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Abstract. In this expository paper we study how numerical solutions
to differential equations can be interpreted as exact solutions of nearby
differential equations. The emphasis is on the interpretation of symplec-
tic numerical solutions of Hamiltonian systems as exact solutions of a
perturbed Hamiltonian problem.

1 Introduction

In numerical analysis, given a problem P with true solution S and given an
approximate solution S, forward error analysis consists of estimating the distance
between S and S. Backward error analysis consists of showing that S is the true
solution of a problem P which is close to P. While backward error analysis has
played a role of paramount importance in areas like numerical linear algebra, error
analyses of numerical methods for differential equations have essentially been of the
forward variety (see nevertheless [Beyn [1991]], [Sanz-Serna [1992]], [Eirola [1993]]).

Backward error analysis would be specially helpful for long-time integrations.
In the long-time scenario, the outcome of any forward error analysis is that errors
(in the traditional forward sense) are huge, regardless of the numerical method
being used. On the other hand, a successful backward error analysis could show
that a numerical simulation of a given system provides the true evolution of a
nearby, perturbed system.

In this paper we are concerned with backward error analyses of numerical meth-
ods for the initial value problem

w=f(u), t20, (1.1)
u(0) = a € R, (1.2)

where for simplicity it is assumed that the vector field f is C* in the whole of RP.

Of particular significance for us is the Hamiltonian case where D = 2d, u = [p, q|,
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p,q € RP and f = f(p,q) has components

OH OH .
fi——%, fd+i—a_pia i=1,...,d, (1.3)

for a suitable real-valued Hamiltonian function H = H(p,q). We assume that
(1.1)—(1.2) is integrated by a one-step method

Un+1 ='¢h,f(u’n)1 n=0’1a"" (14)
Uy = a, (1.5)

where h is the (constant) step size and u,, is the numerical approximation at time
t, = nh. For instance

'wh,f(un) = un + hf(un) (1.6)

corresponds to the well-known Euler rule. The numerical method % s is consistent
of order r > 1 if, for all u in RP,

"/)h,f(u) - ¢h,f(u) = O(hr+1)a h — 0, (17)

where ¢ s denotes the flow of (1.1), so that ¢x r(u) is the value at time ¢ = h of
the solution of (1.1) with initial value u at time t = 0. From the local error estimate
(1.7), it follows ([Butcher [1987]], [Hairer et al. [1987]]), that, as h — 0, the global
errors u, — u(t,) are O(h") uniformly in bounded intervals 0 <t < ¢mq, contained
in the interval of existence of the true solution of (1.1)—(1.2).

The initial-value problem (1.1)—(1.2) has both the vector field f and the initial
condition o as data. Therefore for the backward error analysis of (1.4)—(1.5) we
may try (at least) two approaches. In one approach we look for a perturbed initial
condition & and compare the numerical points u,, n = 0,1,..., with the values
ét.,,r(@) of the solution of (1.1) with initial condition @. This is the approach
that leads to the idea of shadowing (see [Sanz-Serna and Larsson [1993]] and its
references) and will not be considered further in this paper. In a second, alternative
approach, we keep « as an initial condition and look for a perturbed vector field
f so that u, = ¢tm?(a). This procedure is very much related to the method of
modified equations [Griffiths and Sanz-Serna [1986]], [Warming and Hyett [1974]],
a tool sometimes used in the analysis of numerical methods for evolutionary partial
differential equations.

Let us illustrate the method of modified equation with the linear scalar equation

o= du (1.8)
integrated by Euler’s rule (1.6). Clearly

Y, f(u) — @h,f(u) = (u+ hu) —exp(hA)(u) = ———u— ——u—...,

so that, in (1.7), r = 1 (first order of consistency). Is it possible to find a perturbed

vector field f, so that Euler’s rule is consistent of the second order with the equation
@ = fo(u)? In symbols

Yhs(u) =, 7, (w) = O(h%),  h—0. (1.9)
On using the ansatz
i = fo(u) = f3(w) = u+ hFa(u),
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Figure 2 The case h =0.1.
which implies
i = (A4 hFy(u))u = (A + hF3(uw)) Ou + hFs(u)),
we have

Y, 5(u) — ¢n, 5 (u)

(u + hAu)

- <u + h[Au + hFy(u)] + %Z[Vu + O(h)] + O(h3)>

2
—%[ZFQ(u) + 0%+ O(h®),  h—0,

and (1.9) leads to F3(u) = —A2u/2. By going from local errors to global errors as
before, we now conclude that the Euler solution for (1.8) with u(0) = a is O(h?)
away from the solution of the modified problem

h)?
U= ()\ - —2—) u, u(0)=a. (1.10)
Figure 1 corresponds to A = 1, & = 1, tiez; = 2 and h = 0.2. The solid line gives
the exact solution u(t) = exp(t) and the crosses are the Euler solution. The dotted
line provides the solution of (1.10). Figure 2 is identical to Figure 1, except that
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now h = 0.1. We see that the computed points, meant to approximate (1.8) provide
a better approximation to the solution of the modified problem (1.10).
Better modified equations exist for our example. We may consider

W= fiu) = (,\— h—’\2> u+ h?Fy(u) (1.11)

and determine F3(u) to ensure
Yn,f(u) — ¢, 7 (u) = O(h*), h—0,
I3

(consistency of the third order). Straightforward algebra leads to F3(u) = (A%/3)u.
The solution of (1.11) with «(0) = 1 is shown in Figs. 1-2 by means of a dashed
line. We see that, within plotting accuracy, the Euler simulation of (1.8) gives the
solution of the problem

. R A2 AZX3

u = A"u, =A- 5 + 3
and a backward error interpretation is possible. If we imagine a modelling situation
where the value of A in (1.8) is not known exactly but rather arises from some
measurement, then the backward error interpretation is useful because it is telling
us that the effect of the numerical integration is to change the value of A into a
nearby value \*. If |\ — A\?| is of the order of the uncertainty in the measurement
of A, then the Euler’s solution is as accurate as one may wish in this setting.

For (1.6) and (1.8), the modified equation (N > 1)

u(0) = &

PR A >SN 0 S A S
u—fN(u)—(A 5 T3 |
is of order N, i.e.,
wh:f(u) - ¢h,ﬁ\‘, (u) = O(hN+1)a h — 0. (112)

In this example, as N — 0o, the vector fields f1 (u) converge to (log(1+hX)/h)u .
Then | -
i = o) = LY,

is an exact modified equation with ¢y r = ¢, o [Beyn [1991]).

For general f it is still possible to find, for each N > 1, a modified equa-
tion u = fN(u) so that (1. 12) holds. However, in general the fields fN do not
converge as N — oo and fc><> cannot be defined. This is consistent with the
fact that, for nonlinear f, 1p s is likely to present features (such as transversal
crossings of separatrices) that cannot appear in any flow ¢ (see Section 4.10 of
[Sanz-Serna [1991]]). Nevertheless, under suitable analyticity conditions, Neishtadt
[Neishtadt [1984]] has proved that by letting the order N increase like O(h™1), it
is possible to have flows ¢, =, From that approximate 9y, s with exponentially small

errors O(exp(—k/h)), k > 0, as h — oo.

An outline of the remainder of the paper is as follows. In Section 2 we show how
to systematically construct modified vector fields f;. The results presented are due
to Hairer [Hairer [1994]], but the simple methodology used in the derivation of the
formulae is taken from the Ph.D. thesis of A. Murua [Murua [1994]]. Section 3 looks
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at the particular case of Hamiltonian problems integrated by symplectic (canoni-
cal) methods [Sanz-Serna and Calvo [1994]]. The main result is that a method is
symplectic if and only if the modified fields f}\‘, corresponding to Hamilonian vector
fields f are also Hamiltonian. Thus symplectic simulations change the Hamiltonian
function, as distinct from nonsymplectic simulations, whose effect is to perturbe
the Hamiltonian equation so as to render it non-Hamiltonian. Section 4 contains
an application of the modified equation method to the study of error growth in
the numerical solution of nonlinear oscillations. In the final Section 5 we consider
an alternative approach where the numerical method is shown to exactly solve a
nonautonomous system & = f(u,t), where, as t — 0, the function f approaches the
true autonomous f.

2 Constructing modified equations

It is well known [Butcher [1987]], [Hairer et al. [1987]] that (rooted) trees are
an important tool in the analysis of one-step methods. The trees with four of fewer
nodes are depicted in Fig. 3. The symbol 7; denotes the only tree with one node.
Tt is common to denote by [r!,72,...,7™] the tree that consists of the root and
m leaving edges to which the trees 71, 72, ..., 7™ are attached. Thus in Fig. 3,
Ty = [11], T31 = [11,71], T32 = [72], etc. For each tree 7, the integers p(7) and a(7)
respectively denote its order (number of nodes) and number of monotonic labellings.
These functions can be computed recursively by the formulae p(1) = a(n1) =1
and, for 7 = [r1,...,7™],

p(r) = 1+p(r") 4+ +p(m™),
T)—1)! m 1
F(T(l%)--p—(im_)!““l)“‘““

The integers u; count the number of equal trees among 71, ..., ™. Finally,
in connection with the system (1.1), an RP-valued function F(7)(u) (elementary
differential) is associated with each tree 7. The recursive definition of the F(1)(u)’s
is F(r1)(u) = f(u) and for 7 = [r1,...,7™]

F(r)(u) = f™ (u)(F(TH) (W), ..., F(r™)(w)),

where f(™ (u) represents the m-th Fréchet derivative of f evaluated at u.

o(r)

R

1 T2

T41 T42 T43 Ta4

Figure 3 Trees of order < 4.
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With these notations, the formal Taylor expansion of the flow ¢ .f in powers
of h is given by

On,f(u) =u+ Z a(T)F(7)(u),

‘reT

where T denotes the set of all trees.
Numerical methods can be Taylor expanded in a similar way. For instance, for
a Runge-Kutta method

Ui = un+h) ai;f(U))
=1
Untl = Up+ hzbzf(U
i=1

the Taylor expansion is

Yh,f(u ~u+z

TGT

hp(f)

( T)qu) ) (T)(u),

where the recursive definitions of v and ®; are y(m;) = 1, ®;(7;) = 1 and

V) = p(r)y(rh) .. (r™),
’I’i(T) = Z aij1<I>j1(~r1)...aijmq)jm(‘rm).
Jiseendm

In view of the Taylor expansions above, [Hairer and Wanner [1974]] introduced
the notion of a B-series. Given a real-valued mapping a defined in the union of T
and the set {0}, a B-series B(a,u) is a formal power series

u+z a(7)a(r)F(7)(w).
‘rET

(The B-series depends on h and f, but this dependence is not made explicit in the
notation.) Thus, the results just quoted imply that the true flow @n, 5 corresponds
to a = 1, while for a Runge-Kutta method a() =1 and, for 7 in T,

a(r) = v(r) Z b;®;(7)
i=1

The Taylor expansion of most one-step methods used in practice is also a B-
series. In the remainder of the paper we assume that we are dealing with a method
Yn,f(u) corresponding to a suitable B-series B(a,u),

¥n.s(u) = B(a, u), (2.1)

without specifying the exact nature of the method. We suppose throughout that
the method is consistent, i.e., at least of order 1:

a® =1, a(n)=1 (2.2)
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Our aim is to construct a formal power series f
hP(T)-1

> ST

Gl a(7)b(r)F(7)(u) (2.3)
TeT :
so that for each integer N > 1

du
= =fhw= 3

!
1<p(T)EN ()!

he(T)-1

a(1)b(T)F(T)(u) (2.4)

provides a modified equation of order N.

An essential tool for our purposes is the formula for composition of B-series,
see Theorem 11.6 in [Hairer et al. [1987]]. If a and b are B-series coefficients with
a(®) = 1 then the composition B(b, B(a,y)) is a again a B-series B(ab,y) whose
coefficients ab(7) can be found in a systematic way from the a’s and b’s. The
formulae for the first ab(r) are

ab(@) = b(®),

ab('rl) = b((b)a(rl) + b(Tl),

ab(my) = b(D)a(r2) + 2b(r1)a(r1) + b(T2), (2.5)
ab(7'31) = b(@)a(Tgl) + 3b(7‘1)a(7'1)2 + 3b(7'2)a(r) + b(Tg]),

ab(7'32) = b(@)a(‘rgz) + 3b(7'1)a(7'2) + 3b(7'2)a(7') + b(TgQ).

We introduce a real parameter \ and write the flow of the vector field in (2.3)
as a B-series

p(T)
by ) =ut Y Ssar)eanF ()W),

TeT
Next we substitute this series into the equation
d ~
P (@, 7

in doing so the B-series of the right hand side is computed by the formula for
composing B-series. In this way we find that the ax(7) satisfy, for each tree 7,

d
Lar(r) = (@xb)(7). (26)
Furthermore at A =0, ¢, f(“) = u and hence, for each 7,
ap(t) =0. 2.7

The relations (2.6)—(2.7) allow us the computation of the ax(7)’s in terms of the
b(7)’s when the latter are known. In our setting, the b coefficients are determined
to ensure that, for each 7, at A =1,

a1 (T) = a(T)a (28)

to impose that, as formal power series, ¢, 7 and 9y 5 coincide.

The relations (2.6)—(2.8) make it possible to recursively compute the b coeffi-
cients. Let us illustrate this. For 7; we obtain from (2.6) and (2.5), (d/d)X)ax(m1) =
b(t1), so that, according to (2.7), ax(m1) = Ab(71). If we now impose (2.8), we
obtain the relation b(;) = a(71). We conclude, from the consistency assumption
(2.2), that b(m1) = 1, and therefore, as expected, f differs from f in O(h) terms.
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If we now go through the same steps for the next tree 75, we obtain
a('rg) = b(T1)2 + b(Tg).

Note that for a method~of order > 2, a(72) = 1, which, in tandem with b(r) =1,
leads to b(72) = 0 and f and f differ in O(h?) terms.
The equations for finding b(732) and b(73;) turn out to be

I

a(7‘31) b(71)3 + %b(’l’z)b(’l’l) + b(T31),
a(7'32) = b(T1)3 + 3b(7’2)b(7’1) + b(T32).

From here b(731) = b(732) = 0 for methods of order > 3.
We summarize our findings in the following theorem, due to Hairer [Hairer [1994]].

Theorem 2.1 Assume that an order r, r > 1, one-step method (2.1) can
be formally Taylor expanded into a B-series B(a,u). There is a unique B-series
(2.3), differing from f(u) in O(R") terms, such that, for each integer N > 1, (24)
provides a modified system of order N. The coefficients b can be recursively found
as functions of the coefficients a.

3 The Hamiltonian case

We now consider the Hamiltonian case (1.3). There has been much recent inter-
est [Sanz-Serna and Calvo [1994]] in simulating (1.1)~(1.3) by so-called symplectic
or canonical integrators, i.e., by methods for which 4y, 7 preserves the differential
form dp A dq and thus reproduce the main feature of Hamiltonian flows.

Calvo and the present author [Calvo and Sanz-Serna [1994]] have shown that,
for methods v, ; given by a B-series as in (2.1), it is possible to check canonicity
by looking at the corresponding coefficients a(7). We use Butcher’s notation and
set

ror*=[rl 73 . ™, Y]

if 7% and 7 = |[r!,72,...,7™] are trees. Then a B-series is canonical
[Calvo and Sanz-Serna [1994]], if, for any pair of trees 71, 72,
a(t'o7?) a(r?orl)  a(r!) a(r?) (3.1)
Y(rtor?) y(r2ort) T A(r1) 4(r?) ’
On the other hand, Hairer [Hairer [1994]] has proved that the B-series vector
field (2.3) (with f given by (1.3)) is Hamiltonian if and only if, for any 7!, 72,

b(rlo72) b(r207!)

Wrtor?) T a(rPorl) T

(3.2)

When (3.2) holds, it is possible to explicitly find the formal Hamiltonian H whose
vector field is (2.3).

The key point is that if {a(7)} are the coefficients associated with a numerical
method as in (2.1) and {b(7)} are the coefficients of the corresponding modified
vector field as in Theorem 1, then (3.1) and (3.2) are equivalent [Hairer [1994]].
Therefore canonical methods can be characterized as those methods that when
applied to Hamiltonian problems possess modified equations @ = f % (u) that are
Hamiltonian for all N = 1,2,.... The use of a symplectic integrator changes the
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Hamiltonian function of the system being integrated; the use of a nonsymplectic
integrator perturbes the differential equation so as to turn it non-Hamiltonian.

4 An application

We now illustrate the use of modified equations. We consider the well-known
pendulum system with Hamiltonian function (energy) H = (1/2)p?+1—cosgq. Let
(po, go) be an initial condition with energy Hy, 0 < Hy < 2, leading to a periodic
solution. In phase plane the trajectory corresponds to the level set H = Ho;
the period T, of the solution is an increasing function of Hy. Furthermore, we
respectively denote by fo and go the vector field f evaluated at (po,go) and the
energy gradient at (po,qo). The vectors fo and go are mutually orthogonal by
conservation of energy.

This initial value problem is integrated by a one-step method of order r with
step length h, that for simplicity we assume to be of the form h = Ty /v, with v a
positive integer. Let eps(h) be the global error u, — u(t,) after n = Mv steps, i.e.
after simulating M periods of the solution. Then it is not too difficult to show, see
[Calvo and Sanz-Serna [1993]], that

enr(h) = Mes(h) + 2 (M? — M) (g0,e1(h)) dofo + O(R), B =0,

where (-, ) means inner product and §y denotes the derivative of the period T' with
respect to the energy H evaluated at the initial condition. Therefore, ignoring the
O(h?r) remainder, the error ey (h) grows quadratically with M. The leading M>
growth is in the direction of fo, i.e., tangent to the solution at the initial point, thus
corresponding to a phase error. However linear error growth with M is possible: if

(90, €1(h)) = O(R*") (4.1)
(i.e., the error after one period is almost orthogonal to the energy gradient), then
er(h) = Mey(h) + O(h*),  h—0.

In a nutshell, the way global errors build up is determined by the direction of
the error e;(h). This is not suprising: if after one period the error e; (h) has a sig-
nificant component in the direction of go, then the numerical solution has jumped
in phase plane to a neighbouring trajectory corresponding to a different (say larger)
value of the energy. Thereafter, the method, when evaluating the vector field f,
picks up wrong information as to the solution period and is lead to believe that
the motion is slower than it really is. As the integration proceeds the numerical
solution keeps jumping to higher and higher energy levels and getting unduly slow-
ing down. This is the mechanism leading to quadratic growth in the phase error.
On the other hand, if e;(h) is essentially in the direction of fy, then there is no
energy error: the method is basically describing the right trajectory with a slightly
distorted average velocity and errors grow linearly. These considerations apply to
all nonlinear oscillators with one degree of freedom [Calvo and Sanz-Serna [1993]],
to Kepler’s problem [Calvo and Sanz-Serna [1993]], and even to some partial differ-
ential equations [Frutos and Sanz-Serna [1994]]. See [Cano and Sanz-Serna [1995]]
for a comprehensive treatment.

We now use the method of modified equations to show that for canonical meth-
ods (4.1) holds. Let us construct a modified problem of order 2r. By the results
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in the preceding section, this is a Hamiltonian problem with Hamiltonian H. The
modified solution % conserves H exactly and hence, Taylor expanding,

H(W(To)) — H (uo) (90, %(To) — uo) + O(|a(To) — uo|?)
= (G0, W(To) — uo) + O(h™"). (42)

Here go is the gradient of H at the initial point ug and we have used that
u(To) — uo = u(Tp) — u(To) = O(R"), (4.3)

due to the periodicity of the true solution and to the fact that the true and modified
vector fields differ in O(h") terms. From (4.2)—(4.3), along with go — go = O(R"),
we obtain

(90,U(To) — o) = O(R*"),

and finally, since % and the numerical solution differ in O(h?") terms, (4.1) holds.

5 An alternative approach

In an alternative approach to modified equations, we may compare vy, fla)
with the value <I>A(h 0)a, at time ¢ = h, of the solution of a nonautonomous system

U= (u, t) with initial condition u = o at t = 0. It is not difficult to see that f
can be chosen to ensure that for all h and o,

¥n,s(u) = @4(h, 0)a. (5.1)

In fact, consider the family F of curves t — 1 sa (o is the parameter in the family).
leferentlatlon with respect to ¢ and elimination of « lead to a differential equation
= flu, t) satisfied by all curves in the family. Then (5.1) holds.
For Euler’s rule (1.6) applied to (1.8), the family F is

u=a+tia;
differentiation leads to
U= A
and, eliminating «, we find
ﬂ*f(ut)— A u (5.2)
IR TS S '

For a general system (1.1) integrated by a B-series method (2.1) we look for an
£ of the form (cf. (2.3))

f(u’t) = Z

|
T€T ‘0(7-)'

tp(r)—1

a(T)b(7) F(7)(u) (5.3)

Differentiation with respect to ¢ of the B-series for 4; s and substitution in @ =
f(u,t) show that for each tree T

p(r)a(r) = (ab)(r). (5.4)
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The b’s can be recursively found from (5.4). The formulae for the first b's are

b(m) = a(n),

2b(7'1)a(7'1) + b(Tz) = 2a(m),
3b(7'1)a(7'1)2 +3b(7'2)a('r1) +A (T31) = 30,(7'31),
3b(7‘1)a(7'2) + 3b('r2) (r1) +b(m32) = 3a(7s2).

Note that b(n) = 1 because we assume a(7;) = 1 (consistency). For a method of
order > 2, a(r2) = 1 and then b(72) = 0. If the order is > 3, then b(rs1) = b(rs2) =
0. In general for a method of order r, f differs from f in terms O(t') ast — 0.

Furthermore, it is easy to check that, for a method of order r, the b's corresponding
to trees of order r + 1 are related to the b’s of Theorem 1 through the relation

B(r) = (r + 1)b(7).

Hence, at the leading O(h") order, f(u, h) — f(u) and f}\’,(u) — f(u), N > r, only
differ in a factor r + 1. We have proved the following result.

Theorem 5.1 Assume that an order r, r > 1, one-step method ;s can be
formally Taylor expanded into a B-series B(a,u) (2.1). There is a unique f (u t)
(5.3), differing from f(u) in O(t") terms (t — 0), such that, for all stepsizes h and
all points o, Yn, s is the value at time t = h of the solution of & = (u t) with

initial condition w(0) = . The coefficients b can be recursively found as functions
of the coefficients a.

Either by using the ideas in Hairer [Hairer [1994]] or by a general argument pre-
sented in [Sanz-Serna and Calvo [1994]], it is possible to prove that, in the Hamilto-
nian case, a method is canonical if and only if f(u, t) turns out to be Hamiltonian.
McLachlan and Atela [Mclachlan and Atela [1991]] then use the discrepancy be-
tween the true Hamiltonian H and the Hamiltonian H of f (u t) as a measure of
the accuracy of the numerical method.

A possible drawback of the approach in this section is that advancing n steps
with the numerical method is not the same as going from t = 0 to t = nh with
the solution of & = f (u t), because, since f is nonautonomous, for the solution
operator ®

<I>;;(h, 0)o---0 <I>;~(h, 0) # @f(nh, 0).

There is a way around this problem: for 0 < ¢t < h we keep the function f(u t)
found before and for h <t < 2h, 2h < t < 3h, dots we repeat it periodically to
get an h-periodic discontinous function f™(u,t). Now n steps with the method
tn, ¢ are equivalent to advancing from ¢ =0to ¢ = nh with the differential system
U = f (u,t). For a symplectic method apphed to a Hamiltonian problem, the
corresponding nonautonomous Hamiltonian H H" has delta functions at the points
t = nh, n integer. This is similar to the situation in [Wisdom and Homan [1991]].

Let us finally point out a connection with the approach in Section 2: the au-
tonomous vector field f7 considered there is the result of eliminating by averaging
the terms t*, k > N of the periodic function f" (cf. [Neishtadt [1984]]). For in-
stance, from (5.2),

w=[\—tA2 + Oy,
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and averaging the term —t\? over the period 0 < t < h we obtain —h\2 /2 as in
(1.10).
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