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B GARCIA-ARCHILLA, ] M SANZ-SERNA AND R D SKEEL
Long-time step methods for oscillatory
differential equations

Abstract We consider numerical methods for nondissipative dynamical system with
multiple time scales. It is assumed that the computation of the faster forces present in
the problem is cheap so that the overall cost of the integration is primarily determined
by the step size used to sample the slow forces, a situation that arises e.g. in molec-
ular dynamics and partial differential equations. The aim is to construct algorithms
that sample the slow forces at time intervals not restricted by the periods of the fast
oscillations. An existing method, sometimes used for the problems we have in mind,
is the impulse method; however this algorithm is far from optimal and we discuss
some of its shortcomings. An alternative algorithm, the mollified impulse method has
been suggested by the present authors and is studied here. Numerical experiments are

reported.

1 Introduction

In this paper we study numerical methods for the integration in time of differential
equations with fast oscillatory solutions. Let us begin by describing three examples of
the types of problems we are interested in.

Molecule. A molecule can be modelled as a set of N point masses (the atoms)
moving under Newton’s second law

n‘nﬁm

™

=F, i=1,...,N 1.1)

In applications of interest, say in the modelling of proteins, N is a very large number.
The net force F; on the i-th atom cornprises several contributions; for the sake of sim-
plicity let us mention only two of them. (1) Strong forces exerted on i by those atoms
(typically less than; say, five) chemically bonded to i. (2) Weaker forces, including
electrostatic forces, exerted on i by every other atom in the molecule. If we collect all
position vectors z; in a 3N-vector ¢, then the system of differential equations to be
integrated is . .

d*q . : .

M«MHB:AS+33?Y o S (1.2)
where M is the &wmom&, Bwﬁmx:.om, the masses, ﬁ:.n.ouwvmmaw the ‘v.@.um forces and
F3) the other forces.” Thus F(y) is a soft force ivcmﬁa.n.ﬁncpaon‘m expensive (the
complexity is O(N?): each atom interacts with every other). On the other hand, Fy),
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while much stronger, is cheaply computed (the complexity is only O(NV)). Also note
that in a parallel implementation the part F{3), which is not localized in space, is likely
to require much communication.

Planets. Consider now a planetary system with a large star and N planets.
Assume for simplicity that the star is-so massive that it does not move significantly;
then the system is described by the positions z; of the planets relative to the star
and these satisfy Newton’s law (1.1). The force F; on the i-th planet consists of the
large attraction of the star and the much weaker attractions of the remaining planets.
The system to be integrated is of the form (1.2), with F{;) corresponding to the star-
planet forces and F{3) comprising the. planet-planet attractions. Here F(y) is strong
but mathematically not very nr@:o:%:m the reduced problem

%Q
m.m

consists of N uncoupled Kepler problems ‘and can be solved in closed form. It is the
weak force /) that may make the solution of (1.2) difficult.

= F)(q) (1.3)

Partial differential equation. In the interest of brevity we just consider here a
simple problem, but many other cases can be treated similarly. Our nonlinear wave
problem is (f is 27-periodic in z)

u(z,t) = u(z + 2w, t). (1.4)

.::ﬁ&u “v = ﬁHNAﬁu mv + \.A.ﬂ“ﬁv.

Once more the right hand-side comprises two contributions. The first u, is the
strongest because the operator 8., has eigenvalues of arbitrarily large modulus lead-
ing to arbitrarily small time-scales. Nevertheless, the problem uy = ug, with periodic
boundary conditions is not difficult: it may be numerically integrated with negligible
errors via Fourier techniques. It is the softer term f(z,u) that makes the integration
nontrivial. After space discretization by a Fourier pseudospectral method, the system
to be integrated in time is again of the form (1.2) with F{;) strong, F(2) weak and (1.3)
solvable in closed form; ¢ is a <a20n of grid values Om u.

In general we will be 8589& S#r.vn.oEmBm (1.2) with g a D-dimensional vector
and M a diagonal mass matrix. The following three assumptions are supposed to hold.

¢ The reduced problem (1.3) can be integrated “exactly” over any time interval
[t,t+R). We saw that in the examples Planets and Partial Differential Equation,
the reduced problem is solvable in closed form. In the example Molecule the
reduced problem has to be integrated numerically; however the cost of oﬂ&:wﬁam
I{1) is negligible with respect to the cost of evaluating Fy and, by using a very
small step size hreq, We can very accurately integrate the 3&:0& problem over
[t,t + k] with a moderate computational effort.
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o The forces F{;) have some strong components that cause the reduced problem
to have fast oscillatory motions. Note that F{;) may in addition have weak
components leading to slow modes in the reduced problem.

o The forces F{y) are soft.

Our task is to construct an algorithm that integrates the full problem (1.2) by
using (i) exact solutions of the reduced problem (1.3) over intervals [¢,¢ + 4] and (ii)
evaluations of F(3). We aim at an algorithm that uses as few as possible evaluations
of the soft force Fiz). This economy in F2) evaluations may be motivated by either or
both of the following reasons.

e The evaluation of the slow force F(;) is expensive. This is the situation in the
examples Molecule and Planets if N is large.

e The cost of integrating the reduced system over a long interval [t,¢ + A] does not
depend heavily on the interval length & (this is the case for examples Planets
and Partial Differential Equations). It is then of interest to maximize h so as
to minimize the number of steps needed to cover the interval [0, 7] on which we
wish (1.2) integrated.

We would like to sample F{3) at intervals longer.(hopefully much longer) than the
shortest period of the motions present in the problem. Ideally F{2) would be sampled
at a rate governed by F{z) but independent of the reduced problem. We define a long-
time-step method to be one that samples the slow force at time increments larger than
half the period of the fastest oscillation in the system.

Two comments are in order. First, in the examples above, the division of forces in
fast and slow occurs naturally; this need not be the case and the splitting could be
made artificially [6], [8]. Second, if the reduced problem is solved with a numerical
scheme using step sizes shorter than those being employed for the main problem (1.2),
then the overall method is a two-time-step method. This idea might, of course, be
applied recursively—the forces in reduced problem itself may be partitioned into strong
and not so strong and so on, resulting in a hierarchy of step sizes.

A potential candidate for long-time-step integration is the impulse method, that
has been used several times in the past. We discuss this method in section 2 bel ow and
show that it suffers from important shortcomings. In section 3, we discuss a nontrivial
improvement of the impulse method that we have called the mollified impulse method
[1]. A numerical example is presented in the final section.

2 The Hgvc_m,.,,m Method

For simplicity we consider hereafter only the case where the mass matrix M is the unit
matrix (any other case can be reduced to this by a‘change of variables). We denote
by p the velocities/momenta dgq/dt. A meaw n—n + 1of «rm _Bvc_mm method can be
described as follows: : sz




o Kick. Add (/2)F(2)(gn) to pu to get pi.

e Oscillate. Use the A-flow of (d/dt)p = Fuy, (d/dt)q = p to advance from (¥, qn)
to Atmi.ft ) . ’

¢ Kick. Add (h/2)F(2)(qns1) to w..mf to get poy;.

Even though there are two Enr.m per step, the number of evaluations of Fl3) per
step is only one: the second F{9) vector of the current step provides the first force
to be used at the next step. If Fiy) = 0 then the oscillation substep keeps p con-
stant while ¢ drifts according to gu4i = qn + hp}; thus the impulse method coincides
with the <m,13\mam«32\ leapfrog method often used in molecular dynamics. If the
forces are conservative, Fuy(q) = =VW(g), Fay(g) = =VV(q) (W and V are scalar
potentials), then the impulse method is symplectic [5): this follows trivially from the
observation that kick and oscillate are respectively the flows of the Hamiltonian flows
with Hamiltonian functions V(q), (1/2)pTp + W(q).

The impulse method is of course 2 particular instance of the celebrated Strang
splitting [7]. In celestial mechanics it has been used successfully by Wisdom and his
coworkers in several instances, going back at least to [9); Wisdom derives this algorithm
via Dirac delta functions [10]. The impulse method is derived as a multiple-time-step
method in (2], [3] but these writings express little appreciation for the method because
of the possibility of resonance to be studied below. Further discussion of the application
of the impulse method in molecular dynamics has been provided in (1].

Let us discuss, by means of examples, some of the shortcomings of the impulse
method. The scalar differential equation

&2 ,
M&M& = lbnﬁ + »ﬁau?
where £ > 1 describes the displacement of a unit mass subject to the pull of a stiff
spring held fixed at the other end and to the pull of a constant force F{g). For simplicity
assume initial values ¢(0) = 0 and p(0) = 1, so that the total energy is 1/2 regardless
of the values of Q and F{3). Numerical integration by the impulse method with step
size h incorporates the slow force F3) by adding a term (h/2)F) to the momentum
at the beginning and at the end of every step. Suppose though that A has been chosen
so that AQ = 27. Between the impulses the reduced problem d2¢/dt? = -0% is
integrated exactly; and because any solution of this problem has period h = 27 /Q, the
result of integrating will be to leave the value of p and q exactly unchanged. Hence
each complete step adds hF(3) to p and leaves q unchanged, so that

2.1)

Q:”O.

Pn =14k, (2.2)

This happens to be exact for q
q(t) = Q7 VsintQ + 07%(1 - cos 1) Fz
114 , .

(¢(nh) = 0) but utterly wrong for p. The correct solution is

p(t) = costQ -1+ Q7 sintfd - Fy (2.3)
oot ssecoutuly spere it el s v W conctude the a esiction
op::oa.mcnommm ully wvog e :w 11 . = 2. T e e ot
Momw%m_.“MMMm .w” MWWM_MM Mmavm.n” ﬂwmmmww_mwwﬁm“ _Hmmwmwa“o:_m be exact if the slow
MOnoMM%MMMS%mM“MBEom iramm Mrw. _:M_wcﬂwﬂ M-Mwwmwmvmmmu_ﬁm&w&% due to lack of
go.”ﬂ.ﬂﬂ%ﬂwwwmmw”wm\ ﬂMMrﬁMmM th“:_mw method stems from the resonances mentioned
above. Consider now the one-degree-of-freedom oscillator

(2.4)

. . &
where again £ > 1. We now have a point mass driven by a hard spring of stiffness
and a soft spring of stiffness 1. The numerical solution satisfies

-l
n+1 qn
with the matrix ¥, given by

oom:bl%ammsxblbmwsvblv Sm%n + ..M.m. mmu rbﬁ )
& sin AQ cos hQY — 34 sin hQ2
For fixed h, n - o stability, we require that vog. eigenvalues of m:. mvocwm qu\vo
modulus < 1. Since ¥, has unit determinant (the impulse Em.gom is mw.Bm ec Mr.wnm
stability demands that ¥, has trace of modulus < 2. The stability noﬂ_ow is QMMmZm
unshaded in Figure 2.1. We see that, even for A very mﬂ&r the met M ﬁ__m. c.uam ble
if AQ is near an integer multiple of 7; again a nomg.o.sos is necessary t ww. “M”_ o
terms the fast period. Note that, for = 0, the stability restriction is r < m is nmpom
have been anticipated from our earlier remark that, for Fj3) =0, ﬁwo :.w_vﬂ se BM d
reduces to the well-known Verlet algorithm. The presence of the fast ‘oscilla uowruom uces
the stability threshold of the impulse method, in spite of the fact that the metho uses
the exact form of the reduced oscillations. .
It is perhaps useful to note that the linear problem
mwlm = Ibw:.u - bws?
where b,mv and b& vaa mwigmﬁo positive mogmmambmmm mamn.wmm .Bw_wnm_omwm nrmw MWVB-
mute, essentially reduces to (2.4) after a simultaneous diagonalization of (1) and Q).

- |
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Figure 2.1: Instability region (shaded) ‘of the impulse method for a model problem.
The vertical axis corresponds to the step size 4 and the horizontal axis to hQ), where
§1is the fast frequency :

3 The Mollified Impulse Méthod

The enhancement suggested in (1] for the impulse method requires the modification of
the strength of the impulses F2)(¢gs) to become

Fiay(hi ga) = .LQQ: 4n)" Fz)(A(h; ga). (3.1)

Evaluation of Fl3) at A(k; gr) represents an averaging; Fo)(A(h; ) is expected to be
a better description of the quickly varying F;)(t) than the values of F{3) at step points
used by the impulse method. Different .choices of the averaging operator A(k; qrn) are
possible and lead to different numerical methods. The transpose Jacobian Aq(h; )T
has a mollifying effect: equation (2.3) shows that, in the true dynamics of (2.1), the
effect of F{y) is mollified by multiplication by 97 sin Q. The action of Ay(k; ¢,)T on
the force can be seen not only as a mollification but also as a filter damping some
components of the force. Different averaging procedures give rise to different filters.
This point of view is taken up below. -

In the case of conservative forces, Fuy = =VW, Fg = =VV, the mollified force
WE is the negative gradient of QQV = V(A(h,q)) and this leads to the sy mplecticness
of the mollified impulse method (use the argument that was outlined above to show
the symplecticness of the impulse method). ,
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In order to find the average A(k; g,), we use an interpolation, and there is moxm.v:.?%
in how this is done. Let ¢ be a basis function for interpolation on a mesh consisting

of all integers so that

t—nh
M $(—5—)9x
is the interpolant of data g, on a mesh of spacing h. Consistency requires that
Y d(s—n)=1,
n

which, by standard Fourier analysis techniques, can be easily shown to imply

\+s #(s)ds = 1.

-0

There are three interesting simple choices of ¢:

1 s] < w.
L. the ShortAverage ¢(s)={ 1, [s| = W.
: 0, _m_ > 2
3 ls| <1,
2. the LongAverage ¢(s) = { 1, ls] =1,
0, Is| > 1.
l1—|s ) _h_ <1,
3. the LinearAverage ¢(s) = 0 lsl s> 1. /

The average A(h; ¢n) is defined in terms of the solution p(t; ¢.), (; ¢.), b(t; ¢») of
an auxiliary initial value problem
dp dg _ m@ _ A ‘m v
with initial conditions p(0) = 0, ¢(0) = ¢, b(0) = 0. Note that .:5 F:.E momentum
is zero and that only fast forces are integrated, so that we are in fact Eﬁomgszmaww
reduced problem while &Bz:goozmq computing the integral of ¢(t/h)g. We mmmbm.

1
h

A(B; 42) = 1(b(+00; ) — b(=00342)) "

W
0 0o

Aha) =1 " edaths) s

In Short, Long and Enwﬁ><2.mmm and in other potentially useful choices, ¢ wm. an even
function and the average reduces to (2/h)b(+oo; qa). If ?&Sﬁdoﬂ.o. é(s) <pEm?.wm.. for
|s| > u, then the average is simply (2/h)b(uh; qn) and the integration of the auxiliary

so that

H(3att) de = |

-00 -




w.,,oc_.ms is required only on a bounded t-interval. An infinite integration may b
sible if the auxiliary problem can be integrated analytically in closed f; Ow_ i
& mﬁ:_a _uo_ chosen to have bounded support. o “
1e mol mm& method also requircs the Jacobian matrix A, (h: g, ) = 2an)
~.o~50i. by differentiating AM\S@?\:QL with respect to A?.Qﬁmﬁw.w:ohwm\mwwoth.mmv‘
same time we n.oav:n.o the average we have to compute derivatives of nr_o @<o$.@m ;
We emphasize that, at each value of n, the auxiliary integration is used OM% to

wise,

is continued from ¢n, which has not chan i
- ged at all during the auxiliary j i
To solve the auxiliary averaging problem e canetiy 1 Leration

uations of the slow force). Further details can be found in [1].

In the case of linear fast forces F 2
1(g) = -0% (0 i i
to check that the average is given E\A ) 7 2 symmetic metri)

A(h;q) = &g

it is easy

where @ is the matrix

400
- #(s) cos sh) ds.

1 +0oo t.
eum&sﬁﬁraaﬁu

This leads, according to (3.1) to a mollified mmuno S Fp)(2g).
For the methods studied, the “filters” & are as follows:

Impulse b =1T

* sin Q)
ShortAverage o=—2

. wb
LongA . _sinhQ sin2q 4
ngAverage ' ¢ = Rt wm cos Mb
c R 2 2

LinearAverage o= 2%
. mb

MMM ovwm?m ﬁ.wm.f b_vn the mollified methods, the filter is a¢ ] in those eigendirections
Whose eigenvalue w is such that hw is smal] How i

. : enval . ever the filt

in those eigendirections for which hw is near an integer multiple OM sz_m somponents

mv \ 11 g
:. 1S pro A.vA— ] — ‘M—m:« m &_—O case Om. *m.wﬁ ~:~Om.~ mOmOQm G:Q ﬂrmg :_0: :O; ~ O
y 1 me T Qm

I =Pt < Chy - lgu =gt < oW, (3.2)

where the constant C depends onlv
v pends only on bounds for F,, and its fi i
tive, on ¢, and on the reduced energy of the mo_zao%v sk and second deriva

-

~ . .
H = max, GROTol0) + Sa()T (1)),
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The independence of the bounds on derivatives of F{;)(¢) implies that, provided that
the reduced energy is kept bounded, it is possible to apply the method with a given
time-step h to faster and faster problems without impairing the accuracy. A bound
for p and ¢ in terms of the energy implics less relative accuracy for higher frequencies,
because, for a given value of energy, the amplitudes of high frequency modes must
get closer to zero as the frequency gets higher. For frequencies of order O(A™!) only
first-order relative accuracy is attained by the suggested methods and for frequencies
of order O(h~?) or greater no relative accuracy is attained. Hence, for high enough
frequencies, the suggested methods do not resolve their contributions. If such frequen-
cies are present, we might call the problem “stiff-oscillatory;” the suggested methods
are then “stiff-oscillatory” solvers in the sense that they only resolve the oscillations
that contribute with significant amplitudes.

If bounds for the impulse method are required that, like (3.2), are uniform over
the choice of fast forces, then the order of convergence for p is 0 and the order of
convergence for ¢ is only one.

Figure 3.1 corresponds to a molecular dynamics simulation and plots energy versus
time. The energy is a constant in the true solution and the advantages of the Long-
Average method over the impulse method are evident. The simulation is for a 10
angstrom radius sphere of 125 flexible TIP3P water molecules at 377 K. The value of
h is 5 fs. and the reduced problem is integrated by the Verlet method with heq = 1 fs.

Impulse Method vs LongAverage Mollified Impuise Method
-380 T T T T

*impulse’ —
"LongAverage® ----

-395

Energy (kcal/mol)

-410

" Time (fs)

’

Figure 3.1: The Impulse and LongAverage methods in a large molecular dynamics
problem. The horizontal axis is time. The vertical axis is energy; this is constant in

the true solution




Unfortunately (1] the mollified methods also suffer from instability due to reso-
nance. This instability is not nearly as pronounced as that of the impulse method.

4 A Partial Differential Equation Example

In this section we prove that the impulse method suffers from an order reduction when
integrating the problem (1.4). It is enough to look at the simple case where f = f(z)
is independent of u. If the forcing term f is an odd function f(z) = - f(—=z), then we
have the sine expansions :

[

u(@ ) = 3" an(t) sinma, I(x) =3 fusinma,

m=i m=1
and substitution in the differential, equation shows that the Fourier coeflicients are
governed by the following set of uncoupled equations
d*ap, .
dt?

These are of the form (2.1) with arbit rarily high stiffness —m?. The solution is readily
found to be (a dot represents differentiation with respect to t)

2
=-man+ fu, m=12....

am(t) = [an(0) - .\I:w cos mt + am(0) sin mt + MH.%
m . m m
an(t) = —m|am(0) - %Iuw sinmt + Gm(0) cos mt. (4.1)

¢From here we infer, via Parseval’s formula, that a forcing term in the Sobolev space
H™=2 and initial data u(+,0) € II", uy(+,0) ¢ 11" yield a solution with u(,t) € 7,
ue(-,0) € 171, .

We now apply the impulse method to (1.4) with h = 27 /My, My a large integer.
Then. in a time step, for m = vMo, v integer, the m-th mode of the reduced sys-
tem undergoes v full cycles, and at t = nh the numerical approximation of u; has a
coefficient (use the same argument that we used to derive (2.2))

At (nh) = é,p, (0) + nhf,ag .

On the other hand, according to (4.1), the exact solution has

Q.\?\e AS\NV = Q;.No on

Hence the vAfy mode in u¢ is in error by nhfag, = Hba:\\. for each integer v. wv,\
summing in v we derive, via Parseval’s formula, a lower bound for the spatial Ly error
in u; proportional to ‘ ‘

1/2
2

b=t m ?;:\\.

v=]

Impulse LongAverage

h u, u Uy u
1/10 |1 1.08 x 1077 [3.82 x 1073 [[ 2.22 x 10~? | 1.07 x 10-2
1/20 (1 6.48 x 1072 | 9.24 x 10~* || 7.32 x 10~3 [ 2.71 x 10~2
1/40 (1 2.07 x 1072 | 2.45 x 10™* || 2.16 x 10~3 | 6.82 x 10~*
1/80 | 1.43 x 1072 | 5.87 x 1075 || 7.15 x 10~* | 1.71 x 10~*
1/160 || 6.70 x 1073 | 1.47 x 10~° || 2.52 x 10~* | 4.27 x 10~5
1/320 || 3.56 x 10~3 | 3.66 x 105 || 8.94 x 10~5 | 1.07 x 10~5

Table 4.1: Maximum errors over 0 <t < 2 of the spatial L, norm of u,, u when
integrating a wave equation.

If fin decays as m™®, a > 1/2, then

3 a /oo 1 1/2

=1
and the Lj-order of convergence in u, is at best a. For piecewise smooth forcing terms
with jump discontinuities, one has for each € > 0, f € HY/>~¢ y € H5/*~ ¢ =1 and
the impulse method cannot be any better than first order accurate.

We have numerically integrated from ¢ = 0 to ¢ = 2 the case where u(z,0) = 0,
u(z,0) = 0, f odd, f(z) =1for 0 < = < 7/2, f(z) = =1, for /2 < £ < x. The
spatial discretization is carried out with a pseudospectral Fourier (sine) method with
a high number of modes, so that all errors shown are due to the discretization in time.
The numerical results are displayed in Table 4.1 where the order reduction in ug of
the impulse method is apparent. For comparison we have also included the results
corresponding to the LongAverage mollified method; the order of convergence in uy is
now 1.5 (the convergence of the mollified methods can be analyzed as in (1], section
6). .

The example in this section is & translation to a partial differential equation setting
of the ordinary differential equation example (2.1). The example of poor performance Sy
of the impulse method given in section 6 of [1] can be adapted in a similar way to yield
examples of order reduction of the impulse method when applied to partial differential -
equations. The exact amount of order reduction for a given partial differential equation
is governed by the errors in integrating the different modes and by the rate of decay -
of the Fourier coefficients a,, as a function of the wave number m, see the discussion
in [4], section 6.3. ,
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