1)) = O(εJ+1). If Y solves (8) with
Y (τ0) = y(τ0), then Y (τn) and y(τn) differ by an O(εJ) amount, where the constant
implied in the O notation is uniform as the stroboscopic time τn ranges in an interval
τ0 ≤ τn ≤ τn + T/ε, with T = O(1) as ε → 0.1

1The size of Y (τ) − y(τ) at non-stroboscopic times depends of course on the behavior of ϕτn,τ ;ε. If
accurate approximations of y(τ) are required, they may be obtained by first finding Y (τn), where τn is the
largest stroboscopic time≤ τ , and then integrating the original oscillatory system from τn to τ .
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The process of obtaining the autonomous system (8) from the original system (2)
is referred to in the averaging literature [14], [26], [27] as high order stroboscopic
averaging. In this paper we shall show how a number of techniques and results being
used currently in the analysis of numerical integrators may be applied to the task of
constructing explicitly the functions Fj that define the averaged equations (8).

Let us briefly discuss how to find the modified system (5) corresponding to Ψτ0;ε.
There are several techniques that may be used to accomplish this task; here we shall
apply Theorem 1 in [25]. It follows from (4) that the formal solution Y (τ) of the
autonomous system (5) with initial value Y (τ0) = y0 can be written as

Y (τ) = y0 +
∞∑

j=1

εj

j∑

l=1

(τ − τ0)lGj,l(y0). (9)

(This is proved as follows. The difference ∆(τ) between the formal solution Y and the
right hand-side of (9) vanishes when τ coincides with one of the stroboscopic times τn.
Therefore the polynomial P (τ) with degree ≤ N that interpolates ∆(τ) at τ0,. . . ,τN ,
vanishes identically. On the other hand the interpolation error ∆ − P = ∆ is easily
seen to be O(εN+1) and, since N is arbitrary, ∆ ≡ 0.) The vector field F is then
retrieved by differentiating the solution flow:2

d

dτ
Y (τ)

∣∣∣∣
τ=τ0

= F (y0; ε).

The following proposition lists some useful properties.

Proposition 1 1. If the real function I(y, τ) depends 2π-periodically on τ and is
conserved by all solutions of the original system (2) (I(y(τ), τ) = I(y(τ0), τ0)),
then I(Y, τ0) is a (formal) conserved quantity for the averaged system (5).

2. If (2) is Hamiltonian, then so is (5). More precisely, there is a formal Hamilto-
nian

H(Y ; ε) = εH1(Y ) + ε2H2(Y ) + ε3H3(Y ) + · · ·
such that F (Y ; ε) = J−1∇H(Y ; ε) and Fj(Y ) = J−1∇Hj(Y ) for each j (J
is the canonical symplectic matrix).

3. If (2) is autonomous, then (5) is independent of τ0.

4. If (2) is autonomous and possesses a first integral I(y), then I(Y ) is a formal
first integral of (5).

2This procedure is of course classical: old differential equations textbooks used to show that any given
family of sufficiently differentiable functions Q = Ξ(τ, C) with values in RD and depending on a vector
parameter C in RD was the ‘general solution’ of the differential equation obtained by eliminating the pa-
rameters from the equations Q = Ξ, dQ/dτ = ∂Ξ/∂τ . In general the resulting differential equation is
non-autonomous. If it is known beforehand—as it is the case here— that the differential equation will turn
out to be autonomous, then it is sufficient to consider Q = Ξ, dQ/dτ = ∂Ξ/∂τ at τ = 0. In Section
4 we shall use the corresponding idea for second order systems; these have as ‘general solution’ families
Q = Ξ(τ, C1, C2) with C1, C2 in RD , and are retrieved from Ξ by eliminating the parameters from the
relations Q = Ξ, (d/dτ)Q = ∂Ξ/∂τ , (d2/dτ)Q = ∂2Ξ/∂τ2.
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5. If (2) is autonomous and Hamiltonian with Hamiltonian function H , then H is
a formal first integral of (5). Furthermore, the Hamiltonian H of (5) is a formal
first integral of (2).

Proof. For 1. (which obviously implies 4.) note that S(τ) = I(Y (τ), τ0)−I(Y (τ0), τ0)
vanishes when τ coincides with one of the stroboscopic times τn. Then, the interpola-
tory argument used to prove (9) implies S ≡ 0.

If the original system is Hamiltonian (possibly non-autonomous) then Ψτ ;ε is a
symplectic map and therefore its modified equation (5) will be Hamiltonian [30], [17].
This proves 2.

The property 3. is true because for an autonomous system ϕτ0,τ ;ε only depends on
the difference τ − τ0 and Ψτ0;ε = ϕτ0,τ0+2π;ε is independent of τ0.

Under the hypotheses of 5., H is a first integral of the original system and, by 4.,
also of its averaged counterpart. But then H and H are in involution (their Poisson
bracket vanishes) [3] and therefore H is a formal invariant of the original (2).

Let us finish this section with a remark. If the initial value τ0 of τ is changed to τ ′0,
then, as noted before, the averaged system (5) changes. The relation

ϕτ ′0,τ ′0+2π;ε = ϕτ0+2π,τ ′0+2π;ε ◦ ϕτ0,τ0+2π;ε ◦ ϕτ ′0,τ0;ε,

i.e.
Ψτ ′0;ε =

(
ϕτ ′0,τ0;ε

)−1 ◦Ψτ0;ε ◦ ϕτ ′0,τ0;ε,

shows that the new Ψτ ′0;ε is conjugate to the old Ψτ0;ε by means of the change of
variables ϕτ ′0,τ0;ε. Therefore the different averaged equations arising from different
values of τ0 are also conjugate to each other.

3 First order differential equations

3.1 Framework
Throughout this section we assume that the function f in (1) possesses an expansion in
powers of ε of the form

f(y, τ ; ε) =
1
ε

∞∑

j=1

εjfj(y, τ). (10)

If

fj(y, τ) =
∞∑

k=−∞
exp(ikτ)fj,k(y) (11)

is the Fourier expansion of fj(y, τ), then the Fourier coefficients fj,k(y) are in general
complex vectors, but, in order to have a real system, we assume that, for each j and k,
fj,k ≡ f∗j,−k (∗ denotes complex conjugate). The system (1) is supplemented by the
initial condition y(0) = y0, where y0 is a given vector of O(1) magnitude. Note that
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there is no loss of generality in assuming that the initial value of t is 0; the general case
may be reduced to this by shifting t and redefining f .

In terms of the scaled time τ = t/ε, the differential system (2) being solved is then

d

dτ
y = εf(y, τ ; ε) =

∞∑

j=1

εjfj(y, τ). (12)

3.2 Trees
As it is customary in the analysis of numerical methods for ordinary differential equa-
tions, the solution y of (12) will be expanded in an appropriate B-series: a formal series
whose terms are indexed by (rooted) trees. In this subsection we describe the trees that
will be required in the expansion of y which will be carried out in the next.

It is well-known, see e.g. [18], that in the standard analysis of numerical integrators
for systems dy/dτ = f(y), the vertices of the trees correspond to f and its derivatives.
In view of the structure (10)–(11) of the right hand-side of (12), the vertices of the trees
to be used here correspond to the functions fj,k and their derivatives; to keep track of
this correspondence, each vertex possesses here a label, i.e. a pair of indices (j, k),
j = 1, 2, . . ., k = 0,±1,±2, . . . Now the set U of all trees may be defined recursively
by the following two rules: (i) for each label (j, k), the corresponding tree with one
vertex, jk , belongs to U , (ii) if u1, . . . , un ∈ U , then, the result

u = [u1, . . . , un]j,k (13)

of grafting their roots to a new root with label (j, k) belongs to U .
The expansion of y will be graded according to powers of ε (see (14) below) and

in this connection we introduce the notion of weight. The weight of a vertex with label
(j, k) is defined to be j and the weight |u| of u ∈ U is the sum of the weights of its
vertices.

3.3 The expansion of y

The solution y of (12) possesses an expansion

y(τ) = y0 +
∑

u∈U
ε|u|

αu(τ)
σu

Fu(y0) = y0 +
∑

j=1

εj
∑

|u|=j

αu(τ)
σu

Fu(y0). (14)

Here Fu, σu and αu are, respectively, the elementary differential, the symmetry and the
elementary coefficient of the tree u. These will be described presently.

The elementary differential Fu is, for each u ∈ U , a vector-valued function of a
vector argument y, constructed in terms of the Fourier coefficients fj,k. Recursively,
F( j,k ) = fj,k and, for u in (13),

Fu(y) = f
(n)
j,k (y) [Fu1(y), . . . , Fun(y)] ,

where f
(n)
j,k is the n-th order Fréchet derivative of fj,k.
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The integer σu counts the number of symmetries of the tree u ∈ U and may be
defined recursively as follows. For trees with one vertex, σ( j,k ) = 1 and, for u in
(13),

σu = r1! · · · rm!σu1 · · ·σum ,

where uµ, µ = 1, . . . ,m, are the pairwise distinct uν , ν = 1, . . . , n, and rµ counts the
number of times that uµ features among the uν .

For u ∈ U , the elementary coefficient αu is a complex-valued function of the real
variable τ .3 Rewriting the differential equation (12) as an integral equation

y(τ) = y0 + ε

∫ τ

0

f(y(τ ′), τ ′; ε) dτ ′

and expressing in both sides y by means of its expansion (14), leads to a Picard-like
procedure for the recursive computation of the elementary coefficients. For the tree

j,k ,

αu(τ) =
∫ τ

0

exp(ikτ ′) dτ ′

and, for u in (13),

αu(τ) =
∫ τ

0

exp(ikτ ′)αu1(τ
′) · · ·αun(τ ′) dτ ′. (15)

Two important remarks follow. First, note that the elementary coefficients in the
expansion of y are universal in the sense that they are independent of the particular
fj,k in the differential equation. This is one of the main advantages of the B-series
approach in numerical differential equations: with B-series there is a clear separation
between, on the one hand, quantities depending on the particular differential equation
being integrated but not on the specific integration method4 and, on the other hand,
method-dependent quantities independent of the differential equation. The second ob-
servation is that the elementary coefficients only depend on the second component
(wave number) of the label (j, k).

3.4 Computing the elementary coefficients
It does not seem possible to obtain a closed-form expression for the coefficients αu

recursively defined in (15).5 Nevertheless the use of this recursion may be systematized
by considering the functions

φr,k(τ) = τ r exp(ikτ), r = 0, 1, 2, . . . , k = 0,±1,±2, . . .

and the linear space Φ spanned by them, i.e. the set of all complex-valued functions ψ
of a real variable that may be written as linear combinations

ψ(τ) =
∑

r,k

ar,kφr,k(τ),

3Comparing the general term αu/σuFu of the B-series used here with that of the standard B-series, see
[17], Chapter III, one sees that our elementary coefficients are the counterpart of the product elementary
weight × τm, where m is the number of vertices in the tree.

4In the theory of B-series the exact solution counts as a particular instance of numerical solution.
5The structure of the elementary coefficients will be analyzed further in part II of the present work.
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where the ar,k’s are complex constants.
Clearly, for each ψ ∈ Φ, the integral

I(ψ)(τ) =
∫ τ

0

ψ(τ ′) dτ ′

will be given by the corresponding linear combination of the functions κr,k = I(φr,k).
These are in turn members of the space Φ, because, obviously

κr,0(τ) =
τ r+1

r + 1
, (16)

and, for k 6= 0, integration by parts leads to the recursion

κr,k =
ir

k
κr−1,k − i

k
φr,k, r = 1, 2, . . . (17)

For future reference we list here the first few κr,k with k 6= 0

κ0,k =
i

k
− i

k
exp(ikτ), (18)

κ1,k = − 1
k2

+
1
k2

exp(ikτ)− i

k
τ exp(ikτ), (19)

κ2,k = − 2i

k3
+

2i

k3
exp(ikτ) +

2
k2

τ exp(ikτ)− i

k
τ2 exp(ikτ). (20)

Since
φr,kφr′,k′ = φr+r′,k+k′ , (21)

the space Φ is also closed under multiplication (i.e. ψ1ψ2 ∈ Φ, if ψ1 ∈ Φ and ψ2 ∈
Φ) and, by induction, we conclude from (15) that, for each u ∈ U , the elementary
coefficient αu belongs to Φ and accordingly there exist complex constants au,r,k such
that

αu(τ) =
∑

r,k

au,r,kφr,k(τ) =
∑

r,k

au,r,kτ r exp(ikτ). (22)

With the help of (16), (17) and (21), it is easy to implement a recursive procedure
to compute the elementary coefficients αu. Once the constants auν ,r,k corresponding
to the trees in the right-hand side of (15) are known, we write, with the help of (21),
the integrand as a linear combination of the φr,k,

exp(ikτ ′)αu1(τ
′) · · ·αun(τ ′) =

∑

r,k

bu,r,kφr,k(τ),

and obtain
αu(τ) =

∑

r,k

bu,r,kκr,k(τ). (23)

Then the constants au,r,k are found by expressing the functions κr,k as linear combi-
nations of the φr,k (cf. (18)–(20)).
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After computing the elementary coefficients of all trees of weight j = 1, 2, we find
the first terms in (14):

y(τ) = y0 + ε
∑

k

κ0,k(τ)f1,k(y0) + ε2
∑

k

κ0,k(τ)f2,k(y0) (24)

+ ε2
∑

k,`

ck,`(τ)f ′1,k(y0)f1,`(y0) +O(ε3),

where
ck,`(τ) =

i

`
κ0,k(τ)− i

`
κ0,k+`(τ), ` 6= 0,

and
ck,0(τ) = κ1,k(τ),

so that, from (16) and (18)–(19),

c0,0(τ) =
τ2

2
,

c0,`(τ) =
1
`2
− 1

`2
exp(i`τ) +

i

`
τ, ` 6= 0,

ck,0(τ) = − 1
k2

+
1
k2

exp(ikτ)− i

k
τ exp(ikτ), k 6= 0,

ck,−k(τ) =
1
k2
− 1

k2
exp(ikτ) +

i

k
τ, k 6= 0,

ck,`(τ) = − 1
k(k + `)

+
1
k`

exp(ikτ)

− 1
`(k + `)

exp(i(k + `)τ), k, `, k + ` 6= 0.

3.5 The expansion of the averaged solution
In view of (22), the functions (polynomials)

ᾱu(τ) =
∑

r,k

au,r,kτ r (25)

interpolate the values of αu(τ) when τ is an integer multiple of 2π. Therefore, the
formula

Y (τ) = y0 +
∑

j=1

εj
∑

|u|=j

ᾱu(τ)
σu

Fu(y0). (26)

provides the B-series expansion of a function Y (τ) that interpolates the solution y(τ)
with expansion (14) and is smooth, in the sense that all derivatives (dk/dtk)Y with
respect to the original time t remain bounded as ε → 0 (cf. the bounded derivative
principle [22]).

10



The leading terms of the B-series for y computed in (24) thus yield:

Y (τ) = y0 + ετf1,0(y0) + ε2
τ2

2
f ′1,0(y0)f1,0(y0) + ε2τf2,0(y0) (27)

+ε2τ
∑

k 6=0

i

k

(
f ′1,0(y0)f1,k(y0)− f ′1,k(y0)f1,0(y0)

)

+ε2τ
∑

k 6=0

i

k
f ′1,k(y0)f1,−k(y0) +O(ε3).

3.6 The averaged differential equation
As explained in Section 2, from the series (26) for the smooth interpolant Y (τ), we
derive, for each integer J ≥ 1, a differential equation satisfied by Y up to an O(εJ+1)
remainder. (This corresponds to an O(εJ ) remainder if the differential equation is
written in terms of the original independent variable t.)

Let us first consider the cases J = 1, 2. Differentiation with respect to τ in (27)
yields

d

dτ
Y

∣∣∣
τ=0

= εf1,0(y0) + ε2f2,0(y0)

+ε2
∑

k 6=0

i

k

(
f ′1,0(y0)f1,k(y0)− f ′1,k(y0)f1,0(y0)

)

+ε2
∑

k 6=0

i

k
f ′1,k(y0)f1,−k(y0) +O(ε3).

and, since Y (0) = y0, we conclude that the lowest order (J = 1) averaged equation is:

d

dτ
Y = εf1,0(Y )

(a result certainly expected) and that at the next, J = 2, order

d

dτ
Y = εf1,0(Y ) + ε2f2,0(Y ) (28)

+ε2
∑

k 6=0

i

k

(
f ′1,0(Y )f1,k(Y )− f ′1,k(Y )f1,0(Y )

)

+ε2
∑

k 6=0

i

k
f ′1,k(Y )f1,−k(Y ).

Averaged equations of higher orders may in principle be found following the same
methodology used for the cases J = 1, 2. The only difficulty stems from the need
to determine the elementary coefficients αu corresponding to trees of weights |u| =
3, 4, . . . that are required to compute, via (25), the coefficients ᾱu in the expansion of
Y . To conclude this subsection we find explicitly the averaged equation with remainder
O(ε4). This is probably as far as one can reasonably go for the general format (12), but,

11
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Figure 1: Families of trees in U with weight ≤ 3

of course, in particular cases it is possible to explicitly construct averaged equations
with remainders of higher order.

Our task may be simplified by observing that, since we aim at computing the terms
with weight j = 1, 2, 3 in the expansion of dY/dτ at τ = 0, it is not necessary to gain
full knowledge of the polynomials ᾱu, |u| = 1, 2, 3, but only of the coefficient of the
first power τ1 in such polynomials. Now each αu, |u| = 1, 2, 3, is of the form (23), with
the summation index r restricted to the values 0, 1, 2 and the formulas (16) and (18)–
(20) reveal that in the corresponding functions κr,k(τ), r = 0, 1, 2, k = 0,±1,±2, . . .,
the power τ1 is only present in κ0,0 and κ1,k, κ2,k, k 6= 0. This observation lowers the
number of coefficients bu,r,k to be determined.

In Figure 1 we have depicted the eight ‘families’ of trees u with weight ≤ 3 (each
family has infinitely many trees corresponding to different values of the wave num-
bers). Accordingly, we write the averaged equation with J = 3 in the form

d

dτ
Y =

V III∑

µ=I

Fµ(Y ), (29)

where Fµ stands for the contribution of the µ-th family. Using the methodology out-
lined above we find that in (29) (all functions evaluated at Y ):

FI = εf1,0, FII = ε2f2,0, FIV = ε3f3,0,

FIII = ε2


∑

k 6=0

i

k

(
f ′1,0f1,k − f ′1,kf1,0

)
+

∑

k 6=0

i

k
f ′1,kf1,−k


 ,

FV = ε3


∑

k 6=0

i

k

(
f ′2,0f1,k − f ′2,kf1,0

)
+

∑

k 6=0

i

k
f ′2,kf1,−k


 ,

FV I = ε3


∑

k 6=0

i

k

(
f ′1,0f2,k − f ′1,kf2,0

)
+

∑

k 6=0

i

k
f ′1,kf2,−k


 ,

FV II = ε3

( ∑

k 6=0

1
k2

f ′1,kf ′1,0f1,0 −
∑

6̀=0

2
`2

f ′1,0f
′
1,`f1,0 +

∑

m 6=0

1
m2

f ′1,0f
′
1,0f1,m

12



+
∑

` 6=0

1
`2

f ′1,0f
′
1,−`f1,` −

∑

k 6=0

2
k2

f ′1,kf ′1,0f1,−k +
∑

k 6=0

1
k2

f ′1,kf ′1,−kf1,0

−
∑

k 6=0,m 6=0

1
km

(f ′1,kf ′1,−kf1,m + f ′1,kf ′1,−mf1,m)

−
∑

k 6= 0, ` 6= 0
k 6= −`

1
(k + `)`

f ′1,kf ′1,`f1,0

−
∑

` 6= 0, m 6= 0
` 6= −m

1
`(` + m)

f ′1,0f
′
1,`f1,m

+
∑

k 6= 0, m 6= 0
k 6= −m

1
km

f ′1,kf ′1,−k−mf1,m

+
∑

k 6= 0, m 6= 0
k 6= −m

1
km

f ′1,kf ′1,0f1,m

)
,

FV III = ε3

( ∑

k 6=0

1
k2

f ′′1,k[f1,0f1,0]−
∑

` 6=0

1
`2

f ′′1,0[f1,`f1,0]

−
∑

6̀=0

1
`2

f ′′1,−`[f1,`, f1,0] +
∑

k 6=0

1
k2

f ′′1,0[f1,`, f1,−`]

−
∑

k 6=0,m 6=0

1
km

f ′′1,k[f1,−kf1,m]

+
∑

k 6= 0, ` 6= 0
k 6= −`

1
k(k + `)

f ′′1,k[f1,`f1,0]

−
∑

` 6= 0, m 6= 0
` 6= −m

1
2`m

f ′′1,−`−m[f1,`f1,m]

−
∑

` 6= 0, m 6= 0
` 6= −m

1
2`m

f ′′1,0[f1,`, f1,m]

)
.

Note that a comparison of the expressions for FI–FII—FIV or FIII–FV –FV I bears
out the independence —mentioned before— of the elementary coefficients of the first
index j in the labels (j, k).
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3.7 The Hamiltonian case
Assume that H(y, τ ; ε) is a Hamiltonian function with d degrees of freedom, 2π-
periodic with respect to τ and possessing an expansion (cf. 10)

H(y, τ ; ε) =
1
ε

∞∑

j=1

εjHj(y, τ)

(here y is a 2d-dimensional vector). If f = J−1∇H , then (1) is a non-autonomous
Hamiltonian system whose right-hand side is of the form (10) with fj = J−1∇Hj .
Moreover if (cf.11)

Hj(y, τ) =
∞∑

k=−∞
exp(ikτ)Hj,k(y)

is the Fourier expansion of Hj , then the Fourier coefficients fj,k in (11) satisfy fj,k =
J−1∇Hj,k.

From Section 2 we know that the averaged equations are also Hamiltonian and
furthermore, in the present section, we have expressed the averaged vector fields as
combinations of elementary differentials. The general theory of symplectic integrators
[30], [17] shows that the averaged Hamiltonians will be combinations of the corre-
sponding elementary Hamiltonians. For instance the Hamiltonian for (29) is

εH1,0 + ε2H2,0 + ε2
∑

k 6=0

i

k
∇HT

1,0J−1∇H1,k + ε2
∑

k 6=0

i

2k
∇HT

1,kJ−1∇H1,−k

+ε3H3,0 + ε3
∑

k 6=0

i

k

(
∇HT

2,0J−1∇H1,k +∇HT
1,0J−1∇H2,k

)

+ε3
∑

k 6=0

i

k
∇HT

2,kJ−1∇H1,−k

+ε3

( ∑

k 6=0

1
k2
∇2H1,k[J−1∇H1,0,J−1∇H1,0]

−
∑

` 6=0

1
`2
∇2H1,0[J−1∇H1,`,J−1∇H1,0]

−
∑

` 6=0

1
`2
∇2H1,−`[J−1∇H1,`,J−1∇H1,0]

+
∑

k 6=0

1
k2
∇2H1,0[J−1∇H1,`,J−1∇H1,−`]

−−
∑

k 6=0,m6=0

1
km

∇2H1,k[J−1∇H1,−k,J−1∇H1,m]

+
∑

k 6= 0, ` 6= 0
k 6= −`

1
k(k + `)

∇2H1,k[J−1∇H1,`,J−1∇H1,0]

14



−
∑

` 6= 0, m 6= 0
` 6= −m

1
2`m

∇2H1,−`−m[J−1∇H1,`,J−1∇H1,m]

−
∑

` 6= 0, m 6= 0
` 6= −m

1
2`m

∇2H1,0[J−1∇H1,`,J−1∇H1,m]

)
.

3.8 A class of autonomous highly oscillatory Hamiltonian systems
We end this section by studying autonomous Hamiltonians of the form

1
2
pT
1 p1 +

1
2
pT
2 p2 +

1
2
qT
2 Kq2 + U(q1, q2; ε), (30)

where p1, q1 are d1-vectors, p2, q2 are d2-vectors, U is a real-valued potential that
may be expanded in non-negative powers of ε and K is a d1 × d1 symmetric posi-
tive definite matrix with eigenvalues of the form k2/ε2 (k an integer that may change
from eigenvalue to eigenvalue). Observe that when U is independent of q2, the system
can be decoupled into d2 harmonic oscillators with large frequencies k1/ε, . . . , kd2/ε
and a Hamiltonian system with d1 degrees of freedom and Hamiltonian (1/2)pT

1 p1 +
U(q1; ε). When τ = t/ε is used as new independent variable, the Hamiltonian becomes

H(p1, p2, q1, q2; ε) =
ε

2
pT
1 p1 +

1
2

(
εpT

2 p2 +
1
ε
qT
2 Ω2q2

)
+ εU(q1, q2; ε), (31)

where Ω is a symmetric positive definite matrix with integer eigenvalues, and the equa-
tions of motion are then

d

dτ
p1 = −ε∇1U(q1, q2; ε), (32)

d

dτ
p2 = −1

ε
Ω2q2 − ε∇2U(q1, q2; ε),

d

dτ
q1 = ε p1,

d

dτ
q2 = ε p2.

While this system does not fit into the general family (12) considered so far in this
section, its solutions y(τ) = (p1(τ), p2(τ), q1(τ), q2(τ)) possess at stroboscopic times
an expansion of the form (4) and are therefore amenable to our approach. In fact, let
us introduce the time-dependent change of variables

p̂1 = p1, p̂2 = cos(τΩ)p2 + ε−1Ωsin(τΩ)q2,

q̂1 = q1, q̂2 = −εΩ−1 sin(τΩ)p2 + cos(τΩ)q2,

that transforms (32) into a non-autonomous Hamiltonian system with Hamiltonian
function

Ĥ(p̂1, p̂2, q̂1, q̂2, τ ; ε) =
ε

2
p̂T
1 p̂1 + ε U(q̂1, cos(τΩ)q̂2 + εΩ−1 sin(τΩ)p̂2; ε). (33)
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Since the eigenvalues of Ω are positive integers, the change of variables is 2π-periodic
in τ , and thus, it reduces to the identity map at stroboscopic times τn = 2πn. Hence, for
any solution y(τ) = (p1(τ), p2(τ), q1(τ), q2(τ)) of (32), there exists a solution ŷ(τ) =
(p̂1(τ), p̂2(τ), q̂1(τ), q̂2(τ)) of the system corresponding to (33) such that y(τn) =
ŷ(τn) for all τn = 2πn. We conclude that when trying to approximate y(τn) by
stroboscopic averaging we may pretend that the solutions being treated are those of
the Hamiltonian system with Hamiltonian (33), a system that does fit into the general
framework of this section. This implies the existence of an averaged system for (32)
that, furthermore and according to Section 2, will be Hamiltonian for a Hamiltonian
function H(Y ; ε).

From our earlier formulas applied to (33), we find that (capital P ’s and Q’s denote
the components of the averaged Y ) H(Y ; ε) satisfies

H(Y ; ε) = ε

(
1
2
PT

1 P̄1 +
1
2π

∫ 2π

0

U(Q1, cos(Ωτ)Q2; 0) dτ

)
+O(ε2),

The Proposition in Section 2 implies that H(y) is a conserved quantity of the original
system (32) and therefore the function

ε−1(H(y; ε)−H(y; ε)) =
1
2

(
pT
2 p2 +

1
ε2

qT
2 Ω2q2

)

− 1
2π

∫ 2π

0

(
U(q1, q2; 0)− U(q1, cos(Ωτ)q2; 0)

)
dτ +O(ε)

will also be conserved. We have established in this way the adiabatic invariance [17]
of the oscillatory energy

1
2

(
pT
2 p2 +

1
ε2

qT
2 Ω2q2

)

of the harmonic oscillators for solutions satisfying q2 = O(ε) (in particular for solu-
tions where the total energy (30) remains bounded as ε → 0).

A well known example of the family of Hamiltonians considered in this subsection
is provided by the variant of the Fermi-Pasta-Ulam problem studied in [17] where q1

and q2 are m-dimensional and the potential is given by

U(q1, q2) =
1
4

(
(q1,1 − q2,1)

4 + (−q1,m − q2,m)4

+
m−1∑

j=1

(q1,j+1 − q2,j+1 − q1,j − q2,j)
4

)
.

We have integrated on 0 ≤ t ≤ 200 the FPU problem with m = 3 (the initial conditions
were taken from [17] and we used the implicit midpoint rule with the —very small—
time step 0.001). Figure 2 shows the exchange of energy among the three stiff springs,
a phenomenon that manifests itself in scales of time t ∼ 1/ε. Figure 3 shows the results
for the corresponding integration of the averaged (J = 3) system (29). The averaged
system, in spite of not following the oscillations withO(ε) period in the elongations of
the stiff springs, reproduces rather well the exchange between the associated energies.
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Figure 2: FPU problem. Oscillatory energies in each of the three stiff springs and total
oscillatory energy. Exact solution
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Figure 3: FPU problem. Oscillatory energies in each of the three stiff springs and total
oscillatory energy. Solution of averaged problem
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4 Second order differential equations

4.1 Framework
In this section we study highly-oscillatory second order differential equations

d2

dt2
q = f(q,

t

ε
; ε), (34)

where q ∈ Rd and

f(q, τ ; ε) =
1
ε

∞∑

j=0

εjfj(q, τ). (35)

with

fj(q, τ) =
∞∑

k=−∞
exp(ikτ)fj,k(q).

For each j and k, fj,k ≡ f∗j,−k. Note that here f is of sizeO(1/ε) due to the j = 0 term
in the sum (35) (cf. (10)).6 We assume throughout that f0,0 ≡ 0: in this way all the
leadingO(1/ε) components of the the force f in (35) are oscillatory and average out to
zero, making it possible for q to undergo variations of size O(1) (rather than O(1/ε))
on time-intervals 0 ≤ t ≤ T of length O(1). The system (34) is supplemented by
initial conditions q(0) = q0 p(0) = p0, where p(t) = dq(t)/dt and q0, p0 are given
vectors of O(1) magnitude.

In terms of the scaled time τ = t/ε, we have

d2

dτ2
q = ε2f(q, τ ; ε) =

∞∑

j=0

εj+1fj(q, τ); (36)

and, initially, dq(τ)/dτ has the value εp0.

4.2 The expansion of q

The solution q(τ) of (36) possesses an expansion

q(τ) = q0 +
∑

u∈UN
ε|u|

αu(τ)
σu

Fu(p0, q0) = q0 +
∑

j=1

εj
∑

|u|=j

αu(τ)
σu

Fu(p0, q0). (37)

Let us briefly point out the most significant differences with (14). Due to the fact
that we are now dealing with a second-order differential system (36) where the force
ε2f does not depend on dq/dτ , we use special Nyström trees [18], i.e. trees whose
vertices are of two types, meagre and fat, in such a way that the root is meagre, a
meagre vertex has at most one son that is fat and fat vertices have only meagre sons.

6Of course it would have been possible to include in Section 3 first order differential equations with
O(1/ε) right hand-sides. However we shall see in this section that the terms with j = 0 introduce a number
of significant complications that would have hindered the presentation there.
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Only fat vertices are labelled and the set of labels (j, k) includes the possibility j = 0.
The notation UN refers to the set of all special Nyström trees with labelled vertices.
The weight |u| of a tree u ∈ UN is again the sum of the weights of its vertices; a
meagre vertex has unit weight and a fat vertex with label (j, k) has weight j. Note that
there exist vertices with zero weight and that, as a consequence, the number of vertices
in a tree may be larger than its weight.

The elementary differential Fu is, for each u ∈ UN , a mapping from the space
Rd×Rd of the variables (p, q) intoRd constructed in terms of the Fourier coefficients
fj,k. A fat vertex with label (j, k) and r (meager) sons is associated with the Fréchet
derivative of order r of the function fj,k and a terminal meagre son gives rise to a term
p.

We rewrite (36) as an integral equation

q(τ) = q0 + εp0 + ε2
∫ τ

0

(τ − τ ′)f(q(τ ′), τ ′; ε) dτ ′,

to obtain a procedure for the recursive computation the elementary coefficients. The
recursion starts from the tree consisting only of the (meagre) root, for which αu(τ) =
τ . For a tree u ∈ UN with two or more vertices, let (j, k) be the label of the son of the
root and denote by uν ∈ UN the trees obtained by removing from u the root and its
son; then

αu(τ) =
∫ τ

0

(τ − τ ′) exp(ikτ ′)
∏
ν

αuν (τ ′) dτ ′.

Let us now turn to the effective computation of the αu. The role played by the
integral operator I in first order differential systems is taken here by the operator I2

that maps each smooth complex valued function ψ of a real variable into the function
∫ τ

0

(τ − τ ′)ψ(τ ′) dτ ′.

The elementary coefficients are now linear combinations of the functions (cf. (23))
χr,k = I2(φr,k), r = 0, 1, 2, . . ., k = 0,±1,±2, . . . (Note that (d2/dτ2)χr,k(τ) =
φr,k.) Clearly

χr,0(τ) =
τ r+2

(r + 2)(r + 1)

and furthermore, from

χr,k(τ) = τκr,k(τ)− κr+1,k(τ) k 6= 0,

and (18)–(20), we find that, for k 6= 0,

χ0,k =
1
k2

+
i

k
τ − 1

k2
exp(ikτ), (38)

χ1,k =
2i

k3
− 1

k2
τ − 2i

k3
exp(ikτ)− 1

k2
τ exp(ikτ), (39)

χ2,k = − 6
k4
− 2i

k3
τ +

6
k4

exp(ikτ)− 4i

k3
τ exp(ikτ)− 1

k2
τ2 exp(ikτ). (40)
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We have calculated the elementary coefficients of all trees of weight j = 1, 2, to
find the first terms in (37):

q(τ) = q0 + ετp0 + ε
∑

k 6=0

χ0,k(τ)f0,k(q0) + ε2χ0,0(τ)f1,0(q0) (41)

+ε2
∑

k 6=0

χ0,k(τ)f1,k(q0) + ε2
∑

k 6=0

χ1,k(τ)f ′0,k(q0)p0

+ε2
∑

k 6=0,` 6=0

ck,`(τ)f ′0,k(q0)f0,`(q0) +O (
ε3

)
.

Here
ck,`(τ) =

1
`2

χ0,k(τ) +
i

`
χ1,k(τ)− 1

`2
χ0,k+`(τ)

or, after replacing the χ’s by their values found above,

ck,`(τ) =
1

k2`2
− 2

k3`
− 1

`2(k + `)2
+ i

(
1

k`2
− 1

k2`
− 1

`2(k + `)

)
τ

−
(

1
k2`2

− 2
k3`

− 1
`2(k + `)2

)
exp(ikτ)− i

k2`
τ exp(ikτ),

for k 6= −`, while

ck,−k(τ) =
3
k4

+
2i

k3
τ − 3

k4
exp(ikτ) +

i

k3
τ exp(ikτ)− 1

2k2
τ2.

4.3 The expansion of the averaged solution
Just as in Section 3, the expansion of the averaged solution is obtained by interpolating
the elementary coefficients. The leading terms of the B-series for q provided in (41)
thus yield:

Q(τ) = q0 + ετp0 + ε
∑

k 6=0

i

k
τf0,k(q0) + ε2

τ2

2
f1,0(q0) (42)

+ε2
∑

k 6=0

i

k
τf1,k(q0)− ε2

∑

k 6=0

2
k2

τf ′0,k(q0)p0

+ε2
∑

k 6=0,` 6=0

c̄k,`(τ)f ′0,k(q0)f0,`(q0) +O (
ε3

)
,

where, for k 6= −`,

c̄k,`(τ) = i

(
1

k`2
− 2

k2`
− 1

`2(k + `)

)
τ

while
c̄k,−k(τ) =

3i

k3
τ − 1

2k2
τ2.
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4.4 Averaged differential equations
Differentiation with respect to τ of (42) leads to

d2

dτ2
Q

∣∣∣
τ=0

= ε2


f1,0(q0)−

∑

k 6=0

1
k2

f ′0,k(q0)f0,−k(q0)


 +O (

ε3
)
.

and therefore the lowest order (J = 1) averaged equation is:

d2

dτ2
Q = ε2


f1,0(Q)−

∑

k 6=0

1
k2

f ′0,k(Q)f0,−k(Q)


 (43)

an expression not easily guessed from the mere inspection of (36).
It is important to observe that, from (42),

d

dτ
Q

∣∣∣
τ=0

= εp0 + ε
∑

k 6=0

i

k
f0,k(q0) +O(ε2), (44)

so that there is anO(ε) discrepancy between the initial value εp0 (itself of sizeO(ε)) of
dq/dτ and the initial value of dQ/dτ . As a consequence, the (smooth) time derivative
dQ/dτ of the smooth interpolant of q is not an approximation to the smooth interpolant
of p(t) = dq/dτ .

If the force f in the original oscillatory problem (35) is the gradient of a scalar
potential, then the averaged (43) possesses also the conservative format (d2/dτ2)Q =
ε2∇W , with the potential W given by (cf. [23])

W (Q) = V1,0(Q)− 1
2

∑

k 6=0

1
k2
|∇V0,k(Q)|2.

Here V1,0 and V0,k are the potentials for f1,0 and f0,k respectively, and | · | represents
the Euclidean norm.

We conclude this subsection by computing, as in Section 3, an averaged equation
of higher accuracy. Here we have to face the extra difficulty brought in by the fact that
there are low weight trees with a large number of nodes. In Figure 4 we have listed
the thirteen ‘families’ of trees u in UN with more than one vertex and weight ≤ 3.
Accordingly, we write

d2

dτ2
Q

∣∣∣
τ=0

=
XIII∑

µ=I

Fµ +O(ε4) (45)

where Fµ stands for the contribution of the µ-th family. By using a methodology
similar to that employed in Section 3 to reduce the number of coefficients bu,r,k to be
computed, we find:

FI = FIII = FV I = 0,

FII = ε2f1,0,
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Figure 4: Families of trees in UN with weight ≤ 3

FIV = −ε2
∑

k 6=0

1
k2

f ′0,kf0,−k,

FV = ε3f2,0,

FV II = −ε3
∑

k 6=0

1
k2

f ′′0,k[p0, p0],

FV III = −ε3

( ∑

k 6=0

1
k2

f ′0,kf1,−k +
∑

k 6=0

1
k2

f ′0,kf1,0

)
,

FIX = ε3

(
−

∑

k 6=0

1
k2

f ′1,kf0,−k +
∑

k 6=0

1
k2

f ′1,0f0,k

)
,

FX = ε3
∑

k 6=0

2i

k3
f ′0,kf ′0,−kp0,

FXI = −ε3
∑

k 6=0,` 6=0

2i

k2`
f ′′0,k[p0, f0,`],

FXII = ε3

(
−

∑

k 6=0,` 6=0

1
k2`2

f ′′0,k[f0,`, f0,−k]
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−
∑

k 6=0,` 6=0m6=0

1
k2`m

f ′′0,k[f0,`, f0,m]

+
∑

k 6= 0, ` 6= 0
k 6= −`

1
2k2`2(k + `)2

f ′′0,k[f0,`, f0,−(k+`)]

)
.

FXIII = ε3

(
−

∑

k 6=0,m 6=0

2
k3m

f ′0,kf ′0,−kf0,m

−
∑

k 6=0,m6=0

1
k2m2

f ′0,kf ′0,−kf0,m

+
∑

k 6=0,` 6=0

1
k2`2

f ′0,kf ′0,`f0,−`

+
∑

k 6= 0, ` 6= 0
k 6= −`

1
k2(k + `)2

f ′0,kf ′0,`f0,−(k+`)

)
.

In (45) it is understood that the functions fj,k and their Fréchet derivatives f ′j,k, f ′′j,k
that feature in the Fµ’s are evaluated at q0.

The averaged differential equation we are seeking is now obtained by discarding
the O(ε4) remainder in (45) and eliminating q0 and p0 with the help of (44), i.e.

d2

dτ2
Q =

XIII∑

µ=I

Fµ (46)

where the functions Fµ are to be evaluated now at Q and

P = ω
d

dτ
Q−

∑

k 6=0

i

k
f0,k(Q)

rather than at q0 and p0. Note that, the right hand-sides (forces) of the original oscil-
latory system (36) and the averaged system (43) are independent of the corresponding
velocities dq/dτ , dQ/dτ ; this is not the case for the system (46).

4.5 An example: the Kapitsa pendulum
As an illustration of the preceding material, we consider the differential equation

d2

dt2
q =

(
g

L
+

1
ε

vmax

L
cos

(
t

ε
+ θ0

))
sin q (47)

that describes the motion of a pendulum whose suspension point is subjected to a fast
vertical vibration. In (47), q is the angle between the pendulum rod and the upward
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vertical axis, L the length of the rod, g the acceleration of gravity, 1/ε the (large) angu-
lar frequency of the vibration of the suspension point, vmax > 0 the O(1) maximum
vertical velocity of the suspension point and θ0 a parameter that governs the initial
phase of the vibration. The mechanical system described by (47) is sometimes referred
to by the name of Kapitsa’s pendulum [21] and attracts much interest in Physics as an
example of the possibility of stabilization by vibration that lead to Paul’s 1989 Nobel
Prize [23], [31], [28], [7].

At the lowest order in ε, the averaged equation (43) turns out to be

d2

dt2
Q =

( g

L
− v2

max

2L2
cosQ

)
sin Q; (48)

the term with−v2
max/(2L2) opposes the gravity term g/L and, for vmax suitable large,

turns into a stable equilibrium the usually unstable configuration Q = 0 where the
pendulum rod is above the suspension point.

At the next order in ε the averaged equation in formula (46) reads

d2

dt2
Q =

( g

L
− v2

max

2L2
cos Q

)
sin Q (49)

+ε
(vmax

L
cos(θ0)P 2 sin Q− v2

max

L2
sin(2θ0)P sin2 Q

−v3
max

4L3

(
cos(3θ0)− 3 cos(θ0)

)
sin3 Q

)
,

where
P =

d

dt
Q +

vmax

L
sin θ0 sin Q.

The O(ε) terms in (49) stem from the families of trees VII, XI and XII respectively.
(The contributions from the familes VIII and IX cancel each other and those from
families V and XIII vanish.) If θ0 = ±π/2 (modulo 2π), then (49) reduces to (48), a
fact that could have been anticipated by noting that, for those values of θ0, the equation
(47) is not altered when ε is changed into −ε.

5 Application to the analysis of multiscale methods

5.1 Heterogeneous multiscale methods
For the sake of brevity, we shall only study here the case of second-order problems
(34); all our considerations may easily be extended to first-order systems of the form
(1).

The numerical integration of the highly oscillatory system (34) may be a very dif-
ficult task: standard explicit algorithms suffer from stability restrictions that limit the
step-length to size O(ε) and more sophisticated methods are often hindered by the
phenomenon of order reduction [6]. Heterogeneous multiscale methods (HMM) [11],
[10], [13], [31], [12], [1], [29] (cf. [24]) avoid these difficulties by aiming at finding
only the slowly varying components of the solution q without keeping track of the
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rapidly oscillatory components. A full discussion of the various HMMs is completely
out of the scope of this paper and we shall limit ourselves to the asynchronous approach
suggested in [8].

From the preceding section we know that the solution q of (34) with initial con-
ditions q(0) = q0, p(0) = p0 differs in terms of size O(ε) from the solution of the
averaged problem

d2

dt2
Q = F (Q), (50)

F (Q) = f1,0(Q)−
∑

k 6=0

1
k2

f ′0,k(Q)f0,−k(Q), (51)

with initial conditions (see (44))

Q(0) = q0,
d

dt
Q

∣∣∣
t=0

= p0 +
∑

k 6=0

i

k
f0,k(q0).

(Note that, if the f0,k are real, then (d/dt)Q(0) = p0.) HMMs obtain approximations
to q by numerically integrating (50) without using the explicit analytic expression given
in (51) for the averaged force F . Each time that the numerical integrator (macro-
integrator) used to integrate (50) requires the value of the function F at a known value
Q∗ of its argument, F (Q∗) is approximated numerically by an average F̂ of values of
the force f of the originally given oscillatory problem (34). More precisely:

F̂ (Q∗) =
2
η

∫ η/2

−η/2

K(
2t

η
)f(q∗(t),

t

ε
; ε) dt, (52)

where, η is a (small) scaling parameter, the kernel or weight function K is an even,
K(ξ) = K(−ξ), real-valued function of the real variable ξ, −1 ≤ ξ ≤ 1, with unit-
mass, ∫ 1

−1

K(ξ) dξ = 1, (53)

and q∗(t) is the solution of the original (34) with initial conditions

q∗(0) = q0,
d

dt
q∗

∣∣∣
t=0

= 0. (54)

In practice the integral in (52) is approximated by a quadrature rule and the required
values of q∗ are found by numerically integrating (34) with the initial data (54) in the
interval −η/2 ≤ t ≤ η/2. The numerical method used to perform this task is referred
to as micro-integrator; the step-length δ used by the micro-integrator will typically
suffer from a stability/accuracy restriction δ = O(ε), but this is acceptable because
micro-integrations are only performed over small windows of length η rather than over
the whole integration range 0 ≤ t ≤ T . (In fact, due to symmetry considerations, it is
enough to micro-integrate over the interval 0 ≤ t ≤ η/2, see [8].)

The error in a HMM consists [29] of the averaging error introduced by approxi-
mating the solution q by its averaged counterpart Q and the numerical error resulting
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from computing Q numerically. The numerical error may be analyzed by standard
techniques after noting that it is nothing but the error of the algorithm used as macro-
integrator when applied to (50) with approximate values of the force F . Therefore the
numerical error has two origins: (a) the truncation error of the macro-integrator and
(b) the use of inexact force values. In turn, the contribution (b) is the result of (b1)
the use of the approximation (52) rather than the true averaged force in F in (51), (b2)
the use of numerical quadrature to compute the integral in (52), (b3) the use of inexact
values of q∗ obtained by numerical micro-integration. The analysis of (b2) and (b3) is
standard, and accordingly we are only interested in the analysis of (b1), a task that is
performed in the subsections that follow.

5.2 The filtering error
In view of (34), the formal series expansion for the function f(q∗(t), t/ε; ε) that ap-
pears in (52) may be obtained by differentiating twice with respect to t the B-series for
q∗(t), which is given in (41) with q0 = Q∗, p0 = 0 (see (54)). After recalling that
(d2/dτ2)χr,k(τ) = φr,k(τ), we find in this way

f(q(t),
t

ε
; ε) = (55)

1
ε

∑

k 6=0

φ0,k(
t

ε
)f0,k(Q∗) + φ0,0(

t

ε
)f1,0(Q∗) +

∑

k 6=0

φ0,k(
t

ε
)f1,k(Q∗)

+
∑

k 6=0,` 6=0

1
`2

(
φ0,k(

t

ε
) +

i

`
φ1,k(

t

ε
)− 1

`2
φ0,k+`(

t

ε
)
)

f ′0,k(Q∗)f0,`(Q∗)

+ R.

where R stands for the series consisting of the higher order terms. We may write
R = R1(t) + R2(t), where R1 and R2 comprise respectively the non-oscillatory and
the oscillatory terms. It is easily checked that R2 = O(ε), while R1 is a power series
in t2, t4, . . . whose coefficients are O(1).

Next, substitution of (55) into (52) leads to

F̂ (Q∗) =
1
ε

∑

k 6=0

φ̂0,kf0,k(Q∗) + φ̂0,0f1,0(Q∗) +
∑

k 6=0

φ̂0,kf1,k(Q∗) (56)

+
∑

k 6=0,` 6=0

1
`2

(
φ̂0,k +

i

`
φ̂1,k − 1

`2
φ̂0,k+`

)
f ′0,k(Q∗)f0,`(Q∗) + R̂1 + R̂2,

where φ̂r,k denotes the result of filtering the function φr,k,

φ̂r,k =
2
η

∫ η/2

−η/2

K(
2t

η
)φr,k(

t

ε
) dt,

and R̂j stands the result of filtering the remainders Rj , j = 1, 2,

R̂j =
2
η

∫ η/2

−η/2

K(
2t

η
)Rj(t) dt.
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Clearly R̂1 = O(η2) and R̂2 = O(ε). This means that, for accuracy, the value η should
be so small that the filtering procedure in (52) retrieves satisfactorily the non-oscillatory
components of the micro-force f being filtered.

The normalization (53) implies that φ̂0,0 = 1, and then a comparison of (56) with
(51) reveals that for an ‘ideal’ filter K for which

φ̂r,k = 0, r = 0, 1, k 6= 0, (57)

we have F̂ (Q∗)− F (Q∗) = R̂1 + R̂2 = O(η2 + ε).
Reference [13] considers the use of filter functions K(ξ) of class Cν that vanish

with their derivatives at ξ = ±1 (the exponential filter used in the experiments of [31],
[29], [8] satisfies this requirement for any value of ν =, 1, 2, . . .). Such filters7 only
satisfy the target (57) in an approximate manner. In fact, since

φ̂r,k =
( η

2ε

)r
∫ 1

−1

K(ξ)ξr exp
(

ikη

2ε
ξ

)
dξ,

ν integrations by parts reveal that for them

φ̂r,k = O
(

k−ν

(
ε

η

)ν−r
)

, k 6= 0. (58)

It follows that

F̂ (Q∗)− F (Q∗) = R̂1 + R̂2 = O
(

η2 + ε +
1
ε

(
ε

η

)ν)

(an expression found in [29] by a different approach). This shows that, for filters in
this family, the window-length η should be chosen large with respect to the period 2πε
of the fast oscillations. Since, at the same time and as pointed out above, η has to be
small with respect to the characteristic time of the smooth, non-oscillatory components
of q, it follows that algorithms based on smooth filters cannot operate unless ε is much
smaller than such a characteristic time, i.e. unless the problem has well-separated time-
scales.

5.3 Simple filtering
A simple alternative to the smooth filters we have just discussed was suggested in [8].
It has K ≡ 1/2 and η = 2πε, i.e. it filters through the familiar mean value

F̂ (Q∗) =
1

2πε

∫ πε

−πε

f(q∗(t),
t

ε
; ε) dt. (59)

Since here η = O(ε) while smooth filters require η À ε, the micro-integrations are now
much cheaper. However it should be emphasized that this alternative technique exploits

7These filters will be referred to as ‘smooth’ filters in view of the fact that, after defining K(ξ) = 0 for
| ξ |> 1, they become Cν functions in the whole real line.
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the fact that for the problems under consideration the period of the fast oscillations is
known beforehand; the scope of the use of smooth filters does not suffer from such a
limitation.

As it is the case for the smooth filters, the simple filtering formula (59) does not
satisfy the conditions (57). In fact, while it is clear that φ̂0,k = 0, k 6= 0, the
quantities φ̂1,k are non-zero. However φ̂1,−k = −φ̂1,k and therefore under the ad-
ditional hypothesis f0,k ≡ f0,−k it will be true that, after comparing (51) and (56),
F̂ (Q∗)− F (Q∗) = R̂1 + R̂2 or

F̂ (Q∗)− F (Q∗) = O(ε).

Since f0,k ≡ f∗0,−k, the hypothesis f0,k ≡ f0,−k is equivalent to the requirement that
the Fourier coefficient f0,k be real or, in other words, that f0(q, t/ε) be an even function
of t. When f0(q, t/ε) is not even the filtering error F̂ (Q∗)−F (Q∗) isO(1) and simple
filtering is inconsistent as already noted in [8].

5.4 Higher order averaged equations
The HMMs considered so far in the literature have been based on the lowest-order aver-
aged equation (50)–(51) with O(ε) error at stroboscopic times.8 We now illustrate the
possibility of devising multiscale numerical methods based on the averaged equation
(46), with O(ε2) error. We write compactly (46) as

d2

dt2
Q = F2(Q,

dQ

dt
). (60)

(F2 depends also on ε but this has not been reflected in the notation.) To simplify
matters we assume that (i) f(q, t/ε; ε) is an even function of t and (ii) p0 = 0. Then
the solution Q of (60) with initial condition Q(0) = q0, (d/dt)Q(0) = 0 is an O(ε2)
approximation to the smooth interpolant of the solution q of (34) with q(0) = q0,
p(0) = 0.9 Our aim is then to construct HMM algorithms that integrate (60) in such a
way that the filtering errors perpetrated when computing F2 are also of size O(ε2).

When performing the macro-integration of (60) it is necessary to evaluate approx-
imately the force F2 at known values Q∗, Q̇∗ of its arguments, a task that we suggest
may be performed with the formula

F̂2(Q∗, Q̇∗) =
2
η

∫ η/2

−η/2

K(
2t

η
)f(q∗(t),

t

ε
; ε) dt, (61)

where, following the ideas in [8], we take q∗(t) to be the solution of (34) with initial
conditions

q∗(0) = q0,
d

dt
q∗

∣∣∣
t=0

= Q̇∗.

8At non-stroboscopic times Q− q is still O(ε).
9The hypotheses (i) and (ii) are not essential, but without them the presentation is encumbered by the

formula that relates (d/dt)Q(0) and p0 through differentiation of (42), cf. (44).
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∆ Microsteps ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

π/20 160 1.94(-1) 2.39(-1) 2.46(-1) 2.47(-1)
π/40 640 3.24(-2) 1.74(-2) 1.75(-2) 1.75(-2)
π/80 2,560 *** 1.28(-3) 1.02(-3) 1.01(-3)
π/160 10,240 *** 3.15(-4) 7.17(-5) 6.70(-5)
π/320 40,960 *** 2.34(-4) 7.31(-6) 4.47(-6)
π/640 163,840 *** *** 2.67(-6) 3.22(-7)
π/1280 655,360 *** *** 2.26(-6) 4.48(-8)
π/2560 2,621,440 *** *** 2.21(-6) 2.45(-8)

Table 1: Errors in Q for the inverted pendulum, simple filtering

In the terminology of [8], this is an asynchronous approach because the micro-integra-
tions are always performed on the interval −η/2 ≤ t ≤ η/2, regardless of the current
value of t in the macro-integration.

The algorithm just suggested may be analyzed in a way similar to that employed
above. Now it is necessary to consider the O(ε3) terms in the series (41); the elemen-
tary coefficients of those terms are linear combinations of the functions χ0,k, χ1,k (as
are the O(ε2) terms) and χ2,k. A function χ2,k(t/ε), k 6= 0 in the series for q(t) gives
rise to a function ε−2φ2,k(t/ε) in the series for f = (d2/dt2)q and, after filtering, to a
coefficient ε−2φ̂2,k in the series for F̂2. On the other hand, the contribution of χ2,k(t/ε)
to the exact averaged force is obtained, as discussed in Section 4, by first replacing in
(40) the factor exp(ikt/ε) by 1 and then computing the second derivative with respect
to t at t = 0. It is then obvious that such a contribution equals −ε−2(2/k2). Therefore
the conditions (57) for an ‘ideal’ filter have now to be supplemented by the additional
requirement

φ̂2,k = − 2
k2

, k 6= 0. (62)

The bound in (58) suggests that it is not possible for the smooth filters considered
above to satisfy (62). For the simple filter K ≡ 1/2, a trite computation yields

φ̂2,k =
2
k2

exp(ikπ), k 6= 0,

and (62) holds only for odd k. Hence, the simpler filter will not achieve the O(ε2)
error we aim at unless f0,k vanishes for even k, i.e. unless the leading component
f0(q, t/ε) in the force (35) consists only of Fourier modes exp(ikt/ε)f0,k(q) for which
the filtering interval −πε ≤ t ≤ πε comprises an odd number of periods, a conclusion
not easily guessed in advance!

We have integrated numerically on the interval 0 ≤ t ≤ π/4 the inverted pendulum
problem (47) for which the leading component f0 of the force f consists only of the
odd wave numbers k = ±1. The values of the parameters were g = 9.8, L = 0.2,
vmax = 4, θ0 = 0, q(0) = 0.5, p(0) = 0.5, with ε ranging from 10−2 to 10−5. The
‘classical’ fourth-order Runge-Kutta method10 was used both as a macro and micro-

10More precisely, we used the Runge-Kutta-Nyström method for second-order differential equations im-
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∆ Microsteps ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

π/20 2× 160 4.92(-1) 2.52(-1) 2.47(-1) 2.47(-1)
π/40 2× 640 5.22(-1) 6.76(-2) 1.35(-2) 1.71(-2)
π/80 2× 2,560 *** 7.57(-2) 7.01(-3) 5.28(-4)
π/160 2× 10,240 *** 7.65(-2) 7.79(-3) 7.23(-4)
π/320 2× 40,960 *** 7.69(-2) 7.84(-3) 7.82(-4)

Table 2: Errors in Q for the inverted pendulum, simple filtering on a window of length
4πε (two vibrational periods)

integrator and the macro-force was taken from (61) with the simple, constant filter
function K ≡ 1/2. The macro-step-size ∆ was taken from the sequence (π/20)/2ν ,
ν = 0, 1, 2, . . . and the micro-step was determined from the formula δ = (πε/4)/2ν

(see [8]). Since each micro-integration covers the interval −πε ≤ t ≤ πε, the number
of micro-steps in a single micro-integration equals 8× 2ν (independently of ε). There
are four evaluations of F̂2/micro-integrations per macro-step and therefore the total
number of micro-steps in 0 ≤ t ≤ π/4 equals 4 × 5 × 8 × 4ν . The simulations were
performed only for those combinations of ∆ and ε for which the macro-step-length ∆
exceeds the vibration period 2πε; for ∆ ≤ 2πε, HMMs do not make much sense and it
is better to use a conventional numerical method.

In Table 1 we give the maximum over 0 ≤ t ≤ π/4 of the absolute value of the
difference between the computed Q and the exact solution of (60). Consider first the
right-most column of the table (ε = 10−5). For the coarser values of ∆, the error
behaves like O(∆4) as corresponds to the fourth-order method used to macro/micro-
integrate. For ∆ = π/160 the algorithm yields errors of roughly one part in ten thou-
sand: a remarkable achievement since the macro-step-length ∆ is more than 300 times
larger than the vibrational period 2π × 10−5. However towards the bottom of the col-
umn the error saturates: there the discretization error in the macro/micro-integration
is dominated by the filtering error. A comparison of the saturated errors at the bottom
of the columns bears out neatly the O(ε2) behavior of the filtering error predicted by
our analysis. Note also that in the top rows of the table, where the filtering error is
negligible, the errors are independent of ε.

We integrated again the same problem with the same parameter values, but now
regarding the function cos(t/ε) in (47) as having period 4πε, so that micro-integrations
are performed in the interval −2πε ≤ t ≤ 2πε. With respect to this new period the
wave numbers involved are k = ±2 and (62) is not satisfied. The numerical results are
given in Table 2: now the saturated errors at the bottom of the table are O(ε) in agree-
ment with our analysis. A comparison between both tables shows that the violation of
the condition (62) results in a degraded overall performance of the algorithm.

Finally we integrated once more the same problem but now regarding cos(t/ε)
in (47) as having period 6π/ε, so that the relevant wave-numbers are ±3 and (62)
holds once more. The results of the experiment (not included here) show that the
filtering error is restored to being O(ε2). This dissipates any possible suspicion that

plied by the classical Runge-Kutta formula, see [18], Chapter II.14.
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the degraded performance in Table 2 was due to the wider micro-integration window,
rather than to the fact that averaging was performed over an even number of cycles of
the pendulum vibration.

5.5 Discussion
While, as pointed out before, the material in this section is not meant to discuss ex-
haustively HMMs, we hope it has illustrated two points:

1. The B-series/modified equation approach suggested in Sections 2–4 may be ad-
vantageously used to analyze the behavior of the error in a variety of HMMs.

2. It is possible to devise multiscale methods that attain, for small macro-step-
lengths, errors of size O(ε2) rather than merely O(ε). In fact we have sug-
gested above an asynchronous algorithm (based on the simple filter function)
that achieves O(ε2) errors under the hypotheses that the force f is an even func-
tion of t and consists only of Fourier modes with odd wave numbers. Presented
in [4] (by M. P. Calvo and the present authors) is an algorithm based on finite-
difference techniques that results inO(εν) errors ν = 1, 2, . . . in a wide range of
oscillatory problems with a single high frequency.
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