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Abstract

Among other unconventional numerical methods, W. Kahan has suggested a discretization of a simple Lotka~
Volterra system with the property that the computed points do not spiral. We explain this behaviour by showing that
Kahan’s method is symplectic with respect to a noncanonical symplectic structure.

1. Introduction

Among other “unconventional” numerical methods, W. Kahan [1] considers the scheme
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In (1)—(2), At is the time step, (x, y) the current solution value and (X, Y) the solution value
at the next time level. What makes (1)—(2) unconventional is the treatment of the quadratic xy
term in (3)-(4): the standard trapezoidal rule discretizes this as 3XY + 3xy and the midpoint
rule as 3(X +x)- 3(Y +y). Both conventional discretizations are quadratic in the new solution
(X, Y). Since (1)—(2) is linear in (X, Y), it is possible to express X and Y in closed form as
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(rational) functions of (x, y) and therefore the implementation of the scheme does not require
the solution of nonlinear algebraic equations.

The coordinate axes x =0 and y =0 are invariant for (3)~(4); this implies that a solution
(x(2), y(2)) that is positive at some time ¢ = ¢, cannot leave the orthant x >0, y > 0. In the
remainder of the paper we only consider solutions of (3)—(4) in this orthant. Kahan focuses on
the case

<0, B>0, y>0, <0, (5)
that yields a simplified predator (x) and pray (y) Lotka—Volterra system. Then x = —a /B > 0,
y = —vy /8 > (0 is an equilibrium; all other solutions describe closed trajectories which surround

the equilibrium in the phase orthant of the variables (x, y). Of course, these trajectories
represent periodic fluctuations in the numbers of individuals in the x, y species. The most
remarkable feature of the unconventional scheme (1)-(2) is that it produces solution values
that stay on closed curves; almost any other integrator one may try produces points that either
spiral in towards the equilibrium point or spiral out of the equilibrium point. Our aim is to

explain this behaviour. It turns out that a key feature of (1)-(2) is that it is symplectic with
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symplectic with respect to the stdndard or canonical symplectic structure [3], the scheme (1)-(2)
is one of the few examples known to me of a noncanonical symplectic scheme., This makes
(1)-(2) unconventional in a second sense!

2. Hamiltonian problems

We begin by looking at the system (3)-(5). For systems of differential equations in the plane,
the situation where all trajectories in phase plane are closed curves is nongeneric, i.c., atypical.
If a system is in this situation, then any small perturbation of the right-hand side typically
changes the closed curves into spirals. The effect of numerical integration amounts to changing
the system being solved into a nearby system (see, e.g., [3, Chapter 10]). This explains why
numerical integrators for (3)—(5) typically spiral.

On the other hand, there is a class of systems in the plane where closed curves are typical.

This is the class of (canonical or standard) Hamiltonian problems

dx oH 6
de‘__g’ ()
dy oH

— =+ —, 7
d¢ ox ()

The trajectories of (6)—(7) are the level sets of the Hamiltonian function H = H(x, y). If all
trajectories of (6)—(7) are closed, then all nearby Hamiltonian systems also have closed
trajectories. (The term “nearby Hamiltonian systems” refers to systems that are of the form
(6)—(7) with the Hamiltonian function H = H(x, y) replaced by a function H = H(x, y) close
to H.)

Is (3)-(5) a Hamiltonian system? In other words, is it possible to write (3)—(4) in the form
(6)—(7) for some function H? The answer is no: for a planar system dx/dt=f(x, y),
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dy/dt =g(x, y) to be Hamiltonian (see, e.g., [3, Chapter 2]), it is necessary and sufficient that
the vector field ( f, g) be divergence free, 3f /dx + 3g/dy = 0, a condition that (3)—(5) does not
satisfy.

However (3)—(4) is not far away from being Hamiltonian; it becomes Hamiltonian after the
change of variables ¢ =log x and n =log y. To see this note that (3)-(4) is of the form

dx/dt
= —-m(y),
X
dy/dt
= +n(x),
y
which in terms of the new variables becomes
i ) (8)
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a system whose right-hand side is obviously divergence-free in the (£, ) plane. The corre-
sponding Hamiltonian function is not difficult to find; it is given by

# (&, m) = N(exp(£)) + M(exp(n)),
where N(x) and M(y) arc antiderivatives (integrals) of the functions n(x)/x and m(y)/y
respectively. The trajectories of (8)—(9) lie in level curves of # in the (&, n) plane and hence
the trajectories of the original system (3)-(4) lie in level curves of the function

H(x,y)=#(log x,log y)=N(x)+M(y). (10)

There is a second connection between (3)-(4) and the theory of Hamiltonian systems. If
o(x, y) is a fixed function that does not vanish in the region of interest, then the noncanonical
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For o = 1 we recover the canonical case (6)—(7). It is trivial to check that solutions of (11)-(12)
have the conserved quantity H(x(¢), y(¢)) = constant, and hence the corresponding trajectories
lie on level sets of H. With this terminology, it is easily seen that (3)-(4) is the noncanonical
Hamiltonian system associated with o(x, y) = 1/(xy) and the Hamiltonian function H(x, y) in
(10). To sum up, (3)-(4) is a noncanonical Hamiltonian problem that can be brought into
canonical form by a change of variables.

Comment. All planar systems that become canonical Hamiltonian after a change of variables
£ =E&(x, y) and 5 = n(x, y) are noncanonical Hamiltonian with o given by the determinant of
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the Jacobian matrix &(¢&, n)/8(x, y). The Hamiltonian H(x, y) for the noncanonical formula-
tion is Z(&(x, y), n(x, y)), where # is the Hamiltonian function for the canonical formula-
tion in the variables & and 7. The proofs of these facts are elementary.

Before discussing numerical methods, we need to point out how to characterize planar
Hamiltonian problems in terms of their flows. The flow ¢, of a system of differential equations
dx/dt =f(x, y), dy/dt =g(x, y) is the map given by (x, y) — (X, Y), where (X, Y) is the
value at time ¢ of the solution of the system that takes the initial value (x, y) at time ¢ = 0. By
Liouville’s theorem, the flow ¢, of a system preserves area if and only if the associated vector
field (f, g) is divergence free. In turn, and as mentioned above, V- (f, g) =0 is equivalent to
the differential system being canonical Hamiltonian. We conclude that a planar system is
canonical Hamiltonian if and only if its flow ¢, is, for all values of ¢, an area-preserving
mapping. In terms of differential forms, canonical Hamiltonian systems are characterized by
the conservation of the form dx A dy that provides the “element” of oriented area in the
plane. This fact is often expressed by saying that the flow of a standard Hamiltonian system is a
symplectic transformation with respect to the canonical symplectic structure given by dx A dy.

Noncanonical Hamiltonian systems (11)—{(12) are characterized by the conservation of the
form o dx A dy, that represents an element of areca weighted with an (x, y)-dependent weight
function o(x, y). Note that

odxAdy=déAdny,

because, as mentioned before, o is the Jacobian determinant of the change of variables.
Therefore the weighted area of a set in (x, y) plane is, as expected, the same as the standard
area of the transformed set in (£, n) variables. The flow of a nonstandard Hamiltonian system

is a svmnlectic transformation with respect to the noncanonical or nonstandard svmnlectic
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structure given by o dx A dy.

3. Numerical methods

A one-step numerical method for a system of differential equations dx/d¢ = f(x, y),
dy/dt =g(x, y) is given by my a mapping (X, Y) = ¢, (x, y) that specifies how the numerical
solution is advanced over a time interval of length Az. Since for the true solution (X, Y) =
¢, (x, y), the mapping ¢,, should approximate the flow ¢,, of the system being integrated.

For a canonical Hamiltonian system (6)—(7), the flow ¢,, is area-preserving and it makes
sense to use numerical methods for which ,, also preserves area, i.e, preserves the form
dx A dy. Those numerical methods are called canonical; many of them have been devised [3].
If a planar canonical Hamiltonian system (6)—(7) that has a stable equilibrium point surrounded
by closed curves (i.e., a centre) is integrated by a canonical method, then the computed points
do not spiral. This is guaranteed by the KAM theory [2]. Hence, to perform a nonspiralling
integration of (3)-(5), we could switch to variables & =log x and n = log y and then use one of
the available canonical integrators to advance the solutions of the resulting system for (£, n).
Mathematically (but not computationally) this is equivalent to integrating (3)—(5) in the (x, y)
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variables by means of the scheme resulting from changing variables in the (£, n)-scheme. For
instance, the canonical midpoint rule for (8)—(9) gives rise to the scheme

log X —log x ( (log Y+10gy]]
= —mlexp| ——— ||,

At 2
log Y—-log y (log X +log x
= +nle
At *P 2 )

This example proves that (x, y)-schemes derived from conventional canonical (£, n)-schemes

are likely to be wildly nonlinear.

Is it possible to derive nonspiralling (x, y)-schemes without going through a (£, n)-scheme?
According to the discussion of the preceding section, the sought (x, y)-scheme has to preserve
the form o dx A dy, o = 1/(xy). This is precisely what Kahan’s scheme (1)-(2) achieves, as the
following theorem shows.

Theorem 1. If A, B, C and D are real constants, the transformation defined by
X—x=A(X+x)+B(Xy +xY), (13)
Y—-y=C(Y+y)+D(Xy +xY), (14)

preserves the form (xy)~ ' dx Ady, i.e.,

1 1
E(dx/\dy = X_Y(dXA dY) (]5)

Proof. A direct proof, using the explicit expression of (X, Y) as functions of (x, y) is possible
but lengthy. We give a shorter alternative. Differentiate (13)-(14) and rearrange to get

(1-4)dX—-BydX—-BxdY=(14+4)dx+BY dx + BX dy,
(1-C)dY—-DydX—-Dx dY=(1+C)dy+ DY dx+ DX dy.
Now take the wedge product of these equations to obtain
[1-A4)(1-C)-—(1-A)Dx—(1-C)By] dX AdY
=[(1+A)(1+C)+(1+A)DX—-(1+C)BY] dx Ady. (16)
On the other hand, we rewrite (13)—(14) as
(1-A)X-BXy=(1+A4)x+ BxY,
(1-C)YY-DxY=(1+C)y+ DXy.
Multiplication of these equations leads to
[(1-4)(1-C)-(1-A)Dx—(1-C)By] XY
=[(1+A4)(1+C)+(1+A)DX —(1+ C)BY |xy,
a result that, along with (16), implies (15). O



250 J.M. Sanz-Serna / Applied Numerical Mathematics 16 (1994) 245-250

A couple of final comments. Since (1)—(2) is reversible (selfadjoint), it may be composed with
itself to give rise to symplectic schemes of arbitrarily high order as explained in [1] or [3]. On
the other hand, the technique used in (1)-(2) to deal with the xy term can be applied to any
quadratic term in any differential system [1]. If z is the vector of independent variables, a
quadratic nonlinearity is of the form F(z, z) for a suitable bilinear symmetric operator.
Kahan’s unconventional discretization, F(Z, z) is linear in the advanced solution vector Z. The
conventional midpoint F(3(Z +2), X(Z +z)) and trapezoidal 3(F(Z, Z) + F(z, z)) discretiza-
tions are both quadratic in Z and therefore result in nonlinear algebraic equations to be solved
at each step.
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