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Abstract

We compare experimentally several techniques for combining geometric integrators with variable time steps.
In particular, we study modifications of the Verlet method due to Leimkuhler and a technique for symplectic
integration based on Poincaré transformations suggested by Hairer and Reich independently. We conclude that
it is feasible to develop symplectic variable step size codes that, for Hamiltonian problems, are competitive with
standard software. We also analyze the error growth of the new algorithms when integrating periodic orbits. © 1998
Elsevier Science B.V. and IMACS. All rights reserved.

Keywords: Variable step sizes; Symplectic integrators; Reversible methods; Kepler’s problem

1. Introduction

In this paper we consider variable step size symplectic and reversible methods for the numerical
integration of differential systems which are both Hamiltonian and reversible.

In the recent literature the question of numerical integration of differential systems by so-called
“geometric” [15] integrators has been widely addressed. Geometric integrators are numerical methods
which preserve some characteristic features of the exact flow of the system.

A first instance of such methods is given by symplectic integrators [16]. It is well known that for each
t the flow ¢, of a Hamiltonian system of ordinary differential equations

d

P _v,H(p.g),

31; (1)
— =V, H

ar pH(P,q)

is a canonical transformation in phase space. Symplectic integrators are numerical one-step methods for
which the one-step mapping ¥, also preserves the symplectic structure of phase space.
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A second example of geometric integrators is given by reversible methods. Let us consider a
differential system

dx
e fx) (2)

and an involution p (a linear mapping with p? = Id). The system (2) is said to be p-reversible if

fo(x)) =—p(fx)).

This implies that for each ¢, the flow ¢, of the system (2) is a p-reversible mapping, that is to say,
(¢)~" = pe,;p. A numerical one-step method is called p-reversible if when applied to a p-reversible
system (2) the numerical mapping ¥, is a p-reversible mapping, i.e., for each &, (Y3,) ™" = p¥p.
These two families of geometric integrators are particularly relevant in the numerical integration of the
Newton equations of mechanics
dp _ dg

rresil e 4 @)

which are reversible with respect to the involution o([p, g]%) = [—p. ¢q]7, and are also Hamiltonian if F
is the gradient of a scalar potential.

Symplectic and reversible integrators with constant step sizes have revealed themselves very suitable
for the integration of Hamiltonian and reversible systems of ordinary differential equations [2,3]. For
instance, it has been proved in [3] that, when integrating periodic orbits in some problems, the errors
grow only linearly with time.

On the other hand, the use of variable step sizes in the numerical integration of differential systems
is advisable in order to advance with small step sizes when the solution changes rapidly and with large
step sizes when the solution is only slowly varying. For general integrators, the use of variable step sizes
significantly improves the efficiency of the method. Therefore the question arises of combining geometric
integration with variable step sizes.

For symplectic methods, the use of a standard variable step size strategy results in a decrease in
efficiency [2,17]. Backward error analysis which allows to get favorable results for symplectic methods
implemented with fixed step size [5,16] is no longer valid when a symplectic integrator is used with
standard variable step size strategies.

This difficulty in the use of symplectic integrators was the main reason for the study of reversible
methods because, in the context of numerical integration of reversible systems, several step size
strategies [7,9—~11,18] have been found that retain the good properties observed in fixed step size
implementations [3]. Most reversible variable step size methods in [7,9-11,18] are implicit. However,
Leimkuhler has developed in [11] a Verlet-like method that is explicit. Here we focus our attention on
the strategy developed in [9,11], where the main idea is to introduce a time transformation

dt
3 =89 4
and to write the differential system in terms of the new independent variable 7:

d
_&g = _g(p! ‘I)VqH(P’Q).
()

dg
— = .V . q).
ar g(p.9)V,H(p,q)
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Integrating the differential system (5) with fixed step size k& provides variable step size numerical
solutions to (1). If the function g is such that the reparameterized system (5) is reversible, then results for
reversible integration with fixed step size [3] can be applied to (5) and they imply favorable properties
for the numerical solution viewed as a variable step size approximation to (1).

The question of symplectic integration with variable step size without losing the good long-time
behaviour of the fixed step symplectic integration has been an open problem for several years. In
particular, the technique in (4), (5) does not work because in nontrivial cases the transformed system (5)
fails to be Hamiltonian. Recently a solution to this problem by using Poincaré transformations has been
suggested by Hairer [6] and Reich [14]. The idea is as follows: if (pg, q,) is the initial condition for (1)
and Hj is the value of the Hamiltonian function H at (p,, q,), one integrates with a symplectic method
and fixed step size h the Hamiltonian system with Hamiltonian function g(H — Hp), i.e.,

P o o e(p. )V, H(p.q) - [H(p.q) — Ho|V,8(p. ).

dr

2—3 = g(p° Q)VpH(Pu q) + [H(P, Q) - HO]Vpg(Ps Q)’
augmented by Eq. (4). Note that differentiability of g is required. The difference between (6) and the
reparameterized system (5) is just a perturbation which vanishes along the solution of (1) with initial
condition (py, g,), but that makes (6) Hamiltonian. When the symplectic method chosen to integrate (6)
is the Lobatto IIIA-B pair [19] the resulting variable step size algorithm is very similar to one of the
methods suggested by Leimkuhler.

The purpose of this paper is to compare the approaches in [9,11] with those in [6] when applied
to the numerical integration of differential systems which are both Hamiltonian and reversible. While
the schemes in [9,11] are of order two, the idea in [6] can be combined with integrators of arbitrarily
high order. We first compare an implicit and an explicit method from [9,11] versus a symplectic
second order algorithm. However second order is often very inefficient and order four or even higher
are desirable. We have also considered symplectic schemes of order four based on the idea of [6]
and conventional software of the same order. Section 2 is devoted to the detailed description of the
implementation of the methods being compared. Due to the high number of details involved in each
algorithm (choice of monitor function, choice of nonlinear solver, etc.), we have adopted a formal style
of presentation, to ensure that the interested reader may reproduce our experiments. A more ‘journalistic’
style would have resulted in a paper more readable but less precise. In Section 3 numerical results
are reported. Our conclusions are given in Section 4. In Appendix A we establish a theoretical result
which ensures in some cases linear error growth for the symplectic variable step size strategy mentioned
above.

(6)

2. Numerical integrators

Here we present some numerical methods with variable step size for the integration of the Hamiltonian
system (1). We assume that the Hamiltonian function has the form

1
H(P-4)=§HP1I2+V(Q)- )
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Although in [9] several choices of stepsize function g are cited, in this paper we restrict our attention to
the arclength parameterization

2, ~1f2

g =(lpI*+ vV ™ (®)
and to the minimum distance parameterization

glg) =di, 9)

where d,,;, denotes, for particle motion, the smallest separation between particles and « is a positive
constant. The choices (8) and (9) appear to be the most popular considered in the literature [6,9,10].
In [6] the arclength parameterization (8) has been modified to become

2(@) = 2(Ho— V@) + vVl ™", (10)
which does not depend on p. However, in our numerical experiments we found that in practice the
quantity under the square root in (10) may become negative and for this reason we abandoned (10).

2.1. Implicit adaptive Verlet method (IAV)

Huang and Leimkuhler [9] introduced a generalization of the Verlet method by using the second-order
Lobatto IIIA-B partitioned Runge—Kutta formula for the scaled system (4), (5). The equations of the
method are

Pus12=Pn— %8(!’%1/2, q,)VV(q,), (11)
9ut1 =94, + g{g(l’a+1;2» 4,) + 8(Pni1/20Gns1)] P12 (12)
Puyy = Pnvrj2— ;g(pn+1[2!qn+])vv(qn+l)! (13)
Inti =1t + g[g(pn+l,’2! 4,) +8(Pni1/2 Gns1)]- (14)

This discretization is reversible and preserves the angular momentum. Next we discuss the solution of
each one of the equations (11)—(13).

If the function g depends on p, then the first equation is implicit in p,, ., , and we define the following
iteration to solve it:

v h v
PL:ll,}2= Pn— ES(PLil;z,qn)VV(qn)’ v=0,1,.... (15)

We choose as a first iterant pﬂ, 2 = P, and stop the iteration when the relative change is less than a
prescribed tolerance, that is

v+1] _ [v]
Hpn+uzlu+|!]’n+1/2“ < Tol. (16)
lniipall

If the function g depends on p only through its norm, then (15) can be written as a scalar iteration. For

example, if g represents the arclength parameterization (8), we compute the quantities S’ = || pﬂ 12 11

from the iteration
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o 2 ;
B = |Ip, |7 + (58( le,qn)) 19V @I ~ ke (Pehy 2 0.) (2o TV @),

Here

= 2\ ~1/2
g(Priiy24a) = (BY + ||VV (g, |}) ™2,

so that the iterants pﬂ] /2 do not need to be constructed. Then (16) can be written as

(B/DIVV @)g(Prii. 4.0 — (P, 4 3

/ﬁ[u+l]
[-1]

with g(p,11 /2. 4,) = 0. When the condition (17) is satisfied, we set

8(Pny12:9,) = (8 + ”VV(qn)Hz)_I/Z

and then obtain p,,, , from (11).

Another interesting situation arises when the function g depends on only ¢ as in (9). In that case
Eq. (11) is explicit.

Eq. (12) is implicit in ¢, ;, and we solve it by the iteration

Tol, a7

v h v
qil'f-:]” =q,+ E[g(pn+l/2’ 4,) + 8(Pui1/2, q;[w-f]-l)}pn+1/2' v=01,..., (18)

choosing as a first iterant qﬂ, = ¢,. Again, the iteration is stopped under control of the relative change,

that is

+1] v
gt — gy

1
gt
which can be written as

/DN Prs1/2 118(Pyi1/2s qLL—’IJ-I) = 8(Pni1)2> q,l:i;._lll)l &

+1]
gl

Here, g(Pos1/2. 4571) = —8(Pny1/2-4,). When (20) is satisfied, we set 8(Pns1/2:Ans1) = 8(Pny1 2

[v+1]
gn1,),and g, =q"H!.

Finally, Eq. (13) is explicit.

< Tol, (19)

Tol. (20)

2.2. Explicit adaptive Verlet method (EAV)

Leimkuhler [11] proposed a fully explicit method by considering a new variable p that represents the
reciprocal of the time-scaling factor. This variable is computed by a symmetric formula. The equations
of the method are:

h 1
qn+1/2 =4, + EEPH' (21)

h1l
Pni1j2= Pn— E—Vv(qnﬂfz)s (22)
Pn
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2

pﬁ + pﬂ-'—l = ' (23)
8(Pus1/2: 9nt1/2)
h
Put1 = P12~ 5 VV(q,4102), (24)
Pr+1
_ . (25)
9nt1 =94ny172 2pn+1Pn+1v
h [ 1 1 }
thr1 =t +=|— + ; (26)
*! AV
This method is reversible and conserves the angular momentum. At the first step, we take py =

1/8(Po. 90)-
If the monitoring function g only depends on ¢, Eqs. (22) and (24) can be rewritten as a single equation

hll 1
Prt1 =Pn— 5 [}3: 2 e ] VV(qy1/2)-

A method similar to (21)-(26) was suggested earlier by Leimkuhler in [9]. That method is explicit
when g is independent of p and requires a scalar iteration if g depends on || p|| and q. Numerical
experiments carried out by us, but not reported in this paper, revealed that the fully explicit method (21)-
(26) provides an improvement on the earlier method of [9]. Therefore we will not consider further the
earlier method.

2.3. The variable step symplectic method (VS)

The third method we have considered in the numerical experiments is the two-stage Lobatto IIIA-B
pair applied to the Hamiltonian system (4), (6). This method is symplectic, reversible and preserves the
angular momentum. The equations to advance a step of length 4 in the numerical integration of (4), (6)
are as follows:

h
pn—}-lﬂ =p,— E(g(pn-i-lﬂ! QH)VV(QH)
-+ [H(Pn-wz’ q.) — HO] ng(PrH—le’ q,)) (27)

h
9n+1 =4, + ‘2'([8(Pn+1,;2, q, + g{pn+l{2?Qn+l)] Pri12
+ [H(Ppy1/2090) — Ho)Vp8(Pus1/2: n)

+ [H(Pur1/2 @ns1) — Ho)Vpg(Pri1/2 @ns1)) (28)

Pui1 = P12 — %(S(Pnﬂxzs 9.+:0VV(@yy)
+ [H(Ppi1/20 Gns1) — Hol Vg8 (Prii2: 4nst)) (29)
il =t + g[g(f’nﬂ,!z’ q,) +8(Pni1/2Ans1)]- (30)

As Eq. (27) is implicit in p, ., », we have solved it by fixed point iteration. More precisely, we have
chosen the first iterant as pﬂm =p,andforv=0,1,... (cf. (15))

v h v v v
Pfifrtzlz = Pp — E(S(Pfalms q.,)VV(q,) + [H(Piluzv qn) — HO]VquPLJluz- q,))- (31)
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The fixed point iteration has been stopped when (16) is satisfied. After stopping the fixed point iteration,
the functions g and Vg are evaluated at the last iterant pL":ll,]z

As in the IAV method, if g depends on p only through the norm || p||, then (31) can be replaced by a
scalar iteration. For instance, when the step size function is the arclength parameterization (8), it is not

difficult to see that V,g(p, q) = —g(p, q)*V"(q)VV(q), where V" is the Hessian of V. So
v h v "
P = P — S [CVIVV(G,) + DIV (@) VV ()], v=0.1....,

where C!") and D! are scalar quantities depending on p, , only through its norm.
For monitoring functions g depending only on ¢, Eq. (27) is still implicit but only through the scalar

quantity || p,.41/21°

h 1
aria= 52— 2 (5@0VV @) + [ 1Bl + Via) — Ho] Taztan) ) 32)

This leads to a quadratic equation for || p,,,, ,|I* as pointed out in [6]. When || p,.1/> ||? has been obtained,
Eq. (32) determines p,_ /-

The relation (28) defining g, is also implicit and we have used again fixed point iteration in order to
solve it

v h v
QE:I” =q,+ E([g(pm-l,fb q,) + g(Pn—H;"Q’ qEHI—I)]Pn—Hﬂ

+ [H(Pﬂ+1;2; q,) — HO] vpg(pn+1/2' q,)
+ [H(pn-f»lﬂ' q,[,u.,].l) = Hﬂ]vpg(.pn-i-l,-‘Z' qhﬂl))’ (33)

starting with q,[ﬂl = g, and with the stopping criterion (19). After stopping the fixed point iteration, the
functions V, g and V, g are evaluated at (P,1/2: @n+1)-

If the step size function g does not depend on p, as for (9), the fixed point iteration in order to solve
Eq. (28) can be written as (cf. (18))

v h v
QLJ:IJ::;,,+§[g(qn)+3(4;[ﬂ]-1)]l’n+u2- (34)

Eq. (29) is always explicit.
2.4. Computational cost

Here we discuss the computational cost required by the methods described above. We suppose that
most of the work required in the integration of the Hamiltonian system (1) with Hamiltonian function (7)
consists of the evaluation of the vector VV. For instance, in the simulation of the motion of N mutually
interacting particles, this vector collects the N forces on each of the N particles, so that its evaluation has
an O(N?) cost. Therefore we take as a cost measure of a numerical method the number of evaluations of
the vector VV and of other quantities that require a similar work. This is the case for the computation
of the smallest separation between particles because, in the motion of N particles, it requires an O(N?)
cost, too.

All the methods previously described use one force evaluation per step. For instance, the IAV method
requires VV(q,.,) in (13) which is reused in (11) at the next step. Besides that, terms involving g can
require additional evaluations of VV.
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Table 1
Cost of the methods. Here m is the num-
ber of iterations in the vector iteration

Method Cost per step
IAV m
EAV 1
VS m+1

For the IAV method, (11) involves one evaluation of VV. The iteration (18) involves the evaluation
of g on the preceding iterant. If the monitoring function is the arclength (8), this requires a new evaluation
of VV per iteration and, for the particle separation parameterization (9), the computation of the smallest
distance between particles. In the first iteration, these quantities do not need to be computed because

we take qﬂl = ¢q,, so that, for the arclength parameterization, the value of VV(qLD}_,) is known. In

the case of particle separation, g(qﬂl) = g(g,) can be computed at negligible cost within the loops
that compute VV(q,); note that for most problems VV(q) already requires the computation of all
interparticle distances. So, if m is the number of iterations, solving the implicit equation (12) involves a
cost of m — 1 units.

The EAV method is explicit, so it requires only one evaluation of VV per step.

The VS method implies the following cost. Eq. (27) requires one evaluation of VV . Besides that, we
assume that this effort can be used for the computation of g and H without additional work. On the other
hand, if the arclength parameterization (8) is used, the evaluation of Vg requires the Hessian-vector
product V”VV . In the case of an N-body problem with 2-body interactions the computation of VV and
V”VV at the same point can be done at the cost of at most two independent V'V evaluations [13]. So we
consider that (27) involves two evaluations of VV.

The iteration (33) requires the evaluation of g, H and Vg at the preceding iterant. If g is the arclength
parameterization these values require only one evaluation of VV per iteration except the first one. Then,
as in the IAV method, if m is the number of iterations required to get (19), solving (28) implies m — 1
evaluations of VV.

Table 1 presents a summary of the cost of the methods.

The time stepping formulae of the three second-order methods IAV, EAV, VS are very closely related.
In particular, the formulae for the IAV and VS methods only differ in a small term. The differences
between the three methods are as follows. First of all, the adaptive Verlet methods are easier to implement
than the variable step symplectic method, but adaptive Verlet methods are not symplectic (simplicity
against symplecticity). Besides that, the IAV method 1s cheaper per step than the symplectic method,
and the EAV even cheaper. On the other hand, the VS method is not applicable for all the choices of g
(remember that V, g and Vg are needed).

2.5. Fourth-order methods
In our numerical experiments we have also considered three methods of order four.

The first one is the variable step size symplectic integrator obtained when the two-stage Gauss method
is used to integrate the Hamiltonian system (4), (6). We will refer to this method as VG4. As the method
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is implicit we have solved the algebraic equations by fixed point iteration and the iteration is stopped
under control of the relative change. The implementation follows the ideas described in [16]. According
to the comments above, we consider that the computational cost of one evaluation of the right hand side
of (4), (6) is twice the cost of evaluating the right hand side of the original Hamiltonian system (1).

The second scheme (SF4) is the symplectic Runge-Kutta—Nystrdm method proposed in [2], that has
been implemented with fixed step size. The method is explicit, has optimized error constants and requires
four function evaluations per step. The details for its efficient implementation can be found in [16].

The last fourth-order method (DPV4) is one of the well known embedded pairs of Runge—Kutta—
Nystrdm methods developed by Dormand and his coworkers [4]. The algorithm is explicit and needs
three function evaluations per step. It has been implemented with variable step sizes, as described in [16].
This method is included in the comparisons as a good example of a state-of-the-art, optimized, standard
integrator.

3. Numerical experiments
3.1. Second-order methods

We performed numerical experiments in order to compare the IAV, EAV and VS methods described in
Section 2. The implementation and cost measurements were performed in the way described in that
section which is suited to ‘general’ problems. However it should be kept in mind that for specific
problems our implementation may not be the best and our cost measurements may only be approximate.

The main test problem considered is the Kepler problem in two dimensions

1

1:ia . 3
H = .

with initial conditions ¢, (0) =1 — e, ¢2(0) =0, p;(0) =0, p,(0) = /(1 +¢)/(1 — e), that correspond
to an orbit of period 27 and eccentricity e.

In order to reduce the damage generated by roundoff, we used the compensated summation
technique [8, Section 4.3] in the computation of the components of the solution (after the iteration in
the implicit methods). Errors were measured in the Euclidean norm of R*. We also note that, while
particle separation (9) cannot in general be used with the VS method, in Kepler’s problem and other two
particle problems d;, equals the distance between both particles and is therefore differentiable. In our
experiments we took o = 1.

We first took e = 0.9. Since geometric integration is of interest when the solution is required over a long
time-interval we integrated for 1025 periods, i.e., for 0 < r < 2050 . This time interval leads to expensive
experiments: a typical run required 10® evaluations of VV and we needed to run many combinations
h /Tol, different methods and different monitors (not all of them reported here). In the implicit methods
IAV and VS we first determined, for each value of 4, a suitable value of the tolerance Tol. For Kepler’s
problem and geometric integrators it can be shown (see [3] and Appendix A) that the error growth is
linear in z. For each value of # we tried values of the tolerance 1072, 1073, ..., 10~'5 and considered a
tolerance to be too coarse if the errors at t = 4 x 2, 16 x 2w, 64 x 27, 256 x 27, 1024 x 27 did not
show a linear behaviour. For each method and each & we identified the largest acceptable tolerance, see
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Table 2
Tolerances for the implicit methods in Kepler’s problem e = 0.9
Algorithm h
Method Monitor 4x107% 2x107* 1x107* 5x1073

IAV Arclength 1078 1079 1073
IAV  Particle separation 10~* 103 103
VS Arclength 10~12 10-13 10~15 10-13
VS  Particle separation 10~ 1012 1013 [g:2

Table 2. The comparisons are based on these tolerances. It is somewhat surprising that the VS method
requires more stringent tolerances than the closely related IAV method.

We compared the different methods by measuring errors along the 1025th period at times (1024 +
j/2002x, j=1,2,...,20, and then averaging these 20 values. Cubic Hermite interpolation was used to
obtain the solution at the required times.

Fig. 1 shows, for each method, the error versus cost measured as in Table 1. Circles correspond
to the IAV method, crosses to the EAV method and stars to the VS method. Solid line represents the
arclength parameterization and dashed line particle separation parameterization. The values of 4 used for
the implicit methods are those presented in Table 2, and for the EAV method were h =2 x 1074, 1 x 10~*
and 5 x 107>, This figure shows that, for the EAV method and VS methods, arclength parameterization
is more efficient than particle separation. For the IAV method both parameterizations are comparable. On
the other hand, even though, as noted before, the IAV and VS methods seem to be method provides more
accuracy with the same cost. The VS method with the arclength parameterization is the most efficient
combination.

When the eccentricity is e = 0.99, we proceeded similarly. For this more expensive case we integrated
for 65 periods (in this way the cost of the experiments is similar to that in the e = 0.9 case). In the implicit
methods, we chose, for each A, the largest tolerance that made the errors at t =4 x 27,8 x 27, 16 x
2m,32 x 2w, 64 x 27 have a linear behaviour. These values are presented in Table 3. We compared the
methods by measuring the error at 20 equispaced times along the 65th period. Fig. 2 shows the results
obtained. The values of A considered for the implicit methods are presented in Table 3, and for the EAV
method were h =5 x 107>, 2.5 x 107> and 1.25 x 10™. The VS method again reveals itself to be more
efficient than the adaptive Verlet methods, and for this method the arclength parameterization is better
than particle separation.

From these experiments, we concluded that the VS method, in spite of the extra cost per step, is a
better choice than the nonsymplectic methods IAV and EAV. It may be thought that the EAV method due
to its explicit character would be of interest in large complicated problems. To examine this point we
programmed the methods IAV, EAV, VS for the 256-particle molecular dynamics problem in [12,13].
The observed efficiency of the three methods was very similar, with EAV slightly better than the
implicit methods. However, none of these three methods improved on the standard, constant step size
Verlet method. Perhaps this could have been expected because in a problem with many particles close
encounters between two particles are very frequent and there is not much scope for varying the step size.
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Fig. 1. Kepler’s problem e = 0.9. Circles correspond to the IAV method, crosses to the EAV method and

stars to the VS method. Solid line represents the arclength parameterization and dashed line particle separation
parameterization.
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Fig. 2. Kepler’s problem e = 0.99. Circles correspond to the IAV method, crosses to the EAV method and

stars to the VS method. Solid line represents the arclength parameterization and dashed line particle separation
parameterization.
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Table 3
Tolerances for the implicit methods in Kepler’s problem e = 0.99
Algorithm h
Method Monitor 1x107% 5x107% 25x107° 1.25x107°
1AV Arclength 10-6 1076 1076
IAV  Particle separation 102 1072 1072
VS Arclength 10714 10-13 1013 10-15
VS  Particle separation 1013 10-14 10°15 [0~%
Table 4
Tolerances for the Gauss method in Kepler’s problem
VG4 h
Eccentricity Monitor 0.1024 0.0512 0.0256 0.0128 0.0064
0.9 Arclength 108 1078 107¥ 107 10715
0.9 Particle separation 10-12 10°¥ 107¥ 10715 10719
0.99 Arclength 101 107 10712 j0-1 1074

0.99 Particle separation 10083 108 0¥ 104 10

In fact, for many-particle problems the technique of multiple time steps [1] is probably a better choice
than variable time steps.

3.2. Fourth-order methods

In this subsection we report the numerical results obtained with the fourth-order integrators introduced
in Section 2. Again we considered Kepler’s problem with the initial conditions already mentioned in
the previous subsection. In the figures we have also included for comparison purposes the earlier results
generated with the VS method.

With the variable-step Gauss method VG4 we have proceeded as for the second order implicit schemes.
For each value of the step size & we have chosen the largest value of the tolerance for which linear error
growth is observed (see Table 4). The numerical results shown in the figures correspond to these values
of the tolerances.

In the figures we use circles for the fixed step size symplectic method SF4, x signs for the variable
step size code of Dormand and his coworkers DPV4, crosses for the variable step size Gauss integrator
VG4 and stars for the second order variable step size symplectic method VS. As in the previous figures
solid line corresponds to the arclength parameterization and dashed line to particle separation.

In Fig. 3 we show error against cost for eccentricity 0.9. We observe that the best second order method
(the VS code with the arclength parameterization) is not competitive with the fourth order integrators
(not even with a fixed step method). On the other hand, a comparison among the fourth-order schemes
shows a better performance of the codes which use variable step size. The most efficient methods are
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Fig. 3. Kepler’s problem e = 0.9. Circles correspond to the SF4 method, x signs to the DPV4 method, crosses to

the VG4 method and stars to the VS method. Solid line represents the arclength parameterization and dashed line
particle separation parameterization.
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Fig. 4. Kepler’s problem e = 0.99. Circles correspond to the SF4 method, x signs to the DPV4 method, crosses to
the VG4 method and stars to the VS method. Solid line represents the arclength parameterization and dashed line
particle separation parameterization.
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the optimized explicit variable step Runge-Kutta-Nystrom code DPV4 and the varable-step Gauss
integrator VG4 with particle separation. The performance of these two methods is virtually the same.

In Fig. 4 we have represented the results corresponding to eccentricity 0.99. The first aspect to
emphasize is that, for this higher eccentricity, the variable step second order symplectic integrator
VS (which is implicit) can be more efficient than a fixed step size symplectic explicit method
of order four. The necessity of using variable step increases with the eccentricity of the orbit, as
expected. On the other hand, a comparison between the variable step fourth-order methods shows
that for errors larger than 107° the explicit Runge-Kutta-Nystrém scheme DPV4 is the most efficient
of the methods being compared. When smaller errors are required, the variable-step Gauss method
VG4 with particle separation is preferable. Notice that in Fig. 4 the errors correspond to the 65th
period. For longer times the advantage of the symplectic variable step size method against the
explicit Runge—Kutta—Nystrom integrator becomes larger due to the different error growth, which
is linear for the symplectic scheme (see Appendix A) and quadratic for the Runge—Kutta—Nystrom
method [2].

4, Conclusions

Our experiments and those in [6] have convinced us that there is much potential for combining
geometric integration and variable time steps. It seems likely that for Hamiltonian problems a code based
on high-order Gauss formulae with Poincaré transformations may outperform standard software. In the
development of such Gauss code much attention should be given to the choice of the monitoring function,
which significantly affects the efficiency of the overall algorithm.

The explicit technique developed by Leimkuhler [11] has the advantage of its simplicity and exhibits
the good features of geometric integrators. However we think that, in very large problems, multiple time
step techniques are a better alternative and, in smaller problems, one should use higher-order formulae.

The implicit technique of Leimkuhler is very similar to the method based on the Lobatto IIIA-B
symplectic pair and Poincaré transformations. However the small correction at each step that renders
the method symplectic leads to an improved performance. Besides, the Poincaré transformation can be
used with arbitrary, possibly high-order, symplectic methods, while the approach in [9] seems limited to
variants of the Verlet algorithm.
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Appendix A

In the numerical experiments we used the fact that the methods IAV, EAV, VS and VG4 lead to linear
error growth when integrating Kepler’s problem. For IAV and EAV this linear error growth was proved
in [3]). In this appendix we prove linear error growth for VS, VG4 and any other symplectic method
combined with the Poincaré transformation. Even though the result is presented for Kepler’s problem it
holds in more general situations listed in [3].
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Theorem 1. If the differential system (4), (6) associated with Kepler’s problem is integrated with a fixed
Step size symplectic method of order r, the error grows linearly with time up to O(h%") terms. More
precisely, forr <m <2r — 1, e || = O(N) as N — 00, where e\ is the coefficient of h™ in the
asymptotic expansion of the global error after N periods.

Proof. Let us denote by ( Pn:> 4y, 1n) the numerical approximation to the solution of (4), (6) at time level
T, = nh. As in the proof of Lemma 4.4 in [3], let us assume that #, = T, where T is the period of the
periodic solution of (1) with initial condition (Po. 40)- Backward error analysis results for symplectic
integrators with fixed step size [5,16] ensure the existence of a perturbed Hamiltonian K = K + o),
such that

(Pn: 4,) — (P(n), 4 (1)) = O(h¥),

where (p(7), g (1)) is the exact solution of the Hamiltonian system with Hamiltonian function X and
initial condition (p,, ¢,). As K is a conserved quantity for the perturbed solution, then

K(P,.4,) = K (o, q0) + O(K”). (A1)
Furthermore, without loss of generality we can assume that X ( Po-90) = K(py, o) =0. Let us define
=l E E] )
Ay =22:D | p (A2)
8(p.q)

By (A.1) and (A.2),
ﬁ(pm qn) - ﬁ(.p(]‘ ‘10) = O(hzr)

and then, as (pg, qg) = (p(1), ¢(t,)), ége‘” = O(h?"), where G, is the gradient of the perturbed
Hamiltonian H evaluated at the initial condition and e'" is the error in the solution of (1) after the
first period. It follows that for the exact Hamiltonian

H(p,.4,) — Ho= (Go— Go) eV + Gl 4 O(h¥) =0(h%).

Then the variable step size scheme used for the numerical integration of (1) preserves, after the first
period, the energy H up to O(h%) terms. This preservation is enough in order to apply Lemma 4.4 and
Theorem 4.1 in [3] which ensure linear error growth up to O(h?") terms.
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