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Summary. We consider the question of whether multistep methods inherit in 
some sense quadratic first integrals possessed by the differential system being 
integrated. We also investigate whether, in the integration of Hamiltonian sys- 
tems, multistep methods conserve the symplectic structure of the phase space. 
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1 Introduction 

The construction and analysis of so-called symplectie or canonical numerical 
integrators for Hamiltonian systems of differential equations has received much 
attention in recent years [3, 6-15, 17]. By definition, a numerical integrator 
is said to be canonical if it preserves the symplectic structure of the phase 
space (see Sect. 4 below). Most of the work on canonical integrators has dealt 
with one-step formulae, either within the standard classes of Runge-Kutta or 
Runge-Kutta-Nystr6m methods [8-11, 17] or within classes of special methods 
derived via generating functions [3, 6]. The study of canonical multistep methods 
has been restricted to the explicit midpoint (leap-frog) rule [12, 14, 15], a scheme 
which is of interest in the time-integration of non-dissipative partial differential 
equations. The main purpose of the present paper is to investigate under which 
conditions a linear multistep method (LMM) or the related one-leg method 
(OLM) are canonical when applied to Hamiltonian systems of differential equa- 
tions. We also consider the question of whether quadratic first integrals con- 
served by the differential system being integrated are in some sense inherited 
by LMMs or OLMs. For  this second question the system is not assumed to 
have Hamiltonian form. 

An overview of the paper is as follows. In Sect. 2 we consider the second 
question mentioned above, i.e. conservation of quadratic first integrals. We prove 
that symmetric OLM inherit, in some sense, the quadratic first integrals of 
the differential system. In answering this second question, we associate with 
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each symmetric k-step method a k • k square matrix A, whose properties are 
investigated in Sect. 3. In Sect. 4 we show that a OLM is canonical if it is 
symmetric. In the final Sect. 5, we prove that the symmetry of the method is 
actually necessary both for the conservation of the quadratic quantities and 
for the conservation of the symplectic structure. We also show that symmetric 
LMMs do not share the conservation properties of their one-leg counterparts. 

We shall use the following notations. We consider real systems of differential 
equations of the general form 

(1.1) dy/dt =f(t '), 

whe re f  is defined and smooth in an open domain f2 c ]Ra. Each multistep method 
is specified by its (real) characteristic polynomials 

k k 
(1.2) P(Z)= Z O~J z j '  Otk=#O' if(Z)= E flJ Zj' 

j=O j=O 

where we always assume the normalization 

(1.3) a(1) = 1. 

Several formulae to come are easier to write if we introduce the convention 

(1.4) ~i=fli=O, for i>k  or i<0 .  

We shall consider both the standard LM version 

(1.5) p (E)y, = h ~r (E)f(y,,) 

and the one-leg version 

(1.6) p(E)y,  = hf(a(E)y,), 

where E denotes the standard shift operator Ey,  =y ,+  1- 
The methods (1.5)-(1.6) are said to be symmetric if 

(1.7) ~j= --~k-i,  fli=flk_i, j=0(1)k ,  
i.e. 
(1.8) p(Z)--  --zkp(1/Z),  ~(Z)-- zk~(1/Z). 

This is equivalent to the following reversibility requirement for the numerical 
solutions: whenever the vectors y . . . . .  , Y, + k satisfy the relation (1.5) (respectively 
(1.6)) the vectors Y,+k . . . . .  y ,  satisfy (1.5) (respectively (1.6)) with h replaced by 
--h. It is perhaps worth noticing that the equivalence between the reversibility 
of the numerical solution and (1.7)-(1.8) holds true because we assume (1.3), 
which rules out the (totally uninteresting) case or(l)=0. If a (1 )=0  were allowed, 
then it would be possible to consider in (1.5) the situation with 

OCj=O~k-j, flj= --ilk--i, j = 0 ( 1 ) k  

and the LMM would also be time-reversible. Of course a method with t~(1)=0 
cannot be convergent: it is either inconsistent or unstable. 

Finally (1.5)-(1.6) are said to be irreducible if the polynomials p and tr have 
no common root. 
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2 Quadratic first integrals 

In this section we assume that there exists a symmetric d • d matrix S, $4:0, 
such that the corresponding quadratic form 

(2.1) Qs(Y) = yT S y 

is a first integral or invariant quantity of the system (1.1), i.e. for any solution 
y(t) of (1.1) Qs(y(t)) is time-independent. For  this to be true, it is of course 
necessary and sufficient that, for all y in the domain (2 off ,  

(2.2) yT S f07 ) -~ O. 

If (1.1) is numerically integrated with a one-step method it is natural to ask 
whether for the numerical solution y,  it is true that Qs(y,) is also independent 
of the time-level n. For  Runge-Kutta methods this issue was considered in [16]. 
For  multistep formulae the situation is more complex, as, for a' k-step formula, 
the information carried at each step is in fact a kd-dimensional vector 

(2.3) -- T T T 
K -  [y . . . . . .  y.+k ,] , 

so that the relevant question is whether, for numerical solutions, Q~(Y,) is n- 
independent for some suitable kd • kd symmetric matrix s ($4:0). It is natural 
to demand that 2;= A | S, with A a k • k symmetric matrix depending on the 
numerical method but not on the specific system (1.1) being integrated or on 
the specific quadratic form Qs (a given system may of course possess several 
quadratic first integrals (2.1)). Note that in the case k =  1 the conservation of 
QA| A 4:0 is equivalent to the conservation of Qs. 

In view of the preceding discussion, we consider the following question: 
under which condition on the method coefficients, is there a k x k symmetric 
matrix A = {2ii } (A 4:0) such that, for solutions of (1.6), (2.2~(2.3) imply 

(2.4) QA~s(Yn+  1)-- ~A Qs(Yn) = 0 ,  

that is 

(2.5) 
k k 
y T ~,oY,+iSY.+j - ~ ~'ijY T- l+iSYn - 1 + j : 0 .  

i , j = l  i . j = l  

To answer this question we begin by taking the inner product of (1.6) and 
a(E)y,  to obtain, in view of (2.2), 

k 

2 
i,j=O 

(~, ~ + ~j13,) y~+ ~Sy.  +~ = O. 

It is then clear that (2.5) would hold true if for arbitrary real x0 . . . . .  Xk, Zo . . . . .  Zk 

k k k 
~LijXlXj-- Z ~LijXi--lZJ -1-'- 2 (O~iflJ-~O~Jfli) XiZJ ' 

i,j=l / , j=1 i,j=O 
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a condition that in terms of generating functions can be rewritten as 

k 

(2.6) (XZ--  1) ~ 2uX'-  ' Z j - '  
i , j = l  

=p(X)a(Z)+p(Z)a(X).  

On noticing the symmetric roles played by i and j, (2.6) gives (k+ l)(k+2)/2 
independent linear equations for the k(k+ I)/2 undetermined coefficients 2 u. 
Therefore for A to exist, the coefficients al and fl~ should satisfy k +  1= 
[(k + 1)(k + 2 ) -  k(k + 1)]/2 compatibility conditions. These conditions are easily 
found in terms of the characteristic polynomials: it is clear that (2.6) implies 
that p(X)a(Z)+ p(Z)a(X) vanishes when X = 1/Z, i.e. 

p ( Z )  _ _ _  
~(z) 

a condition which is equivalent to the symmetry requirement (1.8). (Note that 
in (1.7) there are effectively k + 1 independent conditions, as required.) 

Since it has not been proved that (2.6) is necessary for (2.5) to hold, the 
argument just outlined does not prove that the symmetry of the method is 
necessary for conservation. This necessity will be proved in Sect. 5 below. How- 
ever the argument is helpful in that it focuses the attention on the class of 
symmetric methods. Assume then that (1.6) is symmetric. Then the right hand 
side of (2.6) vanishes on the hyperbola X =  1/Z and, by well-known results 
from algebraic geometry, this right hand side must be a multiple of X Z - 1  
so that A exists uniquely. In order to explicitly determine A, we equate in 
(2.6) coefficients of like powers of X and Z. Taking the powers X i Z j in descending 
order readily leads to the solution 

(2.7) 2u= ~ (e~+mflj+,,+ai+~fl~+,,), O<=i, j<=k. 
m>O 

(Recall we are using (1.4).) It is also possible to equate powers in ascending 
order to find 

(2.8) 2 u = -  ~ (ei+,,flj+m+ej+mfli+m), O<i, j<_k. 
m < 0  

It is a simple matter to check, using (1.7), that (2.7) and (2.8) are in fact equivalent. 
To sum up, we have proved the following result. 

Theorem 2.1. Assume that the one-leg k-step method (1.6) is symmetric. Then, 
the conservation law (2.4) holds, with A given by (2.7)-(2.8), whenever (2.2) is 
satisfied, i.e. whenever (2.1) is a conserved quantity of the system (1.1) being inte- 
grated. 

Remark. In (2.4) it is tacitly assumed that, for the value of h under consideration 
and for the given Ir the Eq. (1.6) for Y,+k possess a solution, so that Y,+I 
makes sense. 
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It is also possible to look at the case where in (2.2) we replace = by < ,  
so that the quadratic form (2.1) decreases along solutions of (1.1). By arguing 
as above, it is easy to show that, for symmetric one-leg methods, (2.4) holds 
with = replaced by <.  (A is still given by (2.7)-(2.8).) 

Before closing this section we would like to emphasize that there is a close 
connection between the material in this section and the issue of G-stability 
[2, 4, 5]. In particular the technique of proof we have used has been borrowed 
from I-2]. (In a first draft of the present article, we employed an alternative, 
more cumbersome technique, based on companion matrices as in Sect. 5.) 

3 Properties of the A matrix 

In this section we investigate some properties of the A matrix that has been 
associated with each symmetric OLM. We begin by noticing that A is not 
only symmetric in the usual sense (i.e. with respect to its main diagonal) but 
also with respect to the diagonal that joins the right upper corner with the 
left lower corner. 

Theorem 3.1. Let the method (1.6) be symmetric, then its A matrix defined in 
(2.7)-(2.8) satisfies 

(3.1) •ij=•k_j+l,k_i+l, l <i, j<k .  

Proof. It is sufficient to write the right hand side of (3.1) using (2.7) and to 
write the corresponding left hand side using (2.8). []  

Our next result is as follows. 

Theorem 3.2. Let the method (1.6) be symmetric, then its A matrix (2.7)-(2.8) 
is singular if and only if the method is reducible. 

Proof. It is well known from classical algebra that p and ~r possess a common 
factor if and only if the determinant (resolvent) of the 2k x 2k matrix 

M (p, tr) = 

--~0 0~1 0(2 " ' "  (~k-  1 O~k 0 0 . . .  0 -  

0 0~0 0~1 - ' "  O~k - 2 ~k  - 1 ~k 0 . . .  0 

0 0 % ... ~k-3 ~k-2 ~k-~ ~k -.. 0 

0 0 0 . . .  O~ 0 r 0~2 0~3 " ' "  O~k 

/~o /~ /~ .-. /~-~ /~ 0 0 . . .  0 

o t~o /~, ... t~-~  / ~ - ,  t~ o . . .  o 

0 0 flO " ' "  i l k -  3 i l k - 2  i l k - 1  f lk  - "  0 
. . ~ . . .  �9 ~ - . . . .  

o o o . . .  /~o th / h  / h  . . .  t~  

equals 0. The key point is to observe that this implies that the method is reducible 
if and only if the product M(a, p)rM(p, a) is a singular matrix. Now matrix 
multiplication using (1.7), (2.7), (2.8) reveals that 

M (tr, p)X M (p, tr)=[- A O] 

and this concludes the proof. []  
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We now turn our attention to the stability polynomial 

(3.2) ~.(z)=p(z)-it~(z). 

If we assume irreducibility, it is a simple matter to prove that, for symmetric 
methods, rcu cannot have zeros with IZI = 1 if It is not purely imaginary. There- 
fore, for a symmetric irreducible method and # in the left half plane ~R (#)< 0, 
the number r of roots of n~ that lie in the unit disk IzI < 1 is an integer indepen- 
dent of the particular choice of #. Of course r = k corresponds to A-stable meth- 
ods. 

Theorem 3.3. Let the method (1.6) be symmetric and irreducible. Then: 

(i)  The method is A-stable if and only irA is positive definite. 
(ii) More generally, the following statements are equivalent. 

(a)  For It in the left half plane 9~(It)<0, the stability polynomial (3.2) has 
r roots inside the unit disk IZ I = 1 and k - r  roots outside the unit disk. 

(b)  The matrix A has r positive eigenvalues and k -  r negative eigenvalues. 

Proof It is clearly enough to prove (ii). We argue as in [2]. Choose # real 
and negative so that the roots ZI,  Z2 . . . . .  Zk of (3.2) are simple (the number 
of values of It for which the stability polynomial has multiple roots is finite 
due to the irreducibility). Assume that for 1 < i<  r, {Zil < 1, while, for r <  i<k, 
IZil > 1 and let V be the k • r complex matrix with entries Z~-1. Then for any 
r-dimensional complex vector b, the equalities (2.6) and (3.2) imply that 

bHVHAVb = ~ btZ~-'2,,jZJ,,,-'bm=21#l ~ ~ea(2e)(1--ZeZ,.)-xtY(Zm)bm �9 
~,m,i,j [,m 

We now expand ( 1 - Z t Z , . ) - 1  to obtain 

bHVHAVb=2[Itl ~ ~ 6eZ~a(Ze)tr(Zm)Z~mb,,=2[it) ~ )Ea(Zm)ZVbm[2~ O. 
v=0 g, rn v=0 m 

We conclude that the restriction of A to the column space of V is positive 
semidefinite and hence A has, at least, r eigenvalues > 0. For  the roots outside 
the unit disk one can proceed in an analogous way, but now the expansion 
is 

( i  - -ZrZm)-  I ~___ __ ~ (Zg, Z m ) - ( v +  1), 
v=O 

so that we find, at least, k - r  eigenvalues <0.  Since 0 eigenvalues are excluded 
by Theorem 3,2, the proof  is concluded. [ ]  

4 Symplectic multistep methods 

We now examine the case where the system (1.1) being integrated is of Hamilto- 
nian form [1], i.e. the corresponding vector f ie ldf  is given by 

(4.1) f(.v) = 6) -1 grad H (y), 
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where H is a smooth real function (the Hamiltonian function) and O is a non- 
singular skew-symmetric matrix. If the dimension d of the space is odd, it is 
not possible to have nonsingular skew-symmetric matrices and hence d must 
be of the form d = 2g, where the integer g is known in mechanics as the number 
of degrees of freedom. Usually, O is the so-called standard symplectic matrix 

o[o 
so that when y is partitioned as y =  [px, qT]V, with p, q in 1R g, (1.1) takes the 
familiar form 

d p / d t :  -OH(p,  q)/Oq, dq/dt=OH(p,  q)/Op. 

A smooth transformation y ~ T(v) in y-space is said to be symplectic (with 
respect to O) if the Jacobian O T/Oy satisfies 

(4.2) O T T O 0 T 0-/- 

This relation can also be expressed by saying that the transformation T preserves 
the differential form (subindices in brackets denote components) 

d 

cn o = ~, Oemdyto ^ dyt,. J. 
~(,m= 1 

The phase flow of (1.1)-(4.1) (i.e. the solution of the system of ODEs, at 
any fixed time, seen as a function of the initial values) is a symplectic transforma- 
tion. All qualitative properties of solutions of Hamiltonian systems can be de- 
rived from the symplectic character of the corresponding flows. In fact, if the 
domain f2 of definition of H is simply connected, the property of having a 
symplectic flow completely characterizes the Hamiltonian systems [1, 12]. It 
is therefore of interest [3, 6, 9, 11, 12] to construct numerical integrators that 
are symplectic. For  multistep methods this means that the mapping Y, ~ Y.+ 1 
must be symplectic with respect to some nonsingular skew-symmetric kd x kd 
matrix to be determined. We are going to show that for symmetric, irreducible 
OLMs the matrix A | O does the trick. Note that according to Theorem 3.2 
this matrix is in fact nonsingular. 

Theorem 4.1. Assume that the one-leg method (1.6) is symmetric and irreducible. 
Then the corresponding mapping I1. ~ I1,+ 1 is symplectic with respect to the matrix 
A |  

Remark. A caveat similar to that in the remark after Theorem 2.1 should be 
made here. It is assumed that the attention is focused on a bounded domain 
of the phase space, and that h has been chosen sufficiently small for the mapping 
Y, ~-~ I1, + 1 to be well defined there. 
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Proof. It is possible to work either in terms of Jacobian matrices, as in (4.2), 
or in terms of differential forms. The latter technique leads to cleaner algebra. 
We have to show that 

k d 

~. 2i~ ~ Oemdy,,+i, tel^dyn+j, tml 
i , j = l  d , m = l  

k d 

-- ~_, 21j ~ Oemdyn+i-l,tel/Xdyn+j-l,tml =0, 
i , j =  l d , m =  l 

or, in view of (2.6), that 

k d 

(4.3) ~ ~iflj ~ Otmdy.+i, to/xdY.+j, tml 
i , j = O  d, ra=  1 

k d 

+ ~] o:jfll ~ Oe,,,dY,,+i,tel/xdy.+j, tml =0" 
i , j =  l d , m =  l 

We prove that the second term in the left hand side is 0 (the first term can 
be treated in a similar manner). Differentiate (1.6), with f given by (4.1), to 
obtain 

(4.4) p (E) dy,, = h 69 - 1 B tr (E) dy. ,  

where B is the symmetric matrix of second derivatives of H evaluated at a(E)y,,. 
On taking (4.4) to the second term in the left hand side of (4.3), we find 

~, hbe, m ~.~flldy.+i, tel /x fljdy,,+j,t,,q, 
d , m = l  x i = O  j 

an expression which is 0 because be,,,, is symmetric in the indices d, m while 
in the wedge product those indices play a skew-symmetric role. [] 

5 Necessity of the hypotheses: discussion 

In the previous sections we have shown that symmetric OLM inherit, via the 
corresponding A matrix, both the quadratic conserved quantities of the differen- 
tial system and, if the system is Hamiltonian, the symplectic character of the 
flow. We begin this section by proving that the symmetry of the method is 
also necessary for the conservation properties to hold. 

Assume that the harmonic oscillator equations 

with the quadratic conserved quantity llyll2, are integrated with an irreducible 
OLM. (Note that then Y.+k is uniquely defined for any choice of h#0.)  We 
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know that, if the method is symmetric, then there is a full-rank quadratic form 
being conserved by the vectors Y,. Let us suppose that, conversely, for some 
regular matrix M and for any choice of h, 

(5.1) Y.T~My~+I==- y~T M ~ .  

Then for all h 

(5.2) NT(-- hA) M N (hA) = M, 

where N(z) stands for the companion matrix 

N(z) = 

- 0 I 0 . . .  0 0 

0 0 1 ... 0 0 

0 0 0 ... 0 0 

0 0 0 ... 0 1 

~o-~/~o ~,-z/~, ~ - ~ &  ~_~-z/~_~ ~_,-z/~_~ 
~ - z ~  ~ - z ~  ~ - z ~  "'" ~ - z ~  ~ - ~  

The relation (5.2) reveals that the eigenvalues of N(hA) -~ equal those of 
NT( - hA) and hence those of N ( - h A ) .  Since the spectrum of A is purely imagi- 
nary, we see that, for 9 t ( 0 = 0 ,  N ( - z )  and N(z) -1 have the same eigenvalues. 
Clearly this must also be true for all complex z. Now the characteristic polyno- 
mials of N ( - - z )  and N(z) -~ are the same, a fact that implies that the method 
must be symmetric. (Notice that the argument holds true if one only asks (5.1) 
for h sufficiently small or even only for infinitely many values of h.) 

That  symmetry is also necessary to have some sort of canonicity in the 
integration of the harmonic oscillator is easily shown along the lines of the 
proof just given. Perhaps it is appropriate to mention here that it is possible 
to construct symplectic RK methods that are not symmetric (in the sense that 
a step of length h followed by a step of length - h  does not put the solution 
back at the initial condition). 

On the other hand we have been assuming so far that we are dealing with 
the OLM rather than with the classical LMM counterpart.  Actually it is easy 
to prove that LMMs, even if assumed symmetric, do not in general possess 
good conservation properties. (The words in general are needed here: there 
are of course LMMs which are also OLMs.) Just consider the familiar trapezoidal 
rule: by seeing it as a RK method it is trivial to check that it does not satisfy 
the necessary condition [8] for a method to be symplectic. However it is possible 
to establish some ad hoc form of conservation properties for symmetric LMM, 
by using the known relation [4] between solutions of the LM and OL methods 
with the same characteristic polynomials. 

The fact that multistep methods have to be symmetric if they are to be 
symplectic is bad news, because, of course, symmetric methods are only marginal- 
ly 0-stable if k > 1. This is not necessarily fatal if one limits oneself to integrate 
Hamiltonian systems: the growth induced by the parasitic roots is not worse 
than growth-rates already present in the underlying differential system. After 
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all, the explicit midpoin t  rule is successfully used in the t ime-integrat ion of  
non-dissipative partial differential equat ions (and this practical  success can be 
theoretically accounted  for by using the symplectic proper ty  to derive bounded-  
ness results even in nonlinear  situations 1-12, 14, 15]). However  if the system 
being integrated is a dissipative per turba t ion  of  a Hami l ton ian  system, the pres- 
ence of  the parasitic roots  on the unit disk will be harmful, as now the true 
solution will be decreasing exponentially. This should be compared  with the 
si tuation for Runge -Ku t t a  methods  I-8, 10, 11, 17], where B-stable symplectic 
algori thms exist of  arbitrarily high order, since the s-stage Gaul3-Legendre meth-  
od of  order  2 s is symplectic. 

Finally note that  with the s tandard  definition of  local t runcat ion error  1,18] 
a symmetr ic  O L M  has order  of  consistency exactly 2. However  it is also possible 
to define the local t runcat ion er ror  in such a way that  an O L M  and the associated 
L M M  have the same order  1-18]; with this alternative definition there are sym- 
metric O L M  methods  of  arbitrarily high orders. 
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