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Departamento de Mateḿatica Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid,
Valladolid, Spain

Received March 15, 1993

Summary. B-series provide a powerful general tool to express numerical methods
for differential equations. Many differential equations are of Hamiltonian form and
there has been much recent interest in constructing so-called canonical or symplec-
tic integrators for the Hamiltonian case. In this paper we provide a necessary and
sufficient condition for a B-series to correspond to a canonical method.
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1. Introduction

Given a system of ordinary differential equations inRD

dy
dt

= f(y),(1.1)

a B-series [4], [3] is a formal expression

y +
∞∑
n=1

hn

n!

∑
ρτ∈RTn

c(ρτ )F(ρτ )(y),(1.2)

whereh is a real parameter,RTn is the set of all rooted treesρτ with n vertices,
c(ρτ ) is a real coefficient associated withρτ andF(ρτ )(y) is the elementary differential
corresponding toρτ evaluated aty ∈ RD. (The notions of rooted tree and elementary
differential are revised in Sects. 2 and 3 below.) B-series more general than (1.2)
are possible: the series may begin with a termay, a a constant, rather than withy.
However in this paper we are only concerned with the format (1.2).

B-series are a powerful tool for studying numerical methods for the integration
of (1.1), see e.g. [3]. Assume that (1.1) is integrated by a Runge-Kutta (RK) or by a
q-derivative (q ≥ 2) Runge-Kutta (qRK) method. Denote byy∗ = ψh,f(y) the result
of a step of lengthh starting fromy. Then the formal expansion ofy∗ in powers of
h is of the form (1.2); the coefficientsc(ρτ ) depend on the specific method, but not
on the problem (1.1) being solved. Furthermore, let us now denote byy∗ = ϕh,f(y)
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the true value at timet = h of the solution of (1.1) with initial valuey at t = 0 (i.e.,
the mappingϕh,f is theh-flow of (1.1)). Then the formal expansion ofy∗ = ϕh,f(y)
in powers ofh is also a B-series: the B-series such that, for eachρτ ,

c(ρτ ) = α(ρτ ),(1.3)

whereα(ρτ ) denotes the number of monotonic labellings ofρτ .
There has been much interest (see [7] for a survey) in developing numerical

methods adapted to the special case where (1.1) is a Hamiltonian system, i.e.,D = 2d
(d is called the number of degrees of freedom) and

f(y) = Ξ∇H(y),(1.4)

whereΞ = −ΞT = −Ξ−1 is the matrix

Ξ =
[ 0d Id
−Id 0d

]
,(1.5)

∇ denotes the gradient operator∇ = (∂/∂y1, . . . , ∂/∂y2d), andH is a real valued
function (the Hamiltonian). Of particular interest are so-called symplectic (or canon-
ical) methods. A mappingψ : R2d → R

2d is called symplectic if

ψ′TΞψ′ ≡ Ξ,(1.6)

whereψ′ is the Jacobian matrix ofψ. For eachH and eachh, the true flowϕh,Ξ∇H
of a Hamiltonian system is a symplectic transformation; this property is the most
important feature of Hamiltonian flows. A numerical methodψ is called symplectic
if ψh,Ξ∇H is a symplectic transformation for each step-sizeh and each Hamiltonian
H.

It is then of clear interest to ascertain under which conditions on the coefficients
c(ρτ ), the B-series (1.2) defines a symplectic transformation for eachh and eachf of
the form (1.4). The main result of this paper (Sect. 2) answers this question. It turns
out that if a B-series satisfies the necessary and sufficient condition for symplecticness,
then the corresponding order conditions are greatly simplified (a fact that was known
[8] in the particular case where the B-series arises from a symplectic RK method).
The main result is proved in Sects. 3–5. The final Sect. 6 illustrates the application of
the main result to the particular instance of RK methods.

2. The main result

It is well known [2], [3] that the conditions for an RK orqRK method to have order
≥ r are written invoking rooted treesρτ of ordern(ρτ ) ≤ r (i.e., havingr or fewer
vertices). The left section of Fig. 1 depicts the rooted trees of order≤ 4. The root of
each rooted treeρτ has been highlighted by appending a cross.

If in ρτ3,1 andρτ3,2 in the figure we disregard the location of the roots, then both
graphs are identical; they consist of the same vertices joined by the same set of edges.
The graph obtained by disregarding the location of the root in a rooted tree is called
a free tree, or simply, a tree. Thus a treeτ can be seen as an equivalence class of
rooted trees. On the right of Fig. 1 we have displayed the treesτ of order≤ 4. A
tree and the rooted trees belonging to it appear in the same row.

Now choose a treeτ of order≥ 2 and a pair of adjacent verticesi andj in τ . By
choosingi (resp.j) to play the role of root, we obtain a rooted treeρτi (resp.ρτj).
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Fig. 1. Rootedn-trees andn-trees,n = 1, 2, 3, 4

We say that the rooted treesρτi andρτj are neighbours.Thus, inτ3,1 if we choose
the leftmost vertex to be the root we obtainρτ3,1, if we choose the central vertex
to be the root we obtainρτ3,2; thereforeρτ3,1 andρτ3,2 are neighbours. In a similar
manner,ρτ4,1 andρτ4,2 are neighbours;ρτ4,3 andρτ4,4 are neighbours. The ‘straight’
tree with 5 verticesa − b − c − d − e comprises three rooted trees. The rooted tree
obtained by setting the root ata is not a neighbour of the rooted tree obtained by
setting the root atc.

Figure 2 contains a treeτ , two neighboursρτi andρτj and also the rooted trees
ρτI , ρτJ , with roots ati andj respectively, that arise when the edge joiningi andj
is removed fromτ .

We may now give the main result in this paper. (For eachρτ , γ(ρτ ) represents,
as in [2] or [3], the corresponding density.)

Theorem 2.1. The B-series (1.2) is canonical, i.e., defines a symplectic transformation
for eachh and each Hamiltonian problem (1.1), (1.4), if, and only if, for each pair of
neighboursρτi andρτj

c(ρτi)
α(ρτi)γ(ρτi)

+
c(ρτj)

α(ρτj)γ(ρτj)
=

c(ρτI )
α(ρτI )γ(ρτI )

c(ρτJ )
α(ρτJ )γ(ρτJ )

.(2.1)

The condition in (2.1) can be rewritten in a slightly different form. Denote by
[ρτ ] the root tree obtained by grafting a rooted treeρτ into a new root and denote
by ρτ1 · ρτ2 the rooted tree obtained fromρτ1, ρτ2 by identifying their roots. Then in
(2.1),ρτi = ρτI · [ρτJ ] andρτj = [ρτI ] ·ρτJ and the necessary and sufficient condition
for canonicity is that for any pairρτI , ρτJ of rooted trees

c(ρτI · [ρτJ ])
α(ρτI · [ρτJ ])γ(ρτI · [ρτJ ])

+
c([ρτI ] · ρτJ )

α([ρτI ] · ρτJ )γ([ρτI ] · ρτJ )

=
c(ρτI )

α(ρτI )γ(ρτI )
c(ρτJ )

α(ρτJ )γ(ρτJ )
.

Before we prove the main theorem in Sects. 3–5, let us point out an important
implication. Assume that a canonical B-series with coefficientsc(ρτ ) has order of
consistency≥ r − 1, r > 2, i.e. that it differs from the B-series of the true flow
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Fig. 2. The construction for the main result

in termsO(hr). Then, according to (1.3),c(ρτ )/α(ρτ ) = 1 wheneverρτ has order
≤ r−1. Consider then a pair of neighboursρτi, ρτj of orderr and apply the condition
(2.1) to obtain

c(ρτi)
α(ρτi)γ(ρτi)

+
c(ρτj)

α(ρτj)γ(ρτj)
=

1
γ(ρτI )

1
γ(ρτJ )

.

The right hand side of this equality is easily seen [8] to equalγ(ρτi)−1 + γ(ρτj)−1,
and therefore

c(ρτi)
α(ρτi)γ(ρτi)

+
c(ρτj)

α(ρτj)γ(ρτj)
=

1
γ(ρτi)

+
1

γ(ρτj)
.(2.2)

Now, if the order conditionc(ρτi)/α(ρτi) = 1 associated withρτi holds, then (2.2)
shows thatc(ρτj)/α(ρτj) = 1, i.e., the order condition associated withρτj holds. We
have proved the following lemma:

Lemma 2.1. For a canonical B-series of order≥ r − 1, r ≥ 2, the order conditions
corresponding to two neighboursρτi, ρτj of orderr are equivalent.

There are two ways in which this result can be strengthened. The first is to note
that a rooted tree may be its own neighbour. This happens, for instance in the treeτ2,1:
setting the root at the left vertex leads toρτ2,1, and setting the root at the adjacent,
right vertex also leads toρτ2,1, so thatρτ2,1 is its own neighbour.

If ρτi = ρτj and the conditions of the lemma hold, then (2.2) yieldsc(ρτi)/α(ρτi) =
1, so that the order condition forρτi is automatically satisfied. Trees, such asτ2,1
or τ4,1, that contain a rooted treeρτi that is its own neighbour were called in [8]
superfluous.

The second way in which the lemma may be strengthened is to note that,
given two rooted treesρτi and ρτk in the same tree, there is a chainρτi =
ρτi1, ρτi2, ρτi3, . . . , ρτil = ρτk where two consecutive links are neighbours. Hence,
under the conditions of the lemma, the order conditions corresponding to any two
rooted treesρτi, ρτk in the same tree are equivalent. We summarize our discussion
as follows:

Theorem 2.2. For a canonical B-series of order≥ r − 1, r ≥ 2 to have order of
consistency≥ r, it is (necessary and) sufficient that for each nonsuperfluous treeτ with
r vertices there exists a rooted treeρτ in τ for which the order conditionc(ρτ ) = α(ρτ )
holds.
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3. Preliminary results

In this section we present some results on graph theory that are needed to prove the
main Theorem 2.1.

For each rooted treeρτ , we denote byΣ(ρτ ) the group of its symmetries ([2],
Definition 140F). The number of elements inΣ(ρτ ) is denoted, as usual, byσ(ρτ ).
Betweenσ(ρτ ) and the quantitiesn(ρτ ), α(ρτ ) andγ(ρτ ) introduced before there is
a relation ([2], Theorem 145E)

n(ρτ )! = α(ρτ )γ(ρτ )σ(ρτ ).(3.1)

Given a rooted treeρτ , we consider the following equivalence relation. We say
that two verticesv andw in ρτ are equivalent if there exists a symmetryS ∈ Σ(ρτ )
such thatS(v) = w. We denote byS(v, ρτ ) the number of elements of the equivalence
class of the vertexv.

Following a standard notation, the symbol [ρτm1
1 , ρτm2

2 , . . . , ρτmk

k ] refers to the
rooted tree of order 1 +

∑k
i=1mi n(ρτi) obtained by grafting to a common rootm1

copies of the rooted treeρτ1, m2 copies of the rooted treeρτ2, etc... The following
result is (almost) evident.

Lemma 3.1. Letρτ = [ρτm1
1 , ρτm2

2 , . . . , ρτmk

k ] with ρτi pairwise distinct andmi ≥ 1.
Then for each vertexv of ρτ1

S(v, ρτ ) = m1S(v, ρτ1)

Let us now consider four rooted treesρτi, ρτj , ρτI , ρτJ as those described in
connection with Theorem 2.1 (see Fig. 2).

Lemma 3.2. With ρτi, ρτj , ρτI , ρτJ as above, letw be a vertex inρτJ . Then

S(w, ρτi)
σ(ρτi)

=
S(i, ρτI )
σ(ρτI )

S(w, ρτJ )
σ(ρτJ )

(i is the root ofρτI ).

Proof. We begin by noticing that clearlyS(i, ρτI ) = 1; this factor is only included in
the formula for analogy with expressions to be found later. Assume that

ρτi = [ρτm0
J , ρτm1

1 , . . . , ρτmk

k ],

with distinct ρτJ , ρτ1, . . ., ρτk and positivem0, . . . , mk. Then

ρτI = [ρτm0−1
J , ρτm1

1 , . . . , ρτmk

k ].

By standard results ([2], Theorem 144A)

σ(ρτi) = m0!σ(ρτJ )m0m1!σ(ρτ1)m1 · · ·mk!σ(ρτk)mk ,

σ(ρτI ) = (m0 − 1)!σ(ρτJ )m0−1m1!σ(ρτ1)m1 · · ·mk!σ(ρτk)mk ;

thereforeσ(ρτi) = m0σ(ρτI )σ(ρτJ ). On the other hand by Lemma 3.1

S(w, ρτi) = m0S(w, ρτJ ).

This completes the proof.ut
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Fig. 3. The construction for Lemma 3.3

Next we consider a more complicated situation. Letτ be a tree of order≥ 3 and
consider distinct verticesi, j, k in τ with i andk adjacent toj (Fig. 3). Denote by
ρτI , ρτJ+ the rooted trees obtained by removing the edgei–j from τ . Denote by
ρτJ−, ρτK the rooted trees obtained by removing the edgej–k from τ .

Lemma 3.3. With the notations just introduced, letv (resp.w) be a vertex inρτI (resp.
ρτK). Then

S(v, ρτI )S(w, ρτJ+)
σ(ρτI )σ(ρτJ+)

=
S(v, ρτJ−)S(w, ρτK)
σ(ρτJ−)σ(ρτK)

.

Proof. The proof is very similar to that of Lemma 3.2 and will not be given.ut
Now (Fig. 4) consider a treeτ and a chain of adjacent verticesi1, i2, . . ., ik,

k ≥ 1. Denote byρτi1 (resp.ρτik ) the rooted tree obtained by choosingi1 (resp.ik)
to be the root. Ifk ≥ 2 denote byρτIj− andρτIj+1+, j = 1, . . . , k− 1 the rooted trees
obtained by removing the edgeij–ij+1 from τ .

Lemma 3.4. With the preceding notation

S(ik, ρτi1)
σ(ρτi1)

=
S(i1, ρτI1−)
σ(ρτI1−)

S(ik, ρτI2+)
σ(ρτI2+)

=
S(i1, ρτI2−)
σ(ρτI2−)

S(ik, ρτI3+)
σ(ρτI3+)

= · · · · · · · · · · · · · · ·
=

S(i1, ρτik )
σ(ρτik )

.

Proof. If k = 1 the expression above contains only one equality, which is obviously
satisfied. Ifk = 2, there are two equalities to prove; both are implied by Lemma 3.2.
For k ≥ 3, there arek equalities; the first and last have been proved in Lemma 3.2
above. The second is a consequence of Lemma 3.3 withi1, i2, i3 playing the role of
i, j, k respectively, etc...

The final result in this section will be the key point in the proof of the main
theorem.
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Fig. 4. The construction for Lemma 3.4

Lemma 3.5. In the situation of Lemma 3.4, suppose that the B-series (1.2) satisfies
the canonicity condition in Theorem 2.1. Then

− c(ρτi1)S(ik, ρτi1)
n(ρτi1)!

+
c(ρτI1−)S(i1, ρτI1−)

n(ρτI1−)!
c(ρτI2+)S(ik, ρτI2+)

n(ρτI2+)!

− c(ρτI2−)S(i1, ρτI2−)
n(ρτI2−)!

c(ρτI3+)S(ik, ρτI3+)
n(ρτI3+)!

+ · · · + (−1)k+1c(ρτik )S(i1, ρτik )
n(ρτik )!

= 0.

Proof. By using (3.1) and Lemma 3.4, we conclude that we have to prove that

− c(ρτi1)
α(ρτi1)γ(ρτi1)

+
c(ρτI1−)

α(ρτI1−)γ(ρτI1−)
c(ρτI2+)

α(ρτI2+)γ(ρτI2+)

− c(ρτI2−)
α(ρτI2−)γ(ρτI2−)

c(ρτI3+)
α(ρτI3+)γ(ρτI3+)

(3.2)

+ · · · + (−1)k+1 c(ρτik )
α(ρτik )γ(ρτik )

= 0.

Now we use (2.1)k−1 times, successively taking the verticesiα, iα+1, α = 1, . . . , k−1
to play the roles ofi andj in (2.1). This easily leads to (3.2).ut

4. Proof of the main result: sufficiency

4.1. Elementary differentials for Hamiltonian problems

Let us begin by considering the elementary differentialsF(ρτ )(y) in (1.2). For the
rooted treeρτ3,2 on the left of Fig. 5 this is the vector whosei-th component is given
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Fig. 5. Standard representation of a rooted tree and the representation of the same rooted tree useful in the
Hamiltonian case

by
f ijkf

jfk;(4.1)

here and elsewhere we use the convention of summation on repeated indices, super-
scripts denote components and subscripts derivatives (e.g.,f jk is the partial derivative
of the j-th component off with respect to thek-th componentyk of y). In (4.1) the
functions are evaluated aty. The general rule is that there is an indexi, j, k, . . . per
vertex and that a vertexk with sonsl1, . . ., lm introduces a factorfkl1,...,lm .

In the particular case where (1.4) holds and the system is Hamiltonian, it is useful
to write the elementary differentials in terms ofH rather than in terms off. If ξij are
the elements of the matrixΞ in (1.5), then (4.1) becomes in the Hamiltonian case

ξiIHIjkξjJHJξkKHK .(4.2)

This expression may be easily remembered after drawing the corresponding rooted
tree ρτ3,2 in the alternative way given on the right of Fig. 5. We have inserted in
each edge ofρτ3,2 an ‘electric resistor’. There is also a resistor between the root and
cross that highlights the root. Resistors in the graph correspond to factorsξ in (4.2),
vertices in the graph connected tok resistors correspond to ak-th derivative ofH.
There is an index at each end of each resistors. Expressions like (4.2) will be called
Hamiltonian elementary differentials.When the corresponding tree is of orderr, the
Hamiltonian elementary differential is said to be of orderr.

4.2. Hamiltonian elementary Jacobians

Now assume that B-series (1.2) (withf = Ξ∇H) has been written in terms of the
Hamiltonian elementary differentials; in order to check the symplecticness condition
(1.6) we have to begin by computing the Jacobian matrix of the transformation defined
by the B-series. Hence we have to find the Jacobian matrix of each Hamiltonian
elementary differential.

Let us do this for (4.2). The component (i, z) in the Jacobian of this Hamiltonian
elementary differential is obviously given by

ξiIHIjkzξjJHJξkKHK(4.3)

+ ξiIHIjkξjJHJzξkKHK

+ ξiIHIjkξjJHJξkKHKz.
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Fig. 6. Computation of the Jacobian of a Hamiltonian elementary differential

We may then visualize the process of computing the Jacobians as in Fig. 6. A ‘branch’
with the indexz is successively born from each vertex. The indexi attached to the
free end of the root resistor and the indexz at the new branch identify the components
of the Jacobian. There is summation in all the remaining indices.

Before we proceed, it is important to realize that in (4.3) the second and third
rows are equal; they only differ in the notation for the summation indices (the roles
of (j, J) and (k,K) are interchanged). Of course this is because the graphs (b) and
(c) in Fig. 6 are essentially the same; they only differ in the way they have been
depicted. We then rewrite (4.3) as

ξiIHIjkzξjJHJξkKHK + 2ξiIHIjkξjJHJzξkKHK =: D1
iz + 2D2

iz.(4.4)

Each of the matricesD1 and D2 are called(Hamiltonian) elementary Jacobians.
The Jacobian matrix of a Hamiltonian elementary differential is therefore a linear
combination with integer coefficients of (distinct) Hamiltonian elementary Jacobians.
The order of an elementary Jacobian is the order of the corresponding elementary
differential. Thus the elementary Jacobians in (4.4) are of order 3.

Going back to (4.3), the reason why the last two rows are equal can be restated by
saying that there is asymmetryof the rooted treeρτ3,2 that maps one of the end vertices
into the other. In other words the end vertices belong to the same equivalence class
of vertices, as defined in the previous section. When differentiating the Hamiltonian
elementary differential associated with the rooted treeρτ , the number of resulting
distinct elementary Jacobians equals the number of equivalence classes inρτ . Each
(distinct) elementary Jacobian appearsS(v, ρτ ) times, if v is the vertex where the
branch indicating differentiation is appended.

To sum up, the (i, z) component of the Jacobian of (1.2) is

Ψ ′iz = δiz +
∞∑
n=1

hn

n!

∑
ρτ∈RTn

c(ρτ )
∑

S(v, ρτ )D(v,ρτ )
iz .(4.5)
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Here δiz denotes the Kronecker symbol, the inner summation is extended to the
classes of equivalent verticesv in ρτ andD(v,ρτ )

iz denotes the (i, z) component of the
elementary Jacobian obtained by differentiating at vertexv the elementary differential
associated withρτ .

In view of (4.5), it is useful to regard the identity matrix (δiz) as the unique
elementary Jacobian of order 0 and setD∅

iz = δiz.

4.3. Elementary products

In order to check the condition (1.6) we have to see whether for eachz∗, z = 1, . . . , 2d

ψ′i∗z∗ξi∗iψ
′
iz = ξz∗z,(4.6)

with ψ′iz given by (4.5). It is then useful to begin by computing quantities like

D(v∗,ρτ∗)
i∗z∗ ξi∗iD

(v,ρτ )
iz

for pairs of elementary JacobiansD(v∗,ρτ∗),D(v,ρτ ). We first do this in some examples.
For the elementary JacobiansD1 andD2 in (4.4) we find

D1
i∗z∗ξi∗iD

2
iz = (ξi∗I∗HI∗j∗k∗z∗ξj∗J∗HJ∗ξk∗K∗HK∗ )ξi∗i(ξiIHIjkξjJHJzξkKHK).

We may use the identityξi∗iξi∗I∗ = δiI∗ to get some simplification: After some
rearrangement, we obtain

D1
i∗z∗ξi∗iD

2
iz = Hz∗j∗k∗iξj∗J∗HJ∗ξk∗K∗HK∗ξiIHIjkξjJHJzξkKHK(4.7)

The process is illustrated in Fig. 7(b). Two resistors have merged and disappeared.
The expression on the right of (4.7) can be associated with the ‘tree with two

branches’ in the bottom right corner of Fig. 7. Between adjacent vertices there is a
resistor, with an index at each end. There are two branches labelledz∗ andz. In the
factorsξab corresponding to the resistors,a is the index ‘closest’ to the branchz∗.
Vertices correspond to derivatives ofH.

As a second example, we find (Fig. 7(a)):

D2
i∗z∗ξi∗iD

2
iz = (ξi∗I∗HI∗j∗k∗ξj∗J∗HJ∗z∗ξk∗K∗HK∗ )ξi∗i(ξiIHIjkξjJHJzξkKHK)

= Hz∗J∗ξj∗J∗Hj∗ik∗ξk∗K∗HK∗ξiIHIjkξjJHJzξkKHK

In order to relate the last expression to the two-branch tree at the top right corner of
Fig. 7, we replaceξj∗J∗ by −ξJ∗j∗ so as to obey the rule that inξab the first index
a is closest to thez∗. Thus

D2
i∗z∗ξi∗iD

2
iz = −Hz∗J∗ξJ∗j∗Hj∗ik∗ξk∗K∗HK∗ξiIHIjkξjJHJzξkKHK).(4.8)

The matrices in the right hand sides of (4.7) and (4.8) (without the sign) will be called

elementary products of order 6. In general,D(v∗,ρτ∗)T
ΞD(v,ρτ ) equals plus or minus

an elementary product of order equal ton(ρτ∗) +n(ρτ ). The sign is + if between the
branchz∗ and the root inρτ∗ there is an even number of resistors (as in the bottom
left corner of Fig. 7, where there are 0 resistors). The sign is− for cases with an odd
number of resistors (as in the top left corner of Fig. 7, with the (j∗, J∗) resistor).
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Fig. 7. Two instances of the computation of an elementary product

The construction of the elementary products also works in cases where eitherρτ∗
or ρτ (but not both) are the empty rooted tree with elementary JacobianD∅.

Different combinations of elementary Jacobians may give rise to the same ele-
mentary product. For instance in Fig. 8 we see that there are 4 combinations that lead
to the elementary productD1T

ΞD2 we have considered before. For each combination
we have indicated whether the product arises with a + orwith a− sign.

In general, in the situation of Fig. 4 we have

−D∅T
ΞD(ik,ρτi1) = D(i1,ρτI1−)T

ΞD(ik,ρτI2+)

= −D(i1,ρτI2−)T
ΞD(ik,ρτI3+)

= . . . . . . . . .

= (−1)k+1D(i1,ρτik )T
ΞD∅.(4.9)

To prove the sufficiency part of Theorem 2.1, we replace in (4.6),ψ′i∗z∗ , ψ′iz by
their expansions in powers ofh as in (4.5), and multiply termwise the series. In the
result, there is a unique term containing the powerh0; this is δi∗z∗ξi∗iδiz = ξz∗z
and just matches the right hand side of (4.6). In the terms containing the power
hm, m ≥ 1, we group together the contributions to the same elementary product of
orderm. By (4.9), the coefficient of each elementary product is a sum of the form
considered in the left hand side of the identity in Lemma 3.5. This lemma shows that,
under the condition of the main theorem, all those sums vanish. Hence (4.6) holds
and the B-series is canonical.

5. Proof of the main result: Necessity

Clearly, the necessity of the condition in Theorem 2.1 is a consequence of the fol-
lowing result, that states the independence of distinct elementary products.

Lemma 5.1. LetΠ be an elementary product of orderk, (k = 1, 2, . . .). Then there is
a (polynomial) Hamiltonian functionH with d = k + 1 degrees of freedom for which
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Fig. 8. Shown below the dotted line are 4 different combinations of elementary Jacobians leading to the
same elementary product. The two-branch tree associated with the elementary product is displayed above
the dotted line

the entry (1,2) of the matrixΠ at y = 0 is 6= 0, while all other elementary products of
order k + 1 have vanishing (1,2) entry aty = 0.

Proof. Even though the proof is completely general, the underlying idea is best pre-
sented in an example. Let us consider the two-branch tree in Fig. 9, wherek = 5.
There arek − 1 resistors in the graph. Each resistor has an ‘entry’ end, i.e., an end
closest to the vertex with thez∗ branch. At each of thek − 1 entry ends we attach
the numbers 3, 4, . . . , k + 1. To the ‘exit’ end of the resistor whose entry has been
labelledi, we attach the numberi + d = i + k + 1. Finally attach the label 1 to thez∗
branch and the label 2 to thez branch.

We now form the Hamiltonian

H = y1y3y4 + y10 + y5y6y9 + y11 + y12y2.

There are as many terms being summed as vertices in the graph; a vertex connected
to branches or resistor endsi1, i2, . . . , il introduces a termyi1 · · · yil .
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Fig. 9. Graph for the proof of necessity

Assume that, for this Hamiltonian and aty = 0, an elementary productΠ∗ of
orderk + 1 has nonzero (1, 2) entry. We show that the two-branch tree forΠ∗ is the
same as the graph forΠ and henceΠ∗ = Π.

By construction ofH, derivatives ofH of the formH1,i1,···,im are 0 at the origin,
except forH134. This shows that the vertex of thez∗ branch is linked in the graph to
two vertices. Furthermore

Π∗
12 = H134ξ3IHI··· · · · ξ4JHJ··· +H143ξ4IHI··· · · · ξ3JHJ···

At the origin, one of the terms in the right hand side is nonzero. Without loss of
generality we may assume that the first is nonzero. (If the second is nonzero we
change the names of the summation indices.) Hence

H134ξ3IHI··· · · · ξ4JHJ··· 6= 0(5.1)

and in view of the structure ofΞ in (1.5), all terms in the sum (5.1) vanish except
the term withI = 3 +d = 9. In turn, all derivatives of the formH9,i1,···,im at y = 0
vanish exceptH956. By now, we have proved that in the two-branch tree forπ∗, the
z∗-branch vertex is joined to two other vertices and one of these is also adjacent to
three vertices. The iteration of this argument concludes the proof.

6. Application to Runge-Kutta methods

In this section, we assume that the B-series (1.2) is generated by ans-stage RK
method with weightsbi and coefficient matrix (aij). Then it is well known that the
quantitiesc(ρτ )/α(ρτ )γ(ρτ ) in (2.1) are simply the elementary weightsΦ(ρτ ). Hence
(2.1) reads

Φ(ρτi) + Φ(ρτj) = Φ(ρτI )Φ(ρτJ ).(6.1)

Let us further, set
ρτI = [ρτ1, . . . , ρτm]

for suitable (not necessarily distinct and possibly empty)ρτα, α = 1, . . . ,m and
similarly

ρτJ = [ρτ1, . . . , ρτn].

Then
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ρτi = [ρτJ , ρτ1, . . . , ρτm],

ρτj = [ρτI , ρτ
1, . . . , ρτn]

and, according to the definition of elementary weight, (6.1) becomes∑
ij

biaij
∏
α

Φi(ρτα)
∏
β

Φj(ρτ
β) +
∑
ij

bjaji
∏
α

Φi(ρτα)
∏
β

Φj(ρτ
β) =

(
∑
i

bi
∏
α

Φi(ρτα))(
∑
j

bj
∏
β

Φj(ρτ
β))

whereΦi denotes the elementary weight of thei-th stage. We rearrange as follows∑
ij

(
∏
α

Φi(ρτα))(biaij + bjaji − bibj)(
∏
β

Φj(ρτ
β)) = 0.(6.2)

(If ρτI = [∅], then
∏

α Φi(ρτα) is of course 1, and similarly forρτJ .)
From (6.2) we conclude that the condition

mij := biaij + bjaji − bibj = 0, 1≤ i, j ≤ s(6.3)

implies the canonicity of the B-series. Of course (6.3) is the well-known sufficient
condition for an RK method to be symplectic discovered by Lasagni [5], Sanz-Serna
[6] and Suris [9]] It is known that this condition is not necessary in the uninteresting
case where the RK method contains redundant stages. For methods with indepen-
dent stages Lasagni (see [1]) showed that (6.3) is also necessary for canonicity. The
available proof of necessity is rather lengthy and delicate.

Let us now provide an alternative necessity proof by using the theory of B-series.
Assume then that a RK method without equivalent stages ([2] Theorem 383B) is
canonical and consider the subspaceX of Rs spanned by the vectors with components∏

ρτ∈R̄T
Φi(ρτ ), i = 1, . . . , s,

where R̄T is any finite collection of rooted trees. The case wherēRT is empty is
allowed with the standard convention that∏

ρτ∈∅
Φi(ρτ ) = 1.

The subspaceX contains the vectore = [1, 1, . . . , 1]T and is obviously closed with
respect to componentwise multiplication of vectors. Furthermore for any two indices
i, j = 1, 2, . . . , s, there is a vectorv = [v1, v2, . . . , vs]T with vi 6= vj . In fact since
the i-th stage is different from thej-th stage,Φi(ρτ ) 6= Φj(ρτ ) for some rooted tree
ρτ . The Stone-Weierstrass theorem ([2], Sect. 306) entails thatX = Rs. Then (6.2) is
telling us that the bilinear form with matrix (mij) vanish in the whole ofRs. From
heremij = 0, i, j = 1, . . . , s, and (6.3) follows.
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