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Summary. B-series provide a powerful general tool to express numerical methods
for differential equations. Many differential equations are of Hamiltonian form and
there has been much recent interest in constructing so-called canonical or symplec-
tic integrators for the Hamiltonian case. In this paper we provide a necessary and
sufficient condition for a B-series to correspond to a canonical method.
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1. Introduction

Given a system of ordinary differential equationsFif

dy _
= 10).

a B-series [4], [3] is a formal expression

(1.1)

(12) v+ S RN,

n=1 " pTr€RT,

whereh is a real paramete?T,, is the set of all rooted treesr with n vertices,
c(pr) is a real coefficient associated with andF(p7)(y) is the elementary differential
corresponding ter evaluated ay € RP. (The notions of rooted tree and elementary
differential are revised in Sects.2 and 3 below.) B-series more general than (1.2)
are possible: the series may begin with a teiyn a a constant, rather than with
However in this paper we are only concerned with the format (1.2).

B-series are a powerful tool for studying numerical methods for the integration
of (1.1), see e.g. [3]. Assume that (1.1) is integrated by a Runge-Kutta (RK) or by a
g-derivative ¢ > 2) Runge-Kutta {RK) method. Denote by* = 1, 1(y) the result
of a step of lengthh starting fromy. Then the formal expansion gf in powers of
h is of the form (1.2); the coefficientqdp7) depend on the specific method, but not
on the problem (1.1) being solved. Furthermore, let us now denotg By ¢y, (y)
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the true value at time = h of the solution of (1.1) with initial valug att =0 (i.e.,
the mappingpy, ¢ is the h-flow of (1.1)). Then the formal expansion gf = ¢, ¢(y)
in powers ofh is also a B-series: the B-series such that, for each

(1.3) c(pr) = olp7),

wherea(pr) denotes the number of monotonic labellingspof

There has been much interest (see [7] for a survey) in developing numerical
methods adapted to the special case where (1.1) is a Hamiltonian system, .84
(d is called the number of degrees of freedom) and

(1.4) fly) = EVH(y),
where= = —=T = —=-1 s the matrix

104 Iy
(1.5) H_[Jd OJ,

V denotes the gradient operat®r = (9/9y%,...,0/0y??), and H is a real valued
function (the Hamiltonian). Of particular interest are so-called symplectic (or canon-
ical) methods. A mapping : 2%¢ — ®?? is called symplectic if

(1.6) YT EY

where)’ is the Jacobian matrix af. For eachH and eachh, the true flowy), =v g

of a Hamiltonian system is a symplectic transformation; this property is the most
important feature of Hamiltonian flows. A numerical methpds called symplectic

if ¢, =vm is a symplectic transformation for each step-sizand each Hamiltonian

H

I
n

)

It is then of clear interest to ascertain under which conditions on the coefficients
¢(p7), the B-series (1.2) defines a symplectic transformation for éamhd eacH of
the form (1.4). The main result of this paper (Sect. 2) answers this question. It turns
out that if a B-series satisfies the necessary and sufficient condition for symplecticness,
then the corresponding order conditions are greatly simplified (a fact that was known
[8] in the particular case where the B-series arises from a symplectic RK method).
The main result is proved in Sects. 3-5. The final Sect. 6 illustrates the application of
the main result to the particular instance of RK methods.

2. The main result

It is well known [2], [3] that the conditions for an RK @RK method to have order
> r are written invoking rooted treesr of ordern(pr) < r (i.e., havingr or fewer
vertices). The left section of Fig. 1 depicts the rooted trees of ordér The root of
each rooted trepr has been highlighted by appending a cross.

If in pr31 andp7s 2 in the figure we disregard the location of the roots, then both
graphs are identical; they consist of the same vertices joined by the same set of edges.
The graph obtained by disregarding the location of the root in a rooted tree is called
a free tree, or simply, a tree. Thus a treean be seen as an equivalence class of
rooted trees. On the right of Fig. 1 we have displayed the treeforder < 4. A
tree and the rooted trees belonging to it appear in the same row.

Now choose a tree of order> 2 and a pair of adjacent verticeandj in 7. By
choosingi (resp.y ) to play the role of root, we obtain a rooted treg (resp.pr;).
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Fig. 1. Rootedn-trees anch-trees,;n = 1,2,3,4

We say that the rooted trees; and p7; areneighbours.Thus, int31 if we choose
the leftmost vertex to be the root we obtaims 1, if we choose the central vertex
to be the root we obtaipTs»; thereforeprs 1 and pr3 > are neighbours. In a similar
manner,p741 andpra > are neighboursyrs 3 and pr4 4 are neighbours. The ‘straight’
tree with 5 vertices: — b — ¢ — d — e comprises three rooted trees. The rooted tree
obtained by setting the root atis not a neighbour of the rooted tree obtained by
setting the root at.

Figure 2 contains a tree, two neighboursr; and p7; and also the rooted trees
p7I, pTJ, With roots ati andj respectively, that arise when the edge joininand j
is removed fromr.

We may now give the main result in this paper. (For eaeh~(p7) represents,
as in [2] or [3], the corresponding density.)

Theorem 2.1. The B-series (1.2) is canonical, i.e., defines a symplectic transformation
for eachh and each Hamiltonian problem (1.1), (1.4), if, and only if, for each pair of
neighbourspr; and pr;

cpri) . er)) o) )

@D ernom)  alor)1(m) T atorn(er) alorin(ors)

The condition in (2.1) can be rewritten in a slightly different form. Denote by
[p7] the root tree obtained by grafting a rooted tieeinto a new root and denote
by pr1 - pm2 the rooted tree obtained fropar, pm by identifying their roots. Then in
(2.1), p; = prr-[prs] @and p7; = [p7] - p7; @nd the necessary and sufficient condition
for canonicity is that for any paipr;, p7; of rooted trees

clptr - [pTs]) N cpr] - p7s)
alprr - priD)v(err - lp7s))  allpri] - pro)v(lpT] - p71)
c(pr) c(pty)

~ alpr)v(or) alprs )V (pTs)’

Before we prove the main theorem in Sects. 3-5, let us point out an important
implication. Assume that a canonical B-series with coefficieifts) has order of
consistency> r — 1, » > 2, i.e. that it differs from the B-series of the true flow
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Fig. 2. The construction for the main result

in terms O(h™). Then, according to (1.3)(p7)/a(pr) = 1 wheneverpr has order
< r—1. Consider then a pair of neighbouyrs, p7; of orderr and apply the condition
(2.1) to obtain

dpri) ,  eery) 1 1
apmi)y(pm)  alpmi)v(ers)  ~(pr) Y(pTs)

The right hand side of this equality is easily seen [8] to eauat;)~* +~v(p7;) 1,
and therefore

dpri) . lemy) - 1 1

(2.2) aloryv(pms) ooy~ Aom) T o)

Now, if the order condition:(p7;)/a(p7;) = 1 associated withyr; holds, then (2.2)
shows thate(p7;)/a(pt;) = 1, i.e., the order condition associated wjth; holds. We
have proved the following lemma:

Lemma 2.1. For a canonical B-series of order » — 1, r > 2, the order conditions
corresponding to two neighbougs;, p7; of orderr are equivalent.

There are two ways in which this result can be strengthened. The first is to note
that a rooted tree may be its own neighbour. This happens, for instance in thg tree
setting the root at the left vertex leads 4@, 1, and setting the root at the adjacent,
right vertex also leads tpr 1, So thatpr 1 is its own neighbour.

If p7; = pr; and the conditions of the lemma hold, then (2.2) yiel@s;)/a(p7;) =
1, so that the order condition fgrr; is automatically satisfied. Trees, suchag
or 741, that contain a rooted treer; that is its own neighbour were called in [8]
superfluous.

The second way in which the lemma may be strengthened is to note that,
given two rooted treepr; and pr, in the same tree, there is a chaim; =
PTivs PTins PTiss - - - » PTi, = pTr Where two consecutive links are neighbours. Hence,
under the conditions of the lemma, the order conditions corresponding to any two
rooted treesr;, p7i in the same tree are equivalent. We summarize our discussion
as follows:

Theorem 2.2. For a canonical B-series of order r — 1, » > 2 to have order of
consistency r, itis (necessary and) sufficient that for each nonsuperfluous-tveieh
r vertices there exists a rooted trge in 7 for which the order condition(p7) = a(pT)
holds.
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3. Preliminary results

In this section we present some results on graph theory that are needed to prove the
main Theorem 2.1.

For each rooted trepr, we denote by¥(p7) the group of its symmetries ([2],
Definition 140F). The number of elements ¥{(p7) is denoted, as usual, by(p7).
Betweeno(p7r) and the quantities(p7), a(p7) and~(p7) introduced before there is
a relation ([2], Theorem 145E)

(3.1) n(p7)! = alp7)v(pT)o (pT).

Given a rooted tregr, we consider the following equivalence relation. We say
that two verticey andw in pr are equivalent if there exists a symmefiye X' (p7)
such thatS(v) = w. We denote by5(v, p7) the number of elements of the equivalence
class of the vertex.

Following a standard notation, the symbek{", p7,"?, ..., p7**] refers to the

rooted tree of order 1 {:f:l m; n(p7;) obtained by grafting to a common roet;
copies of the rooted tregr;, m, copies of the rooted treper,, etc... The following
result is (almost) evident.

Lemma 3.1. Letpr = [pr™, p13"2, ..., pr**] With p7; pairwise distinct andn; > 1.
Then for each vertex of p7;

S(v, pr) = m1S(v, p11)

Let us now consider four rooted trees;, p7;, p7r, p7; as those described in
connection with Theorem 2.1 (see Fig. 2).

Lemma 3.2. With p7;, p7;, p77, p7; @S above, letw be a vertex irnpr;. Then

S(w, pri) _ SG, pr1) S(w, pr.)
o(p7i) olprr)  olpts)
(¢ is the root ofpry).

Proof. We begin by noticing that clearl§ (i, pr;) = 1; this factor is only included in
the formula for analogy with expressions to be found later. Assume that

PT; = [pT}n07pT{nl7 e aPlenk]y
with distinct p7;, p71, ..., p7x and positivemy, ..., mg. Then
prr = [pry o pr™ e

By standard results ([2], Theorem 144A)

a(pr) = molo(pry)" malo(pm)™ - - - myplo(pm)™",
olpr) = (mo— Dla(pr))™ tmylo(pr)™ - - - mulo(pm)™;

thereforeo(p7;) = moo(prr)o(p7y). On the other hand by Lemma 3.1
S(w, p1;) = moS(w, p7,).

This completes the proof.O
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Fig. 3. The construction for Lemma 3.3

Next we consider a more complicated situation. tdie a tree of order 3 and
consider distinct vertice§ j, k£ in 7 with ¢ and k£ adjacent toj (Fig. 3). Denote by
p71, pT+ the rooted trees obtained by removing the edggefrom 7. Denote by
pTj_, pTr the rooted trees obtained by removing the egge from 7.

Lemma 3.3. With the notations just introduced, le{resp.w) be a vertex irpr; (resp.
pTE). Then
S, pr)S(w, pry+) _ S, p15-)S(W, p7K)
a(prr)o(pTs+) o(prs-)o(pT)

Proof. The proof is very similar to that of Lemma 3.2 and will not be givem

Now (Fig. 4) consider a tree and a chain of adjacent vertices i, ..., i,
k > 1. Denote bypr;, (resp.pr;,) the rooted tree obtained by choosiig(resp.ix)
to be the root. Ifc > 2 denote bypr;, andp7s,,,+, j = 1,...,k — 1 the rooted trees
obtained by removing the edgg—i;.1 from 7.

Lemma 3.4. With the preceding notation

SGik, priy)  _ S(, p11-) S(i, pT1,4)
o(ptiy) o(prr,-)  o(pTe)
S(ix, prr,—) S(i, pT15+)
0(pT12—) 0(p7_13+)
S(ilapTik)
a(pTik) ’

Proof. If k = 1 the expression above contains only one equality, which is obviously
satisfied. Ifk = 2, there are two equalities to prove; both are implied by Lemma 3.2.
For k > 3, there arek equalities; the first and last have been proved in Lemma 3.2
above. The second is a consequence of Lemma 3.3iyith, i3 playing the role of

i, 7, k respectively, etc...

The final result in this section will be the key point in the proof of the main
theorem.
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Fig. 4. The construction for Lemma 3.4

Lemma 3.5. In the situation of Lemma 3.4, suppose that the B-series (1.2) satisfies
the canonicity condition in Theorem 2.1. Then

p7iy)S(ik, pTiy) + cpr1,-)S (i1, pr1,—) p71,4)S (iR, pT1,+)
n(pTi,)! n(prr,—)! n(prie)!
C(przf)S(ila ,07—]27) C(P713+)S(ik, p7—13+)
n(pr,-)! n(p7r,+)!
+ o+ (_1)k+1C(PTik)S(i1, PTi) _ 0
n(pi)!
Proof. By using (3.1) and Lemma 3.4, we conclude that we have to prove that

. C(pTil) + c(pTh—) C(prz"')
alpri)v(eri)  alprr,)(pTr-) alpTr )V (pT1,+)
(32) _ c(pTIZ*) C(pTI3+)

alprr,- )V (pT1,-) alpTre )V (PpT15+)
L _ 1\ktl C(pTik) -
O ot T

Now we use (2.1k—1 times, successively taking the vertiégSio+1, = 1,...,k—1
to play the roles of andj in (2.1). This easily leads to (3.2).0

4. Proof of the main result: sufficiency
4.1. Elementary differentials for Hamiltonian problems

Let us begin by considering the elementary differentis7)(y) in (1.2). For the
rooted treeprs > on the left of Fig. 5 this is the vector whos¢h component is given
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Fig. 5. Standard representation of a rooted tree and the representation of the same rooted tree useful in the
Hamiltonian case

by

(4.1) Tt £%

here and elsewhere we use the convention of summation on repeated indices, super-

scripts denote components and subscripts derivatives (8.6 the partial derivative

of the j-th component of with respect to the:-th component/* of y). In (4.1) the

functions are evaluated gt The general rule is that there is an indey, &, ... per

vertex and that a vertek with sonsiy, ..., l,, introduces a factoﬁim_’lm.
In the particular case where (1.4) holds and the system is Hamiltonian, it is useful

to write the elementary differentials in terms Hf rather than in terms df. If &;; are

the elements of the matri¥ in (1.5), then (4.1) becomes in the Hamiltonian case

4.2) SirHrjn& H i€ Hy

This expression may be easily remembered after drawing the corresponding rooted
tree p73» in the alternative way given on the right of Fig. 5. We have inserted in
each edge oprs > an ‘electric resistor’. There is also a resistor between the root and
cross that highlights the root. Resistors in the graph correspond to fgctorgt.2),
vertices in the graph connected koresistors correspond to /ath derivative of H.

There is an index at each end of each resistors. Expressions like (4.2) will be called
Hamiltonian elementary differential$Vhen the corresponding tree is of orderthe
Hamiltonian elementary differential is said to be of order

4.2. Hamiltonian elementary Jacobians

Now assume that B-series (1.2) (with- =V H) has been written in terms of the
Hamiltonian elementary differentials; in order to check the symplecticness condition
(1.6) we have to begin by computing the Jacobian matrix of the transformation defined
by the B-series. Hence we have to find the Jacobian matrix of each Hamiltonian
elementary differential.

Let us do this for (4.2). The componerit £) in the Jacobian of this Hamiltonian
elementary differential is obviously given by

(4.3) SirHrjr-650H 8 Hy
+ GrHrpéoH i ek Hi
+ GirHrjéjoH ik Hi o
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(b)

Fig. 6. Computation of the Jacobian of a Hamiltonian elementary differential

We may then visualize the process of computing the Jacobians as in Fig. 6. A ‘branch’
with the indexz is successively born from each vertex. The indeattached to the

free end of the root resistor and the indeat the new branch identify the components

of the Jacobian. There is summation in all the remaining indices.

Before we proceed, it is important to realize that in (4.3) the second and third
rows are equal; they only differ in the notation for the summation indices (the roles
of (j,J) and ¢, K) are interchanged). Of course this is because the graphs (b) and
(c) in Fig. 6 are essentially the same; they only differ in the way they have been
depicted. We then rewrite (4.3) as

(4.4)  CirHpp&rHiéerx Hie + 26 Hrjnéj s Hy i Hie = DY, + 2D2,.

Each of the matricesD® and D? are called(Hamiltonian) elementary Jacobians.
The Jacobian matrix of a Hamiltonian elementary differential is therefore a linear
combination with integer coefficients of (distinct) Hamiltonian elementary Jacobians.
The order of an elementary Jacobian is the order of the corresponding elementary
differential. Thus the elementary Jacobians in (4.4) are of order 3.

Going back to (4.3), the reason why the last two rows are equal can be restated by
saying that there is symmetryof the rooted tregrs » that maps one of the end vertices
into the other. In other words the end vertices belong to the same equivalence class
of vertices, as defined in the previous section. When differentiating the Hamiltonian
elementary differential associated with the rooted tpee the number of resulting
distinct elementary Jacobians equals the number of equivalence classesBach
(distinct) elementary Jacobian appedi, p7) times, if v is the vertex where the
branch indicating differentiation is appended.

To sum up, thei( z) component of the Jacobian of (1.2) is

- h" U,pT
(4.5) W =8+ . > epn)> S, pr)DL.
n=1

' pTERTY,
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Here ;. denotes the Kronecker symbol, the inner summation is extended to the
classes of equivalent verticesn pr and DEZ””) denotes thei(z) component of the
elementary Jacobian obtained by differentiating at vestéhe elementary differential
associated withpr.

In view of (4.5), it is useful to regard the identity matrix;{) as the unique
elementary Jacobian of order 0 and Qﬁ = 6;2.

4.3. Elementary products

In order to check the condition (1.6) we have to see whether forggeh=1,...,2d

(46) w;*z*fl*lw:z = §Z*Z7
with ¢}, given by (4.5). It is then useful to begin by computing quantities like

DY g DT
for pairs of elementary Jacobiafg? *7"), D:r7) We first do this in some examples.
For the elementary Jacobiafi® and D? in (4.4) we find

Di . &ini D2, = (Epepe Hpe e &g e Hype € i Hiex)imi(Cir Hrjn€ s H o€ Hic).

We may use the identity¥;-;&;«;+ = 6;;+ to get some simplification: After some
rearrangement, we obtain

(4.7) D} ,.&iDZ = Hopjugribje e Hye € i Hioe &1 Hpjn&s 0 H o€ Hie

The process is illustrated in Fig. 7(b). Two resistors have merged and disappeared.
The expression on the right of (4.7) can be associated with the ‘tree with two
branches’ in the bottom right corner of Fig. 7. Between adjacent vertices there is a
resistor, with an index at each end. There are two branches lakgélladd z. In the
factors¢,, corresponding to the resistors,is the index ‘closest’ to the brancti.
Vertices correspond to derivatives &f.
As a second example, we find (Fig. 7(a)):

D2 .&+;D?, = (Eirp-Hyjop=Eje g H oo Epe e Hie)imi(€ir Hrjnj s H 2 Erxc Hr)
= Hoego&jegr Hjmir Eo o» He+ Eir Hrjn€ g H g6 Hie

In order to relate the last expression to the two-branch tree at the top right corner of
Fig. 7, we replac€;- ;- by —¢;-;« so as to obey the rule that #, the first index
a is closest to the*. Thus

(4.8) D2 .6 D2, = —H o po g jo Hjigon Epr i Hio 1 Hp i€ H g o €p i Hic).

The matrices in the right hand sides of (4.7) and (4.8) (without the sign) will be called

elementary products of order 6. In gener@f?”-»™")" S D»7) equals plus or minus
an elementary product of order equalit(yr*) + n(p7). The sign is + if between the
branchz* and the root inp7* there is an even number of resistors (as in the bottom
left corner of Fig. 7, where there are 0 resistors). The sigh fer cases with an odd
number of resistors (as in the top left corner of Fig. 7, with tjie .{*) resistor).
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Fig. 7. Two instances of the computation of an elementary product

The construction of the elementary products also works in cases where gither
or pr (but not both) are the empty rooted tree with elementary Jacabfan

Different combinations of elementary Jacobians may give rise to the same ele-
mentary product. For instance in Fig. 8 we see that there are 4 combinations that lead

to the elementary produtt]?lTED2 we have considered before. For each combination
we have indicated whether the product arisehwit+ orwith a — sign.
In general, in the situation of Fig. 4 we have

_DQTED(i’“’pTil) — D(il’pﬁl*)TE’D(ikvl)ﬁy)

_D(il,/lTIz—)TED(ik7/)7'13+)

(4.9) = (~1yplrmi) = o,

To prove the sufficiency part of Theorem 2.1, we replace in (4.6),., ¢;, by
their expansions in powers @f as in (4.5), and multiply termwise the series. In the
result, there is a unique term containing the pPower this is §;«,«&i0;, = Eovs
and just matches the right hand side of (4.6). In the terms containing the power
h™, m > 1, we group together the contributions to the same elementary product of
orderm. By (4.9), the coefficient of each elementary product is a sum of the form
considered in the left hand side of the identity in Lemma 3.5. This lemma shows that,
under the condition of the main theorem, all those sums vanish. Hence (4.6) holds
and the B-series is canonical.

5. Proof of the main result: Necessity

Clearly, the necessity of the condition in Theorem 2.1 is a consequence of the fol-
lowing result, that states the independence of distinct elementary products.

Lemma 5.1. Let IT be an elementary product of ordér (k = 1,2,...). Then there is
a (polynomial) Hamiltonian functioi/ with d = k + 1 degrees of freedom for which
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Fig. 8. Shown below the dotted line are 4 different combinations of elementary Jacobians leading to the
same elementary product. The two-branch tree associated with the elementary product is displayed above
the dotted line

the entry (1,2) of the matriX/ aty = 0 is # O, while all other elementary products of
order k + 1 have vanishing (1,2) entry gt= 0.

Proof. Even though the proof is completely general, the underlying idea is best pre-
sented in an example. Let us consider the two-branch tree in Fig. 9, wkhers.
There arek — 1 resistors in the graph. Each resistor has an ‘entry’ end, i.e., an end
closest to the vertex with the* branch. At each of thé — 1 entry ends we attach
the numbers 34, ...,k + 1. To the ‘exit’ end of the resistor whose entry has been
labelled:, we attach the number+d =i + k + 1. Finally attach the label 1 to the
branch and the label 2 to thebranch.

We now form the Hamiltonian

H = yyPy* + g0+ %% + Mt + %2

There are as many terms being summed as vertices in the graph; a vertex connected
to branches or resistor ends i, . .., i; introduces a terng’ - - - /.
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Fig. 9. Graph for the proof of necessity

Assume that, for this Hamiltonian and wat= 0, an elementary produdi* of
orderk + 1 has nonzero (1, 2) entry. We show that the two-branch treé/fois the
same as the graph fdf and hencel* = II.

By construction ofH, derivatives off of the formHy;, ... ;,. are O at the origin,
except forHy34. This shows that the vertex of thé branch is linked in the graph to
two vertices. Furthermore

IIf, = Hizgéar Hy... - -4y H g + Higar Hy... - - - &35 H ...

At the origin, one of the terms in the right hand side is nonzero. Without loss of
generality we may assume that the first is nonzero. (If the second is nonzero we
change the names of the summation indices.) Hence

(5.1) HiaalarHy... -+~ &a7H ;.. 70

and in view of the structure of in (1.5), all terms in the sum (5.1) vanish except
the term with! = 3+d = 9. In turn, all derivatives of the forntfy;, ...;  aty =0
vanish exceptigse. By now, we have proved that in the two-branch tree oy the
z*-branch vertex is joined to two other vertices and one of these is also adjacent to
three vertices. The iteration of this argument concludes the proof.

6. Application to Runge-Kutta methods

In this section, we assume that the B-series (1.2) is generated Bystage RK
method with weights; and coefficient matrixd;;). Then it is well known that the
quantitiesc(p7)/a(pr)y(p7) in (2.1) are simply the elementary weighit§or). Hence
(2.1) reads

(6.1) P(pr;) + P(p1y) = P(pT1)P(PT1)-
Let us further, set
prr = [p71, .5 pTi]

for suitable (not necessarily distinct and possibly empty), « = 1,...,m and
similarly
pry =lprt, . p7"].

Then
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pTi = [pTJv PTLy .-y anL]v
pri = Lot p7"]

and, according to the definition of elementary weight, (6.1) becomes
Z bia;; H i(p7a) H b;(p77) + Z bjaj; H ?i(p7a) H ®;(pr’) =
ij o B ij a B
O v [T 2itora)O_b; [ 25(o7™)
i et J B
where®; denotes the elementary weight of théh stage. We rearrange as follows

(62) Y (T 2ilora)bias; + bjaz — bib ) 250077 = 0.
ij « B

(If prr =[0], then[],, ®:i(p7.) is of course 1, and similarly fosr;.)
From (6.2) we conclude that the condition

(63) my; = biaij + bjaji — bzbj =0, 1<4,5<s

implies the canonicity of the B-series. Of course (6.3) is the well-known sufficient
condition for an RK method to be symplectic discovered by Lasagni [5], Sanz-Serna
[6] and Suris [9]] It is known that this condition is not necessary in the uninteresting
case where the RK method contains redundant stages. For methods with indepen-
dent stages Lasagni (see [1]) showed that (6.3) is also necessary for canonicity. The
available proof of necessity is rather lengthy and delicate.

Let us now provide an alternative necessity proof by using the theory of B-series.
Assume then that a RK method without equivalent stages ([2] Theorem 383B) is
canonical and consider the subspacef R® spanned by the vectors with components

H @Z(pT)7 i:17"'755

pTER_T

where RT is any finite collection of rooted trees. The case WhEE is empty is
allowed with the standard convention that

H &;(pr) = 1.

pTE@

The subspace contains the vectoe = [1,1,...,1]" and is obviously closed with
respect to componentwise multiplication of vectors. Furthermore for any two indices
i,j=1,2,...,s, there is a vectow = [v1,v?,...,v°]"T with v* # 7. In fact since

the i-th stage is different from thg-th stage®;(p7) # @;(p7) for some rooted tree

p7. The Stone-Weierstrass theorem ([2], Sect. 306) entailsXhatR®. Then (6.2) is
telling us that the bilinear form with matrix:(;;) vanish in the whole oft*. From
herem;; =0,4,5 =1,...,s, and (6.3) follows.
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