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1. Introduction

In the sciences, situations where dissipation is not significant may invariably
be modelled by Hamiltonian systems of ordinary, or partial, differential equa-
tions. Symplectic integrators are numerical methods specifically aimed at
advancing in time the solution of Hamiltonian systems. Roughly speaking,
‘symplecticness’ is a characteristic property possessed by the solutions of
Hamiltonian problems. A numerical method is called symplectic if, when
applied to Hamiltonian problems, it generate: numerical solutions which
inherit the property of symplecticness.

If the reader is expecting to find the definition of symplecticness in this
introduction, I am sorry he is going to be disappointed. I have devoted
Sections 24 to the task of explaining symplecticness in what I believe to be
the simplest possible way. The fact that six pages are needed to define sym-
plecticness should not be taken as implying that this notion is particularly
difficult: for readers with a differential geometry background, symplectic-
ness can be defined in one line. However, here and elsewhere in the article, I
have tried to be understandable rather than brief. In particular I have tried
hard to relate the concepts in a language accessible to numerical analysts.
This has not always been easy, as the area of symplectic integration directly
relates to both numerical analysis and to other branches of science, such as
symplectic geometry, dynamical systems, classical mechanics and theoretical
physics.

After the study of the notion of symplecticness in Sections 2-4, I define in
Section 5 the concept of symplectic integrator. Symplectic integrators fall
into two categories. Some of them are standard methods, such as Runge-
Kutta or Runge-Kutta—Nystrom methods, that just happen to achieve sym-
plecticness through some balance in their coefficients. For a method of this
kind to be symplectic it is necessary and sufficient that its coefficients satisfy
some algebraic equations. This first category of symplectic methods is stud-
ied in Sections 6-8. A remarkable feature of the methods of this category
is that, for them, an alternative formulation of the order conditions exists,
whereby the order conditions are expressed in terms of unrooted rather than
rooted trees.

The second category of symplectic methods consists of methods derived
via a so-called generating function. Generating functions were introduced in
the nineteenth century as a means for solving some problems in classical me-
chanics. They are at the root of the Hamilton-Jacobi method for integrating
differential systems via the Hamilton-Jacobi partial differential equation. In
Section 9 I present the necessary background on generating functions and
in Section 10 I survey symplectic integrators based on generating functions.
In Section 11, I return to the first category of symplectic methods (i.e. to

“Fa
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Runge-Kutta and related symplectic methods) with the goal of seeing them
in the light of the Hamilton-Jacobi theory.

In Sections 12-14, I summarize the general properties of symplectic in-
tegrators. Section 15 is devoted to the practical performance of symplectic
integration and the final Section 16 contains a few indications in connec-
tion with material, such as Hamiltonian partial differential equations, not
covered in the main part of the paper.

The current interest in symplectic integration started with the work of,
for example, Ruth (1983), Channell (1983), Menyuk (1984), Feng (1985,
1986a,b). Since then, several dozens of papers on the subject have been
written. Some of these have been published in the physics literature, while
others have appeared in numerical analysis journals and others are only
available as manuscripts. Under these circumstances, I cannot claim to
have supplied a list of references that covers all the relevant items. However
[ have done my best to present a fair view of the field from a numerical
analyst’s point of view.

Symplectic integration is a new field. As such, much of the material re-
ported here is likely to be superseded soon by new developments. From a
theoretical point of view the field has already witnessed some interesting con-
tributions bringing together seemingly unrelated parts of mathematics such
as Hamilton-Jacobi equations and graph theory. On the other hand, little
has been undertaken in the construction of practical high-order methods and
the design of serious symplectic software is still waiting consideration. The
area of symplectic integration is one where much scope is left for newcomers.
I would be glad if this paper helped in attracting some of them to the field.

2. Hamiltonian systems

2.1. Preliminaries

We start by describing the class of problems with which we shall be con-
cerned and by introducing some notation. Let Q be a domain (i.e. a non-
empty, open, connected set) in the oriented Euclidean space R 22 of the points
(p,q) = (P1,--,Pa; @1, --,q4)- If H is a sufficiently smooth real function
defined in €2, then the Hamiltonian system of differential equations with

Hamiltonian H is, by definition, given by
1p; H dg H )
dpi _ _OH de: _ \OH oy 2.1)

dt dg¢;’ dt Op;
The integer d is called the number of degrees of freedom and § is the phase
space. The exact amount of smoothness required of H will vary from place
to place and will not be explicitly stated, but we throughout assume at least
C? continuity, so that the right-hand side of the system (2.1) is C'! and
the standard existence and uniqueness theorems apply to the corresponding



246 J. M. SANZ-SERNA

initial value problem. Sometimes, the symbol Sy will be used to refer to
system (2.1). A good starting point for the theory of Hamiltonian problems
is the textbook by Arnold (1989). MacKay and Meiss (1987) have compiled
an excellent collection of important papers in Hamiltonian dynamics. For
applications to celestial mechanics see Arnold (1988). More advanced results
on symplectic geometry can be found in Arnold and Novikov (1990). For the
early history of the work of Hamilton and Jacobi on Hamiltonian systems,
see Klein (1926).

In applications to mechanics (Arnold, 1989), the q variables are general-
ized coordinates, the p variables the conjugated generulized momenta and
H usually corresponds to the total mechanical energy.

Often the Hamiltonian has the special structure

H(p,q) = T(p) + V(q). (2.2)

In Emo.rwaom T and V would represent the kinetic and potential energy,
respectively. Hamiltonians of this form are called separable. A commonly
occurring case has T = wvﬂp so that the Hamiltonian reads

H(p,q) = ip"p + V(q). (2.3)

Of course one may also consider nonautonomous (time-dependent) Hamil-
tonians ' = H(p,q;t). By using such an H in (2.1), we obtain a non-
autonomous Hamiltonian system. Most of the material that follows may
easily be extended to cater for the nonautonomous case. However, for sim-
plicity, we shall assume that, unless otherwise explicitly stated, all Hamil-
tonians considered are autonomous, i.e. time-independent.

2.2. The flow of .a Hamiltonian system

If ¢ is a real number, we denote by ¢; y the flow of the system Sy introduced
in (2.1). Recall that, by definition, ¢¢,5 is a transformation mapping 2 into
itself, in such a way that for (p, q°) in Q, (p,q) = ¢¢ 5 (p° ¢°) is the value
at time ¢ of the solution of (2.1) that at time ¢ = 0 has the initial condition
(% q°) (see e.g. Section 1.4 of the contribution by Arnold and Ili'yashenko
to the book by Anosov and Arnold (1988) or Chapter 1 in Guckenheimer
and Holmes (1983)). Therefore, if in

Qu. nﬁv = QPEAfo. QOV Awmwv

t varies and (p?,q°) is seen as fixed, then we recover the solution of (2.1)
with initial condition (p?% q®). The key point is that we will mainly be
interested in seeing ¢ in (2.4) as a fixed parameter and (p?, ¢°) as a variable,
so that we are defining a map of 2 into itself. In fact this is not quite
true. The point ¢, 4(p% q°) is defined only if the solution of (2.1) with
initial condition (p?, q°) exists at time ¢, which, for given (p°, q°), is not
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necessarily the case if |¢| is large: solutions may reach the boundary of 2 in
a finite time and exist only for bounded intervals of time. Thus, for given
t # 0, the domain of definition of ¢, iy may be strictly smaller than 2.

A simple example is provided by the the harmonic oscillator, the Hamil-
tonian system with d = 1, @ = R? and H = 1p}+ j¢?. If we use the notation
p and ¢ for the dependent variables, and identify the point (p,q) with the
column vector [p,q]7, the system Sy reads

dfp Eg ﬁ 0 -1 %
4 =A A= “ 2.5
dt ﬁ q _ ﬁ q 10 25)
and the t-flow is simply the mapping that rotates points in R? by an angle
of t radians around the origin:
0 0 : 0
p p | | cost —sint p
[ e [G] =00 SR ] e

For nonlinear Hamiltonians, in general, an explicit representation of the
flow cannot be found in terms of elementary functions.

3. Area-preserving transformations
3.1 Preservation of area by one degree of freedom Hamiltonian flows

The idea of symplectic integration revolves around the use of symplectic
transformations. In our experience, some numerical analysts find difficulties
when first coming across the notion of symplecticness and tend to confuse
symplectic integrators with energy-preserving integrators or with integrators
whose stability function has unit modulus on the imaginary axis. It is there-
fore important that we devote some time to understanding symplecticness.
It is best to start with the one degree of freedom case, where symplecticness
is nothing but preservation of area. We then assume in this section that
d = 1 and use the notation p and ¢ to refer to the dependent variables p;
and q; respectively.

For each real t, the flow ¢y is an area-preserving transformation in (,
in the sense that, for each bounded subdomain ¥ C 2 for which ¢ g +(Z) is
defined, it holds true that ¥ and ¢y (X) have the same (oriented) area. To
see this, it is enough, after recalling Liouville’s theorem (see e.g. Section 3.5,
Chapter 1 in the article by Arnold and Il'yashenko in Anosov and Arnold
(1988)), to observe that the vector field [~0H/8q,0H/dp]T that features in

(2.1) is divergence free because

WAxQHVJrWAwmvlo
op \ Oq dg\dp/)

In the harmonic oscillator example (2.5) the area-preserving property of
the flow, i.e. of the rotation (2.6), is evident.
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The area-preserving property of the flow has a marked impact on the long-
time behaviour of the solutions of Hamiltonian problems. Clearly asymp-
totically stable equilibria or limit cycles (Guckenheimer and Holmes, 1983)
cannot occur: in their neighbourhoods the area would have to shrink. The
Poincaré recurrence holds (Arnold, 1989): under suitable assumptions and
as ¢ increases, each point in {1 being moved by ¢, y returns repeatedly to
the vicinity of its initial position.

In fact, all properties specific to the Hamiltonian dynamics can be derived
from the preservation of area property. This is no surprise because the
area-preserving character of the flow, which was shown earlier to hold for
Hamiltonian systems, actually holds only for Hamiltonian systems. More
precisely, assume that §2 is simply connected, i.e. it has no holes, and suppose

that
dq

MIW ”.\.AEMQV, NM “.QQ?QV. ch

is a smooth differential system whose flow is area-preserving. Then (3.1) is
actually a Hamiltonian system Sy for a suitable H. There is nothing deep
about this. By Liouville’s theorem the vector field [f, g]7 is divergence free,
so that
2in=2,
p q

But this is just the necessary and sufficient condition for the field [g, —f]7
to be the gradient of a scalar function H, i.e. for (3.1) to coincide with Sg.

If Q0 is not simply connected, then systems with area-preserving flows are,
in general, only locally Hamiltonian: in each ball B € 2 they coincide with a
Hamiltonian system Sg,, but, globally, the system may not be Hamiltonian
because the various Hpg cannot be patched together. A typical example is
given by the area-preserving system

dp__»p do_ g
dt Nuw + Qw, dt Num + Qm

defined in 2 = R?\(0,0). In each ball in ) the system is Hamiltonian with
H given by a branch of the argument of the point (p,¢). The system is not
Hamiltonian because of course the argument cannot be defined as a smooth
single-valued function in R2\(0,0).

3.2. Checking preservation of area: Jacobians

Let (p*,q*) = ¥(p,q) be a C! transformation defined in a domain Q. Ac-
cording to the standard rule for changing variables in an integral, % is area-
preserving if and only if the Jacobian determinant is identically 1:
% * * * *

p'og” _ 9 _ (3.2)
Op 8¢ 9q Op

¥(p,q) € Q,
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It is a trivial exercise in matrix multiplication to check that this relation-

ship can be rewritten as

8(p*,q*)"  8(p*.q")
Ty =222 =J, (3.3)
V)€ IV =507 6.
where
0 1
J HT L

and ¢ = 9(p* ¢*)/3(p,q) is the Jacobian matrix of the Smcmmoq:&smu:‘
Going from (3.2) to (3.3) may appear to be just a matter of ooavzowgs.m
things. This is not so: the matrix J is a very ::,:c:s_; character in this
play. If v and w are vectors in the plane, then v’ Jw is the oriented area
of the parallelogram they determine. Now, let us fix a point (p,q) in ©? and
construct a parallelogram P having a vertex at (p,q) and having as sides
two small vectors v and w (i.e. the vertices are the points (p, q), (p,q) + v,
(p,q) +w, (p,q) + v+ w). Then 1(P) is a parallelogram with curved mE.mP
which can be approximated by the parallelogram P* based at ¥(p,¢q) with
sides ¥'v, ¥'w. In fact, by the very definition of ¥’, (P) and P* differ in
terms higher than linear in v and w. Now P* and P have the same area if

and only if
vIpTI ¢'w =viJ w.

Clearly, the last relationship holds for all parallelograms P in Q if and only
if (3.3) holds. The conclusion is that (3.3) means that, at each point (p,q) €
Q, the linear transformation 1’ maps parallelograms based at (p,gq) into
parallelograms based at ¥(p, q) without altering the oriented area.

3.3. Checking preservation of area: differential forms

Differential forms in § provide an alternative language with which to ex-
press the considerations made in the preceding subsection. A detailed study
of the meaning and properties of differential forms is definitely outside the
scope of this paper (the interested reader is referred to Arnold (1989, Owwv.
ter 7)). However the algebraic manipulations required to prove conservation
of area via differential forms are as a rule easier than those required to
prove conservation of area via (3.3). It is therefore advisable to comment,
albeit briefly, on differential forms. Our treatment will be merely formal
and we shall not explain why differential 2-forms are ways of measuring
two-dimensiona)l areas. We see a differential 1-form in  as a formal combi-
nation P(p, q)dp+Q(p, ¢)dg where P and Q are smooth real-valued functions
defined in 2. For instance, the differentials dp* and dg* of the components
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of the transformation 1 considered earlier are differential 1-forms
mﬁf @Nv._ %Qc %Qq
* — Q .+. * — Q +
dp P dq dp i Jq
Two differential 1-forms w and w’ give rise, via the exterior product A,

to a new entity w A w’ called a differential 2-form. The exterior product is
bilinear, so that, for instance,

dp* 8q* Op* 9¢* ap* 0¢* dp* dq*
Ad

Op Op dq Op dgndp+ dq Oq

The exterior product is skew symmetric. In particular, it holds that

dpAdp=d¢gndg=0, dp Adg = —dgqAdp.

QE &9 QQ QQ

dgAdg.

dp*Adg* = dpAdp+

Thus
Op* 8¢* Op’ mo.v
dp* Adg® = - dpAad
7 i = (55~ 5 ap) @
and from (3.2) we see that conservation of area is equivalent to

dp* Adg* =dpAdg.

This usually provides a convenient way of checking preservation of area.

4. Symplectic transformations
4.1. Hamiltonian flows and symplectic transformations

It is now time to consider the case d > 1. Is there something analogous to
the area that is being conserved by Hamiltonian flows? The 2d-dimensional
volume in £ appears to be a natural candidate and indeed this volume is
conserved. However this is not what we really want. What does the trick
is to consider two-dimensional surfaces ¥ in (2, to find the projections %;,
1 < i £ d onto the d two-dimensional planes of the variables (p;,q;) and
sum the two-dimensional oriented areas of these projections. This yields a
number m(Z). It can be proved (see e.g. Arnold (1989) Section 44) that
the flow of (2.1) preserves m: m(¢¢ 5 (X)) = m(X) whenever X is contained
in the domain of ¢, y. Now transformations that have this preservation
property are called symplectic or canonical, so that we have the theorem:

Theorem 4.1 For each ¢, the flow ¢, g of a Hamiltonian system is a sym-
plectic transformation.

Furthermore, if ) is simply connected (i.e. each closed curved in {2 may
be shrunk down to a single point without leaving §2), then the converse is
also true: an m-preserving differential system is a Hamiltonian system, see
Arnold (1989, Section 40D) (once more, if {2 fails to be simply connected
then preservation of m implies that the system is locally Hamiltonian). In

‘that the matrix J has the property that, for each pair (

Qqdqy, with P; and Q;
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plecticness of the flow is the hallmark of Hamiltonian

this respect the sym ( "
systems and once more the dynamical features that are specific to Hamilto-

nian problems can be traced back to the symplectic character of the flow.

4.2. Checking symplecticness

The condition (3.3) which we used to decide whether a transformation ¢ in
the plane was area-preserving or was otherwise generalized to read

g d@ha)’ ot a)
v en, pTry =30 TR0 )

where now

10._: &.s
/= — —1Ig 04 g ’

dimensional matrix. Note
v,w) of vectors
dimensional areas of the d

llelogram determined by

with I; and 0g denoting the unit and zero d-

in R, vT'Jw represents the sum of the two-
parallelograms that result from projecting the para.
v and w onto the planes of the variables (pi, 4i)-
Differential forms can also be used. In the present con
forms are formal expressions of the form Pidpy +-- -+ Padpa + Q1dq1 + R
smooth real-valued functions defined in 2. Again, two
form via the exterior product. The transformation

text, 1-differential

1-forms give rise to a 2-
¥ is symplectic if and only if

dp} Adg; + - +dpj Adgz = dpm Adgy + -+ -+ dpa A dgd,
a relationship that we can rewrite more compactly as

dp* Adq* =dp Adq.

4.3. Conservation of volume

Let ¢; g play the role of ¢ in (4.1) and take amamnawumim.. The Homc# is .gma
det(@} ;) is either +1 or —1. The value —1 is excluded since, by ﬁ._ozé:m s
theorem, the flow of any differential system has a Jacobian matrix with a
positive determinant. Hence det(¢p ) = L: Hamiltonian flows preserve the
oriented volume in R?@ or, in other words, points in phase-space convected by
a Hamiltonian flow behave like particles of an incompressible m.&a flow. Note
that preservation of volume det(¢) = 1is a direct generalization to d>1of
the property (3.2). However, when going from d = 1 tod > 1, the right gen-
eralization of preservation of area is symplectiness rather than vnmmmj.\mbou
of volume. Symplectiness characterizes Hamiltonian flows; conservation of

volume is a much weaker property shared by some nonHamiltonian systems.
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5. Symplectic integrators
5.1. Numerical methods

_w<m=. though some attention has been given in the literature to symplectic
multistep methods (see Aizu, 1985; Feng and Qin, 1987; Eirola and Sanz-
mmnmm. 1990; Sanz-Serna and Vadillo, 1986, 1987), in this paper we restrict
our interest to one-step integrators. If h denotes the step-length and ®*q")
denotes the numerical approximation at time ¢, = nh, n an integer 3. the
value (p(tn), (tn)) of a solution of (2.1), then a one-step method is mmmammm
by a smooth mapping

1 n
(P™L g™ = ¢y (p™ q). (5.1)

The transformation vy, g itself is assumed to depend smoothly on h and
H. .va. @oSE: Qo of Y i need not be, for each h, the whole 2. In fact
for implicit methods, where the actual computation of (p"*!, q**1) involves
gm mowcaoz of some system of equations, it is often the case that, for fixed
MW&N:& ), the new approximation 5, 5 (p", q") is only defined if |h| is suitably
..me method (5.1) is of order r with = an integer, if, as h — 0 Ya

m:mmwm from the flow ¢y i by O(h™+!) terms whenever the mmE:nou_ﬁE %
is suitably smooth. Consistency means order > 1.

ﬂ?mn an initial condition (p% q°), the numerical approximation at time
tn is found by iterating the mapping Yp, g 1 times, ie.

(P",q") = ¥} (0% q%,
whereas for the true solution

(p(ta), a(tn)) = ¢1,,1(p% a°) = 47 1 (p°, q°).

5.2. Symplectic numerical methods

Is it possible to construct numerical methods (5.1) that take into account
.gm Hamiltonian nature of the problem being integrated? In other words
is ?Q,.m such a thing as a Hamiltonian numerical method? Before mnmim?_
ing this question, let us first note that the discrete equations (5.1) do not
Emmm& to mimic the differential system (2.1). On the contrary 1y, g tries to
mimic z.Hm flow ¢y, . Now, we saw in Section 4 that the Hamiltonian form
of the differential equations corresponds, in terms of flows, to symplectic-
ness. ﬂmuom the right question to ask is: are there numerical methods (5.1)
for which ¥4 g is a symplectic transformation for all Hamiltonians H w.sa
all step-lengths A? Such methods, that do exist, are called symplectic (or
canonical) and are the subject of this paper.

Roughly speaking, there are two main groups of symplectic methods. The

SYMPLECTIC INTEGRATORS 253

first group consists of formulae that belong to standard families of numeri-
cal methods, such as Runge-Kutta or Runge-Kutta-Nystrém methods, and
just ‘happen’ to be symplectic (Sanz-Serna, 1991b). These symplectic meth-
ods can be applied to general (i.e. not necessarily Hamiltonian) systems of
differential equations and, when applied to a Hamiltonian system, achieve
symplecticness through a suitable balance between the formula coefficients.
The second main group of symplectic integrators consists of methods that
are derived via a so-called generating function. These methods cannot be
applied to general systems of differential equations, not even to small dissi-
pative perturbations of Hamiltonian systems.

The presentation to a numerical analysis audience of the methods of the
first group is casier than the presentation of the second group. We there-
fore consider the first group in Sections 6-8 and postpone the study of the
methods of the second group until Section 10. This somehow goes against
the history of the field, where methods based on generating functions came

first.

5.9. Composing methods

Before we present particular examples of symplectic integrators, it is ex-
pedient to consider the issue of composition of methods, as this plays a role

in later developments. If A\c_w_m and &w_m are consistent numerical methods,

then the mapping
= ol (1
@?:1 eim_me:\m.:

is clearly a new consistent numerical method. More general compositions of
the form
2
Pon H¥(1—-6)h 1

6 a real constant, are also possible. Since it is obvious that the composition
of symplectic maps is a symplectic map, the composition of two symplectic
numerical methods gives rise to a new symplectic method.

On the other hand, along with each method (5.1) we consider its adjoint
AN?:. By definition (see e.g. Hairer et al. (1987, Section I1.8)), this is the
method such that &u? g¥n p is the identity map, i.e. stepping forward with
the given method is just stepping backward with its adjoint. The familiar
forward and backward Euler methods are mutually adjoint. The adjoint of
a symplectic method is itself a symplectic method, because the inverse of a
symplectic transformation is, clearly, a symplectic transformation.

Some methods, such as the implicit midpoint rule, happen to be their own
adjoints. These are called, unsurprisingly, self-adjoint. It is easy to see that
the order of consistency r of a self-adjoint method is necessarily even.
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6. Runge—Kutta and related methods: conditions for
symplecticness
6.1. Runge-Kutta methods

.Hﬁ application of the Runge-Kutta (RK) method to system (2.1) with
tableau

aip - Qg
Qg1 - Qgg (6.1)
_ by - b

results in the relations

8 S
Pi=p"+h) ayf(P;,Q;),Qi=q"+h Y a;g(P;,Q;), 1 <i<s, (6.2)
Jj=1 i=1

n+l n < >
P =p"+h)Y bf(Pi,Qi), gt =q"+h) big(P;,Q), (6.3)

i=1 i=1

where f and g respectively denote the d-vectors with components -0l /dq;
and 0H/Op; and P; and Q; are the internal stages corresponding to the p
and q variables. :

The following result was discovered independently by Lasagni (1988),
Sanz-Serna (1988) and Suris (1989).

Theorem 6.1 Assume that the coefficients of the method (6.1) satisfy the

relationships
F.QC. + @u.Du.u_ —-bb; =0, 1<1:,j<s. Am.m&

Then the method is symplectic.

Proof. We follow the technique used by Sanz-Serna (1988). Suris (1989)
._.mmonnm to Jacobians rather than to differential forms. No proof is presented
in Lasagni (1988). We employ the notation

ki = f(P;, Q;), i =g(P:, Qi)

for the ‘slopes’ at the stages. Differentiate (6.3) and form the exterior prod-
uct to arrive at

8
dp"t' Adq™*! = dp"Adq*+h > bidk; Adq™

i=1

3 3
+hY bidp™ Adl+h? Y bibjdk; Adl.

j=1 tj=1
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Our next step is to eliminate dk; A dq™ and dp™ A dl; from this expres-
sion. This is easily achieved by differentiating (6.2) and taking the exterior
product of the result with dk;, dl;. The outcome of the elimination is

am.:.: A &n—:,: —dp*Adq" =h M b _n:ﬁ AdQ; +dP; A Qr_
i=1
3
—~ K2 M (biai; + bjazi — bibj) dk; A dl;.

1,5=1

The second term on the right-hand side vanishes in view of (6.4). To finish
the proof is then sufficient to show that, for each i, dk; A dQ; + dP; A dl; is
0. In fact, dropping the subscript ¢ that numbers the stages, we can write

d
dk A dQ+dP Adl =) [dk, A dQ, + dP, Adl,]

\nnm

d
_ Ofu Afu
=y ﬁ m?%;g@i ms\%qiot

=1

Q.Qt Q.Qt %
dP,AdP, dP,AdQ,| .
+ Qﬁ_\ ! * %Qt ! @

To see that this expression vanishes express f, and g, as derivatives of H
and recall the skew-symmetry of the exterior product.

The symplecticness of the method must be understood in the following
sense. Assume that, for a given h, (p™*!,q"*!) = ¥y y(p", q") is @ smooth
function defined in a subdomain Qp, of Q and satisfying the RK equations
(6.2)-(6.3), then 1y, i is a symplectic transformation. In general, for a
given h there can be several such functions (nonuniqueness of solutions of
the RK scheme). Of course, for h — 0 there is a unique RK solution that
approximates the true solution and the corresponding domain of definition
2, tends to 2. However spurious RK solutions may also exist and they
are also symplectic. For material on the existence and uniqueness of RK
solutions see e.g. Dekker and Verwer (1984, Chapter 5) and Sanz-Serna and
Griffiths (1991). For spurious solutions see Iserles (1990a) and Hairer et al.
(1990).

Lasagni (1988, 1990) has shown that, for RK methods without redundant
stages, (6.4) is actually necessary for the method to be symplectic. A direct
proof of this result is not available in the published literature. However the
result is a corollary of Theorem 5.1 in Abia and Sanz-Serna (1990).
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6.2. Partitioned Runge-Kutta methods

In the integration of systems of differential equations it is perfectly possi-
ble to integrate some components of the unknown vector with a numerical
Bmﬁ.uom and the remaining components with a different numerical method.
For instance, one may wish to do this if the system includes both stiff and
s.ozmsm components. In our setting, we may wish to integrate the p equa-
tions with an RK formula and the q equations with a different RK formula.
The overall scheme is called a partitioned Runge-Kutta (PRK) scheme and
is specified by two tableaux

air - als An 0 Agg
Qs1 °c Qg Ag -0 Agg (6.5)
_ by -+ by | By --- B,

Hrm m\ﬁﬁ—wﬂmn_ﬂs Om Am mv wm MUmﬁmaﬂ A v
M H res :mwm m : c Hmm:nu mwuuﬁw Anm

Pi=p"+h) a;f(P;,Q;),

=1

E-
Qi=q"+h) A;gP;,Q;), 1<i<s.
Jj=1

PP =p" +AY (P, Qi) " =q"+h Y Big(Pi, Q).
=1 i=1
Of course an RK method is a particular instance of (6.5) where both
tableaux just happen to have the same entries. The following result was
first given by the present author at the London 1989 ODE meeting (Sanz-
Serna, 1989) and discovered independently by Suris (1990). The proof is
analogous to that of Theorem 6.1.

Theorem 6.2 Assume that the coefficients of the method (6.5) satisfy the
relationships

FQAQ -+ .mu.a.w.s. — F‘mu. =0, 1<4¢,j<s. Am.mv
then the method is symplectic when applied to separable Hamiltonian prob-
lems (2.1), (2.2).

Symplecticness must again be understood as in Theorem 6.1 and, once
more, (6.6) is necessary for symplectiness, provided that the method has no
redundant stages, see Abia and Sanz-Serna (1990).
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6.9. Runge-Kutta-Nystrom methods
Systems of differential equations of the special form

&ulﬁv dq _
dt ~ @ &lp

(6.7)

or, equivalently, second-order systems d?q/dt? = f(q) can be efficiently

integrated by means of Runge-Kutta~Nystrém (RKN) methods (sec e.g.
Hairer et al. (1987, Section 11.13)). For the RKN procedure with array

Y| o - aig
v gy 0 gy
c (6.8)
| B - Bs
| b - b

the intermediate stages Q; are defined by

Q; = q" + hyp" + h? MUQ:Q@L,

=1

and the approximation at the next time level is

s 5
P =t Y BE(Qy), @t = at A"+ 1Y AiE(Qu).
i=1 =1

The system (6.7) is Hamiltonian if and only if f (the ‘force’) is the gradient
of a scalar function —V. When this condition is satisfied the Hamiltonian
is given by (2.3). The following result is due to Suris (1989), who used
Jacobians in the proof. A proof based on differential forms, similar to that
of Theorem 6.1 is easily given, and can be seen in Okunbor and Skeel (1990).

Theorem 6.3 Assume that the coefficients of the method (6.8) satisfy the
conditions
B = b(l-m), 1<i<s, (6.9)
bi(B; — aij) = bi(fi—oyi), 1<4,5<s (6.10)
Then the method is symplectic when applied to Hamiltonian problems (2.1),
(2.3).

The conditions (6.9) and (6.10) are also necessary for methods without
redundant stages to be symplectic, see Calvo (1991).
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7. Runge-Kutta and related methods: order conditions for
symplectic methods

Before we construct specific formulae within the classes of symplectic meth-
ods we have identified in the previous section, it is clearly appropriate to
discuss the corresponding order conditions, i.e. the sets of relationships that
the method coefficients must satisfy to ensure that a prescribed order of
consistency r is reached.

7.1. Runge-Kutta methods

Since Hamiltonian problems are only a subclass of the family of all differ-
ential problems, it is a priori conceivable that the order of consistency r*
that an RK method achieves for Hamiltonian problems is higher than the
classical order of consistency r, i.e. the order of consistency for the most
general problem. This is not the case. By considering Hamiltonians of
the form H = pTg(q), we see that any d-dimensional differential system
dq/dt = g(q) can be thought of as being the q equations of a Hamilto-
nian system with d-degrees of freedom. Hence r = r* and therefore the
material in this subsection applies even if the system being integrated is not
Hamiltonian.

The conditions that (6.1) should satisfy to achieve order > r are well
known (Butcher, 1987, Theorem 306A; Hairer et al., 1987, Theorem 2.13).
Each rooted tree pr with r or fewer vertices gives rise to a condition

®(pr) = 1/7(p7). (7.1)

Here the density y(p7) is an (easily computable) integer associated with p7
and the elementary weight ®(pr) is a polynomial in the method coefficients
aij, bj. Figure 1 contains the rooted trees with four vertices or less; we have
highlighted the roots by means of a cross.

As an illustration, let us recall that for consistency r > 1 we require, in
connection with p7y 1,

8
Shi=1
i=1
For order r > 2 we further impose, in connection with pra 1,
8
M F.QG. = w
i,j=1
For order 7 > 3 we add further, in view of p731,

s
MU F.QG,D; = w_ Aﬂ.wv

i, k=1

L

i
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Fig. 1. Rooted n-trees and n-trees, n = 1,2,3,4.
and, in view of p73.2,
s
1
Y biaijaic = 3- (7.3)

i.J.k=1

Butcher (1987, Theorem 306A) proves that, if the number of stages s and
the coefficients a;j;, b; are regarded as free parameters, then each mncmSon.om
the form (7.1) is independent of the others. moéméa., when the symplectic-
ness conditions (6.4) are imposed, the method coefficients are no longer free
parameters and it turns out that some redundancies appear amongst .&.5
classical order conditions (7.1) arising from the various pr. As a Hmm.Eﬁ in
order to achieve order 2> 7 it is not necessary to write down an equation for
every rooted tree of order <. This point has been studied by Sanz-Serna
and Abia (1991), whose treatment we follow closely. _ .

Assume that two rooted trees are identified if they only differ in the
location of the root, but otherwise consist of the same vertices and edges.
(In Figure 1, this is the case for the rooted trees p3; and P3,2; or for the
rooted trees pg3 and p42-) Fach equivalence class under this equivalence
relation is nw:mm a tree. Thus, in Figure 1, the eight rooted trees of order

< 4 give rise to only five trees.

Some trees are called superfivous. These are the trees that result when
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Table 1. Number of order conditions.

Order General Symplectic General Symplectic General Symplectic

RK RK PRK PIK RKN RKN
1 1 1 2 2 1 1
2 2 1 4 3 2 2
3 4 2 8 5 4 4
4 8 3 16 8 7 6
5 17 6 34 14 13 10
6 37 10 74 24 23 15
7 85 21 170 46 43 25
8 200 40 400 88 79 39

two .noEom of the same rooted tree with N vertices are joined by their roots
to give rise to a graph with 2N vertices. For instance, in Figure 1, the tree
T2, is superfluous because it is the juxtaposition of two copies of pr1,;. In a
similar manner, 74, is superfluous as it is the juxtaposition of two oo.vmom of
p72,1. There is an alternative way of thinking of superfluous trees. Assume
that trees are coloured in such a way that each vertex is painted either black
or white with adjacent vertices receiving distinct colours. Most trees can be
coloured in two different ways: in 73; we could have either a black vertex
between two white vertices or a white vertex between two black vertices.
However some trees can be coloured in only one way: in 75, we can only
have a black vertex shaking hands with a white vertex. These trees are
precisely the superfluous trees.
After these preliminaries we are ready for the main resuit.

Theorem 7.1 Assume that the RK method (6.1) satisfies the symplectic-

ness requirement (6.4) and has order of consistency > r > 1. Then it has

oH.amn of consistency > r + 1 if and only if for each nonsuperfluous tree 7

MHMM T + 1 or fewer vertices there is a rooted tree pr € 7 for which (7.1)
olds.

m_o.n instance, since only the tree with two vertices is superfluous, each
consistent symplectic RK method actually possesses an order of at least 2.
To ensure order > 3, it is sufficient to impose either (7.2) or (7.3). In other
words (7.2) and (7.3) have become equivalent, as coming from the same tree.
In general, for symplectic RK methods, the number of order conditions for
order > r equals the number of nonsuperfluous trees with r or fewer nodes
as distinct from the situation for general RK methods, where there is mm
.0&9. condition for each rooted tree with r or fewer vertices. The reduction
in the number of order conditions is borne out in Table 1.
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7.2. Partitioned Runge-Kutta methods

A similar theory exists for PRK methods (Abia and Sanz-Serna, 1990) ap-
plied to separable Hamiltonian systems. Again, there is no distinction be-
tween the order r of the method (6.5) for separable Hamiltonian systems
and the classical order when applied to systems of the form

dp dq

i (a), Fri g(p),

where f and g are any smooth functions, rather than gradients of scalar
functions —V and T as they would be in the Hamiltonian case.

It is well known that graph theory can again be used to systematize the
writing of the standard order conditions (e.g. Hairer et al. 1987, Section
I1.14). We now need bicolour rooted trees Bpr, i.e. rooted trees with vertices
coloured black or white as previously described. Clearly each rooted tree
gives rise to two bicolour rooted trees: the root can be coloured either black
or white and the colour of the root recursively determines the colour of all
vertices (cf. Figure 2). There is an order condition for each Bpr. The first
of these are as follows. For the two bicolour rooted trees with one vertex we

get
i=1 i=1

Vertices of one colour bring in lower case letters and the vertices of the
other colour bring in upper case letters. In connection with the two bicolour

rooted trees with two vertices, we have

E1 8
37 biAi =3, 5" Biaij = 3, (7.4)
ig=1 ij=1

etc. The symplecticness conditions (6.6) bring about some redundancies
among the standard order conditions we have just presented (Abia and Sanz-
Serna, 1990). Again the key point is to disregard the location of the root:
bicolour rooted trees which only differ in the location of the root make an
equivalence class called a bicolour tree Bp (see Figure 2). Then for sym-
plectic methods, it is enough to consider an order condition for a particular
bicolour rooted tree in each bicolour tree. For instance for a consistent
symplectic method to have order 2 we impose one of the two conditions
in (7.4). It should perhaps be emphasized that now bicolour trees arising
from colouring a superfluous tree must also be considered. The difference
between superfluous and nonsuperfluous trees is that a nonsuperfluous tree
gives rise to two bicolour trees (two order conditions), while a superfluous
tree only generates one bicolour tree (only one order condition).

The reduction in the number of order conditions is borne out in Table 1.
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Fig. 2. Rooted bicolour n-trees and bicolour n-trees, n = 1,2, 3, 4.

7.3. Runge-Kutta-Nystrém methods

mE.Emn considerations hold for RKN methods. In the interest of brevity we
omit the corresponding results and the interested reader is referred to Calvo
.EE Sanz-Serna (1991a). The reduction in the number of order conditions
1s apparent in Table 1. A word of warning: in the table, a general RKN
Ewgoa means a method satisfying (6.9); practical methods as a rule satisfy
this condition.
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7.4. The homogeneous form of the order conditions for symplectic methods

Let us return to the RK case. The fact that, in order to write the order con-
ditions for symplectic methods, we are free to choose any rooted tree within
each nonsuperfluous tree introduces some asymmetry among the various
rooted trees. For instance, at the r = 3 stage, we are free to disregard p73
or praa, i.e. to omit (7.2) or (7.3). Sanz-Serna and Abia (1991) provide
an alternative way of writing the order conditions, where all rooted trees
belonging to a nonsuperfluous tree play a symmetric role. For a consistent
method to have order r > 4, Sanz-Serna and Abia (1991) put

s 8
6 Y biajaj —3 Y biagag =0, (7.5)
ijk=1 ijk=1
12 MU biaija;kaz — 4 M bia;jaika; = 0. (7.6)
ijki=1 ijkl=1

It may be observed that in (7.5) we find the elemetary weights associated
with (7.2) and (7.3), while in (7.6) we find the elementary weights arising
from both rooted trees in the nonsuperfluous tree with four vertices 74,2.
This alternative form of the order conditions is called homnogeneous. Full
details concerning the systematic writing of the homogeneous order condi-
tions and a proof of the equivalence between the homogeneous and standard
forms can be found in Sanz-Serna and Abia (1991).

Homogeneous forms for PRK and RKN methods exist and can be seen in
Abia and Sanz-Serna (1990) and Calvo (1991) respectively.

8. Runge-Kutta and related methods: available symplectic
methods

8.1. Runge-Kutta methods

We start by noticing that, for methods satisfying the symplecticness con-
dition (6.4), it may be assumed that all the weights b; are not equal to 0.
In fact, if b; = 0, then (6.4) implies that ba;; = 0 for all i and therefore
neither does the jth stage, which does not contribute to the final quadrature
(6.3), contribute to any other stage with nontrivial b;: thus the method is
equivalent to a method with fewer stages. Under the assumption of nonzero
weights, (6.4) with 1 = j reveals that a symplectic Runge-Kutta method
cannot be explicit.

A second observation is that the left-hand side of (6.4) provides the entries
of the M matrix that features in the definition of algebraic stability intro-
duced by Burrage and Butcher (1979) and Crouzeix (1979) (see also Dekker
and Verwer (1984)). The condition M = 0 was investigated by Cooper
(1987) in & different context. It is well known that the Gauss-Legendre
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methods satisfy this condition {see e.g. Dekker and Verwer 1984, Theorem
4.6) and hence we have the following result (cf. Sanz-Serna, 1988).

Theorem 8.1 The Gauss-Legendre Runge-Kutta methods are symplec-

tic.

We recall that with s stages the Gauss-Legendre method is the unique
RK method that achieves order 2s. It is also A- and B-stable. There is a
price to be paid: the high computational cost deriving from implicitness.
The efficient implementation of the Gauss-Legendre methods for Hamilto-
nian problems is an area where much work is needed. Current strategies
for choosing the iterative method and initial guess for the solution of the
nonlinear algebraic equations in RK processes are based on the assumption
that the underlying system is stiff. This is reasonable: stiffness has been
until now the main motivation for switching from explicit to implicit meth-
ods. However the problems with which we are concerned are not necessarily
stiff and fresh ideas are required when dealing with the implementation. For
references on the implementation of implicit RK methods see the references
in Cooper and Vignesvaran (1990).

The two-stage, order 4 method has been successfully tested by Pullin and
Saffman (1991) in a difficult Hamiltonian problem arising in fluid mechanics.

Of course, when the system being integrated is linear, the Gauss-Legendre
methods generate diagonal Padé approximants to the exponential. The sym-
plecticness of these rational approximants was shown by Feng (1986a), see
also Feng et al. (1990). :

A way of bringing down the implementation costs associated with implicit-
ness is to resort to diagonally implicit methods. These satisfy (6.4) if and
only if they have the tableau

bi/2 0 0o - 0
by vm\m 0 0
by by b3/2 oo 0
: : o (8.1)
by by by e b2
_ b; by by - bs.

A step of length h with the method (8.1) is just a concatenation of an
implicit midpoint step of length byh, an implicit midpoint step of length b2k,
etc. Hence diagonally implicit symplectic methods are as easy to implement
as the implicit midpoint rule. This sort of method is appealing when the
number of degrees of freedom d is high, as would be the case if the system
being integrated in time was the result of the space discretization of a partial
differential equation.
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Sanz-Serna and Abia (1991) show that the sclf-adjoint three-stage method
(8.1) with
l+w+w™!
3
has order 4. This method has been applied to the time-integration of mn_v_u_:h
partial differential equations by de Frutos and mmca-mmgp.ﬁoos. U, ny
represents the midpoint rule, the fourth-order method is given by

MP| [MP] _,[MP]
sm_: = ._:?_: GMSL: er?m.

w=2V3 by=1-2b

by =by =

r

Following ideas in Yoshida (1990), this construction can be taken further.

Cousider the method
WL b it (82)
with o and 3 chosen in such a way that 2o+ 8 =1 Aoosmmmﬁgn%v.m.ba
2a° + 3% == 0 (the leading kS term in the truncation error of the composition
vanishes). Then (8.2) has order > 5, but being self-adjoint the order must
actually be > 6. In turn, a sixth-order self-adjoint method can .Um composed
to give rise to an eighth-order method etc. The nouo_:m_ou is a.rmﬁ there
are diagonally implicit symplectic RK methods of arbitrarily high order.
Of course it is an open question to decide whether high order methods
constructed in this way have some practical interest.
Diagonally implicit methods are not the only ‘easily impl
plicit RK methods. It is well known that, following Butcher (1976), gm. RK
can be subjected to a transformation A T71AT with a
the linear algebra. For symplectic methods this idea has
erles (1990b) (see also Iserles and Nprsett, 1991, Section

ementable’ im-

matrix A = (aiy)
view to simplifying
been explored by Is
3.7).

8.9, Partitioned Runge-Kutta methods

Unlike the class of RK methods, the class of PRK methods includes formulae

that are both explicit and symplectic. However it mwﬁwc_m be ma.svg.mwxma that
ble Hamiltonians (2.2).

these properties only hold when dealing with separa
In fact the methods of the form

b, 0 0 .-+ O 0 0 0 0
by bp 0O -+ O B, 0 0 - 0
S @m ew 0 mw mw 0 0
o : : Do (8.3)
by by by - bs B, By By --- 0
“ 3 cm vw @m _ m~ .mm mw Wm
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are explicit, symplectic and have the further favourable property that they
can be implemented while only storing two d-dimensional vectors: Q is
ahuaEum but q™, P; can be overwritten on q™, Q, can be overwritten on Q,
etc.

The family of methods (8.3) was introduced by Ruth (1983) in one of
ewm very first papers on symplectic integration. Ruth constructed methods
8:& s =1 = 1,2,3. In the case s = r = 3, there is a one-parameter
family of methods and Ruth has chosen the parameter so as to obtain simple
coefficients b;, B;. Sanz-Serna (1989) suggested a different choice for the
parameter. Furthermore by composing the third-order, three-stage method
%,?: with its adjoint 4 g7, he constructed an explicit symplectic method
Yh/2,H¥n/2,1 that requires five evaluations per step, but produces fourth-
order results both at the grid points t, = nh and at the points {(ny1/2) =
(n+ 1/2)h. A method with s = r = 4 has been constructed by Zaazﬁmmvd
H.)o.nmmn and Ruth (1990) and Candy and Rozmus (1991). Yoshida (1990), EM
using a construction similar to that discussed earlier for diagonally implicit
RK methods, has proved that there are methods of the form (8.3) possessing
arbitrarily high orders. He furthermore derives sixth-order methods that
use seven function evaluations per step and eighth-order methods requiring
sixteen function evaluations per step.

8.3. Runge-Kutta—Nystrom methods
There are explicit RKN methods that are symplectic. These have the tableau

st 0 0 s 0

Y2 | b1(y2 —m) 0 0

Vs | b1l —711) ba(¥s —v2) - 0 (8.4)
| b1 —m) ba(l—72) -+ bs(l—)
_ b by - bs

and hence with s stages provide 2s free parameters. Okunbor and Skeel
Gmo.c have pointed out that, for implementation purposes, (8.4) can be
rewritten as an explicit PRK method, and hence only requires the storage
om. ﬁéo d-dimensional vectors. Okunbor and Skeel (1990) prove that an ex-
plicit RKN method is symplectic if and only if its adjoint method is also
explicit. This idea can be used to compose a method with its adjoint as
shown earlier for the PRK case. Calvo and Sanz-Serna (1991b) have con-
sidered the family of fourth-order, five-stage methods of the form (8.4) that
effectively require four function evaluations per step due to the fact that the
last evaluation in the current step provides the first evaluation in the next
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step. An optimal method within this class has been obtained by minimizing
the error constants. Similar work is under way for higher order methods.
Given a number of stages s and an order r, the tableaux (8.4) and (8.3)
have the same number 2s of free parameters, while Table 1 makes it clear
that the number of order conditions for the RKN case is substantially smaller
than the number of order conditions for PRK methods. This is due to the
fact that in the PRK case we are catering for all separable Hamiltonians (2.2)
where RKN methods can only cope with the special case (2.3). However
case (2.3) is very common in the applications and this should make the
construction of explicit symplectic RKN methods an important practical

issue.

9. Generating functions

We cannot make any further progress with the topic of symplectic integrators
without first reviewing some basic facts about the generating functions of a

symplectic transformation.
It is a remarkable feature of Hamiltonian problems that each system of

the form (2.1) is fully determined by the choice of a scalor function H,
whereas a general system dy/dt = f(y) is determined by a vector field f.
In a similar vein, a symplectic transformation (p*,q") = ¥(p,q) can be
expressed in terms of a single real-valued function S, rather than in terms
of the 2d components of ¢. The function S is called the generating function

of ¢

9.1, Gencrating functions of the first kind
Let (p*,q*) = ¥(p,q) be a symplectic transformation defined in a simply
connected domain Q. For each closed path -y in 2

\?En\c* dq* =0, 9.1)
: ¥ ¥

where p dq is the differential form py dg1+--+pd dgg, etc. In fact, by Stokes
theorem, the first integral is the quantity m{%), where m is the sum of two-
dimensional areas considered in Section 4 and ¥ is any two-dimensional
surface bounded by v. The second integral is m(¥(X)) and hence (9.1) is
just a way of saying that v is symplectic. The key observation is that (9.1) is
the condition for pdq — p*dq* to be the differential of a function S defined

in

dS =pdq-—-p dq”. (9.2)

Now let us further assume that q and g* are independent functions in €2,
i.e. each point in 2 may be uniquely specified by the corresponding values
of q and q*. Then we can express S(p,q) in (9.2) as a function St of qand



e RS

[TITORIUTITSTRIUTS TS TSTET RN P

RN

heddad s deia wis

268 J. M. SANZ-SERNA

q*. It is evident from (9.2) that

_ 08 1 ._ 0§ 1

mn 1 Mv - mn. i A@.WV
These formulae implicitly define 1 by providing 2d relationships among the
A&. ooavouwuﬁm of q, p, p*, q*. The function S!(q,q") is called the gener-
ating function (of the first kind) of ¢. The reader may wish to check that
for the rotation in (2.6)

cott t

S'q,q") = 5 A 4 m.mv ~ cosecqq”. (9.4)

Conversely, if we choose any smooth function S!(q,q*) satisfying the con-
dition that the Hessian determinant det 825'/8qdq* does not vanish at a
point (qo,qg), then the formulae (9.3) implicitly define, in the neighbour-
wanWvom {(qo,qg), a symplectic transformation (see e.g. Arnold (1989, Section

9.2. Generating functions of the third kind

For a symplectic transformation 9 to have a generating function of the first
kind, it is clearly necessary that q and q" are independent, a condition not
fulfilled by the identity transformation. (Note that (9.4) has a singularity at
.ﬁ = 0, where the rotation (2.6) is just the identity.) Since we are interested
in generating consistent numerical methods 1p gy, which, at h = 0, give the
identity transformation, generating functions of the first kind are not really
what we want.
Let us proceed as follows. Note that from (9.2)

d(p"q-S)=qdp +p dq’ (9.5)

and now assume that p and q* are independent functions (which they are for
the identity transformation). Then we can express the function in brackets
in (9.5) in terms of the independent variables p and q*. The result S*(p, q*)
is called the generating function of the third kind of ¢ and, from (9.5) we
conclude that the formulae that now implicitly define 1 when S3 is known
are

p* = 953 _ 983
S =5 (9.6)
. The generating function of the identity is p”'q*. For the rotation (2.6) we
nd
. tant t
$%(p.q") = ——— (p* +4%) +secpq’;

this is regular near t = 0, but breaks down when ¢ approaches +27: at these
values p = ¢* and p and ¢* cannot be taken as independent coordinates.

i
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Conversely given a function S*(p, q*) with a locally nonvanishing Hessian
det 5253 /8pdq®, the formulae (9.6) locally define a symplectic transforma-
tion.

9.9. Generating functions of all kinds

Some classical books on Hamiltonian mechanics considered four kinds of gen-
erating functions. Arnold (1989) has 2" kinds. And in fact there are many
more. According to Feng (1986a), Feng and Qin (1987), Feng et al. (1989),
Wu (1988) the general idea is as follows. Collect in a (2d-dimensional) vector
y the components of (p,q) and in a vector y* the components of (p*,q*).
Introduce new 2d-dimensional variables w and w*, such that w and w* are
linear functions of y and y* (i.e. w = Ay+By* and w = Cy + Dy” for fixed
2d x 2d matrices A, B, C, D). Under suitable hypotheses, the symplectic
transformation (p*,q*) = ¥(p, q) reads, in terms of w and w*, w* = x(w),
where y is the gradient of a scalar generating function o. In the case of the
generating functions of the first kind, A is the matrix that extracts the q
variables of y, B is the matrix that extracts the q* variables of y* etc.

A useful generating function is the so-called Poincaré generating function.
Here w is taken to be the average of y and y*. The formulae for the
transformation are (cf. MacKay, 1991)
p* =p - 05" A]l\n. 2 gL,

2 2
where 8; and 8, respectively represent differentiation with respect to the first
and second groups of arguments in S P The Poincaré generating function
,of the identity is the O function.

* *
Il (it ll:v .
4 =ara A 2 2

9.4. Hamailton-Jacobi equations

Let us now complicate things and consider symplectic transformations
that depend on t. We assume that 1, has a generating function of the third
kind S3, which depends on ¢. Let us further consider a Hamiltonian system
(2.1) in the variables p, q. If we change variables in this system we obtain
a new differential system for the new unknowns p*, q*. Then the following
holds true (Arnold, 1989, Section 45A).

Theorem 9.1 In the situation earlier, the transformed system is also a
Hamiltonian system, with the nonautonomous Hamiltonian function
I 8s°
H*(p",q"5t) = H — —. (9.7)
In (9.7) it is understood that once S 3 has been differentiated with respect
to t with p and q* constant, the formulae (9.6) that define the transformation



270 J. M. SANZ-SERNA

m.mm used to express the right-hand side in terms of the new variables p* and
q.

A first corollary of this result refers to the case where the transformation
is actually independent of ¢: then in the new variables the Hamiltonian
system is still an autonomous Hamiltonian system and the new Hamiltonian
is obtained by changing variables in the old Hamiltonian.

Another remarkable application arises when e is the t-flow of (2.1) and
we see the old variables evolving under the Hamiltonian system with Hamil-
tonian —~H(p,q), i.e. under the flow bt-n = ﬁnm. Then, the symplectic
transformation 1, just undoes what the Hamiltonian evolution under —H
does; in the new variables, the solutions of the differential equations are p* =
constant and q° = constant and the new Hamiltonian H* = —H — a83/ot
must be O (or a constant: Hamiltonians are only defined up to an additive
constant). We have proved that the generating function S$3 of the flow of
the Hamiltonian system with Hamiltonian H satisfies

s,
2 (Pa’it) + H(p,q) = 0. (9.8)

This is the celebrated Hamilton-Jacobi equation. Upon replacing q by
8S3/6p (cf. (9.6)), the relationship (9.8) is a partial differential equation of
the first order for a function S3 of the variables p and ¢ (the q* act just as
parameters). If this equation can be solved explicitly, we find the generating
function of the flow and hence the solution of the system (2.1). This is
Jacobi’s approach to the solution of Hamilton'’s equation. Jacobi and others
used this technique explicitly to integrate problems of mechanics that had
proved intractable by other techniques (see e.g. Arnold (1989, Section 47)).
On the other hand, if we want to solve (9.8) by the method of characteristics,
we find that the system of ordinary differential equations that defines the
characteristics is none other than system (2.1)! The equivalence between
the solution of a Hamiltonian ordinary differential system and the solution
of a first-order partial differential equation with Hamilton—Jacobi structure
is thus complete.

These ideas are not confined to generating functions of the third kind; they
a.o work for all kinds of generating functions. The details of the construc-
tion of the new Hamiltonian H* (and hence the form of the Hamilton-Jacobi
equation) vary with the kind of generating function being used. The inter-
ested reader is referred to Feng (1986a), Feng and Qin (1987), Feng et al.
(1989) and Wu (1988).

10. Symplectic integrators based on generating functions

H,wmo.nt.w.H is the key to the construction of symplectic integrators via
meEFOEmB functions (Channell, 1983; Menyuk, 1984; Feng, 1986a; Feng
and Qin, 1987; Wu, 1988; Feng et al., 1989; Channell and Scovel, 1990;
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Miesbach and Pesch, 1990). Let v¥;y be a symplectic numerical method
consistent of order r with generating function S®. An argument similar to
that leading to the Hamilton-Jacobi equation, proves that H* = —-H —
383/t is O(t") as t — 0; now the transformation v, i undoes the effect of
the evolution ¢, _ g except for terms of order O(t"). Conversely, any function
53 that makes H* = O(t") generates a symplectic, rth-order numerical
method, see Sanz-Serna and Abia (1991, Theorem 6.1).

Feng and his coworkers take the following approach (Feng, 1986a; Feng
and Qin, 1987; Feng et al., 1989; Wu, 1988). They begin by expanding 53
in (9.8) in powers of ¢t. On substituting this power series in (9.8), expanding
H and collecting similar powers of ¢, the generating function S3 can be
expressed in terms of derivatives of H. When the series for S is truncated,
an approximate solution of the Hamilton-Jacobi equation is obtained, which
is then used to generate the numerical method via (9.6).

Of course, similar approaches can be taken for generating functions other
than generating functions of the third kind. The use of the Poincaré format
is appealing, because it easily leads to self-adjoint schemes, with only odd
powers of h in the Taylor expansion of the truncation error. The second-
order method derived from the Poincaré generating funtion is none other
than the familiar midpoint rule, with generating function S” = hH.

The expression for the fourth-order method turns out to be

}\u
EMSL =pi - hHy, — 2% T&Eu»ﬁ N&S Hy, + wmu%wmﬁﬁmﬁ

- wmuzxa..muh.mﬁ - MN&S?N&SEN&? - mmvge»m‘w\. qkqi
+ wmn&nxmhunmmuw + N&fc»ﬁ mvg. mﬁx_ ’

Tt \N.\.w
¢t = g + hH,, + — ﬁmﬁuxsmsmﬁ + 2Hyp Hyjpi Hy,

24
N mmvzwumm&u%mﬁ - m@Eﬁm&EP Hy, — wmﬁﬁmnu.mfu_.
+ 2Hg;q, Hyp;p, Hpy, + Hosqup: Hp; RL .

Here summation in repeated indices must be understood and the functions
featuring in the right-hand sides are evaluated at the averages

[3(p* +p), 3(a" + q)],

so that the scheme is implicit. We have reported these formulae to emphasize
the Taylor-series character of Feng’s methods. As with any other Taylor-
series method, these schemes would only be feasible if applied in conjunction
with some automatic procedure for the computation of the higher deriva-
tives.

Miesbach and Pesch (1990) note that, in Runge-Kutta methods for dy /dt
= f(y), one obtains high-order schemes without resorting to higher deriva-
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tives of [ by using as increment y™*! — y™ a weighted sum Ry bif(YS).
Furthermore, the terms hf being weighted have the form of the increment
in the Euler (i.e. simplest conceivable) method. In a similar vein, Mies-
.U@nw and Pesch suggest methods where the Poincaré generating function
is a weighted sum of terms, each term being the simplest generating func-
tion hH (i.e. that corresponding to the implicit midpoint rule) evaluated
at some suitable inner stage. The resulting method is Runge-Kutta-like in
that no higher derivatives of H are required; however it is not a symplectic
Runge-Kutta method like those considered in Section 6.

11. Back to symplectic Runge—-Kutta methods: the
canonical theory of the order

The m%.BEmn:o Runge-Kutta methods (6.1), (6.4) define a symplectic trans-
mOﬂaw:os which as A — 0 approaches the identity. Hence they must have
an S” generating function. Lasagni (1990) has found the corresponding
expression

5%(Pry Qn41; h) = pTdns
—h MIJ\ biH (P;, Qi) = h* Y " biay; Hp (P, Qi) He (P, Q;)T.
) iy

Here Hp and H are row vectors of partial derivatives and the stages should
be interpreted as functions of py, qn4; and h implicitly defined in (6.2),
(6.3). (Actually, in Section 9 we showed that a generating function would
exist if the domain Q were simply connected. Lasagni's recipe for S works
for all domains. Symplectic RK have generating functions regardless of
n.wm geometry of () and therefore, in symplectic geometry jargon, they give
rise to exact symplectic transformations, i.e. transformations for which (9.1)
holds. Actually, the flow of a Hamiltonian system is also an exact symplectic
transformation.)

In a manner similar to that used for symplectic PRK, Abia and Sanz-Serna
(1990) find the generating function

5%(Pn, Ant13h) = planes
—h3_b:V(Q) =R BT(P:) +h® Y Biaig(P)TE(Q;),
i i ij

and for symplectic RKN schemes the generating function is given by (Calvo
and Sanz-Serna, 1991a)

.Wm?u:q Qn+1; bv = mum,n—:.:
h K3

=R 3BV(Q) = SBTpn + o (B, - auy) £(QTEQy).
1 iy

We emphasize that, unlike the situation with the methods considered in
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Section 10, these generating functions are not needed to derive or to imple-
ment the RK and related methods introduced in Section 6. However explicit
knowledge of the generating function can be put to good use. In fact we can
study the order of consistency by simply substituting the expression for S 3
with h =t in H + 853/8t: an O(t") behaviour is, as we know, equivalent to
order r. This is the methodology suggested by Sanz-Serna and Abia (1991).
For the case of RK methods these authors give systematic rules, based on
graph theory, to write the Taylor expansion of H + 853/8t in powers of t.
It turns out that the graphs to be used are nonsuperfluous trees: at the t#
level, p > 1, the Taylor expansion contains a term for each nonsuperfluous
tree with p nodes. Hence the number of order conditions is the number
of nonsuperfluous trees. Furthermore the coefficients that must be annihi-
lated to impose H + 853/8t = O(t") are just the right-hand sides of the
homogeneous order conditions we described at the end of Section 7, sce c.g.
(7.5)-(7.6). Thus the use of the Hamilton-Jacobi equation gives a very clear
meaning to the results presented in Section 7.

12. Properties of symplectic integrators: backward error
interpretation

Now that we have introduced the families of symplectic integrators available
in the literature, it is time to investigate the general properties of symplectic
integrators. The a priori motivation for resorting to symplectic methods was
presented in Section 5: by making the integrator symplectic we reproduce an
important property of the true flow., However there is a big gap in numer-

;ical analysis between a reasonably motivated method and a method that
.works well. It is therefore essential that theoretical analysis and numerical
experiments are presented that show the advantages, if any, of symplectic
integrators.

In our opinion, to the numerical analyst, the most appealing feature of
symplectic integration is the possibility of backward error interpretation.
This idea is very similar to the method of modified equations, see Warming
and Hyett (1974) and, for a more rigorous treatment, Griffiths and Sanz-
Serna (1986). Let us begin with an example. Consider the Hamiltonian
H = 1p? + V(q), leading to the system

dp/dt = f(g),  dg/dt=p, (12.1)

where f = —~V’. We assume that f(0) = 0 and f/(0) < 0; the first hypothesis
implies that the origin is an equilibrium of (12.1), the second implies that
this equilibrium is a stable centre (the origin is a minimum of the potential
energy V). The system (12.1) is integrated by the following first-order,
symplectic PRK method

A Y C s N e (12.2)
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In order to describe the behaviour of the points (p",q") computed by
(12.2), we could just say that they approximately behave like the solutions
(p(ts),q(tn)) of (12.1). This would not be a very precise description, even
for h small, because ¢y and ¢u g differ in O(h?) terms (first order of
consistency). Can we find another differential system S, so that (12.2) is
consistent with the second order with S3? The points {p",q") would then
be closer to the solutions of Sy than to the solutions of the system we want
to integrate. To find the modified system S, use an ansatz

dp/dt = f(q) + hF\(p,q),  dq/dt = p+ hGi(p,q)

(note that h features here as a parameter so that Sp = Sa(h)), substitute
the solutions of the modified system in the difference equations and ask for
an O(h3) residual. This leads to

dp _
dt

a Hamiltonian system, with Hamiltonian
Hy(h) = §p° + V(q) — (h/2)pf(q).

If we are not satisfied with Sa(h). we can find a differential system S3(h) for
which (12.2) is consistent with the third order. Again 83(h) turns out to be
a Hamiltonian problem; the expression for the Hamiltonian is

Hy(h) = (1/2)p* + V(9) = (R/2)pf(q) + (h*/12)[f(a)* — P*F'(q)]-
There is no limit: for any positive integer p a Hamiltonian system S H,(h)
can be found such that the method ¥ g differs from the flow Gh H,(h) 1D
O(h**!) terms (see e.g. MacKay (1991)). By going from local to global
errors, in any bounded time interval, the computed points are O(h*?) away
from the solution of Sy, (h).

What is the situation when using a nonsymplectic method? Take the
standard forward Euler method as an illustration. Again a modified system
Sa(h) can be found for which consistency is of the second order. This now
reads

dg _ h

flg) + wu\sv, 3 =P 5/ (12.3)

%m = f(g) + WE\@ — hpf'(q), % = T - mh& ;
the terms in brackets replicate the Hamiltonian system (12.3), but there is
an extra term —hf'(q)p. Since f'(0) < 0 this extra term introduces negative
dissipation near the origin: in any bounded time interval, the computed
points are O(h) away from the solutions of the Hamiltonian system we want
to solve, but O(h?) away from the solutions of a system where the Hamil-
tonian character has been lost and the origin is an unstable focus.

Even though these considerations have been presented by means of an
example, they hold for all symplectic methods: provided that the system

o
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(2.1) is smooth enough, for arbitrarily high p, a modified Hamiltonian system
%33 can be found such that the method ¥ y differs from ﬁwm flow @ i1, (n)
in O(h**!) terms. The difference between the true Hamiltonian H and the
modified Hamiltonian H,(k) is O(h"), with r the order of the method.

As shown in this example, the functions H,(h), p = 2,3,..., are trunca-
tions of a power series in h. If this power series converges, its sum Ho(h)
gives rise to a modified Hamiltonian problem that is integrated g.anzc by
the symplectic numerical method: Yh g = én H, ). In the previous ex-
ample with V(g) = }¢* (i.e. the harmonic oscillator (2.5)) this modified
Hamiltonian problem is given by Beyn (1991, p. 221)

]Gl 3 D e

when solving this system analytically the matrix in brackets is exponentiated
and the equations (12.2) of the numerical method are recovered.

In general, for nonlinear problems, the series does not converge: the com-
puted points are not quite an exact solution of a differential problem Amwg-
Serna, 1991a, p. 168). However if H is very smooth, it can be shown (Neish-
tadt, 1984; cf. Lasagni, 1990; MacKay, 1991) that a Hamiltonian H(h) can
be constructed for which the corresponding h-flow differs from v, p in terms
that tend to 0 exponentially fast as h — 0.

In any case the conclusion is the same: for a symplectic integrator mvv.:m&
to (2.1) modified Hamiltonian problems exist so that the computed points
lie either exactly or ‘very approximately’ on the exact trajectories of the

, modified problem. This makes a backward error interpretation of the num-
erical results possible (cf. Sanz-Serna (1990)): the computed solutions are
.mogzm exactly (or ‘very approximately’) a nearby Hamiltonian problem.
In a modelling situation where the exact form of the Hamiltonian H may
be in doubt, or some coefficients in H may be the result of experimental
measurements, ‘the fact that integrating the model numerically introduces
perturbations to H comparable with the uncertainty in H inherent in the
model is the most one can hope for.

On the other hand, when a nonsymplectic formula is used the modified
system is not Hamiltonian: the process of numerical integration perturbs
the model in such a way as to take it out of the Hamiltonian class. The
acceptability of such nonHamiltonian perturbations is a question that should
be decided in each individual modelling problem.

12.1. An alternative approach

If
(P, q) = ¥nu(@P’, q°) (12.5)
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is a numerical method, it is a simple matter to find a differential equation
satisfied by the functions (p(h),q(h)): we differentiate (12.5) with respect
to & and eliminate (p° q°) in the result by using (12.5).

For the symplectic method (12.2) this procedure yields the system

L J@Q+mf @ - RIS, =),

dh
which (this should not be surprising by now) is a Hamiltonian system, with
Hamiltonian H(p,q;h) = 1(p ~ hf(9))* + V(q). Since h is our ‘time’, the
system is nonautonomous. Moving from t = 0 to ¢t = h with the method
(12.2) is moving from t = 0 to t = h with a nonautonomous system with
Hamiltonian H. The fact that H and & differ in O(h) terms is a reflection
of the first-order accuracy of the method.

What is unsatisfactory with this approach is that taking two steps 0 —
h — 2h with the numerical method is not going from ¢ = 0 to ¢t = 2h with
Sz given an initial condition, to move from 0 to 2A in a nonautonomous
&ﬁmnmssﬁ system is not quite the same as advancing the initial condition
to t = h and then using the result as new initial condition for another 0 — A
forward shift. There is a way around this problem: for 0 <t < h we keep the
Hamiltonian H(p, ¢;t) found earlier and for h St<2h 2h<t<3h, ...,
we repeat it periodically. The good news is that now the nonautonomous
system is such that the transformation that moves the initial condition from
t = 0 to ¢ = nh is the nth power of the transformation that advances the
initial condition from ¢ = 0 to ¢t = h. Hence, the numerically computed
points exactly lie on solutions of this nonautonomous system. The bad
news is that the new Hamiltonian is not only nonautonomous, but also
discontinuous as a function of t. Such a lack of smoothness is not very
welcome.

The canonical formalism of generating functions provides a very clever
way of finding H without having to differentiate ¥y, . The initial condi-
tions (p% q°) do not vary with ¢: we could see them as solutions of the 0
Hamiltonian. By using Theorem 9.1, the functions (p(h), q(k)) then evolve
with the Hamiltonian H = —853/8h. In the example, the generating func-
tion is §% = p%q — (h/2)(®°)? - hV(q) (now p and ¢ play the role played by
p" and ¢* in Section 9, while p® and ¢° play now the role of ‘old’ variables).
Differentiation with respect to A in S3 leads to H = wﬁﬁo% + V{q); in view
of (12.2) this equals (p — hf(g))? + V(q), the same expression we found
before.

McLachlan and Atela (1991) use the discrepancy between H and H as a
measure of the accuracy of the method v h.H- Since such a discrepancy equals
H +883/0h this is just using the Hamilton-Jacobi methodology introduced
by Sanz-Serna and Abia (1991).
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13. Properties of symplectic integrators: conservation of
energy

For the system (2.1) the Hamiltonian H is a conserved quantity: H wvebﬁ.vv

does not vary with ¢ if (p(t),q(t)) is a solution of (2.1). In applications in

mechanics conservation of H usually corresponds to conservation of total

mechanical energy. Do symplectic integrators possess the analogous prop-

erty that, except for rounding errors, H(p",q") does not <.E% S:Ur. n Eo.sm
a numerically computed solution? Sometimes they do: if (2.1) is a lin-

ear system and the integrator is a symplectic RK method 3..513.3, a.rm:

H is conserved along numerical trajectories. In fact in this case .m is a
quadratic function and symplectic RK methods conserve all quadratic func-

tions that are conserved by the Hamiltonian system being integrated, Sanz-

Serna (1988). However if we still assume linearity in the system m.:m. we use
a PRK or a RKN method, conservation of H no longer holds. This is easily
seen in the case of the harmonic oscillator (2.5) integrated by the method
(12.2). We have noticed carlier that the computed vomim.axmosu‘ lie on tra-
jectories of the modified system (12.4) and hence on the lines Hoo(p, g; h) =
constant in the (p,q) plane. But, for h small, these lines can be seen to
be ellipses, while for conservation of energy we wanted the v.o:;m to be on
circles p® 4 q? = constant. As h — 0 the eccentricity of the ellipses decreases
and they look more like circles: smaller values of h lead to smaller energy
errors, as in the consistent method. Furthermore the fact that the computed
points stay exactly on an ellipse near the theoretical circle implies that the
error in energy remains bounded even if ¢ gets very large.

i. The same ideas apply more generally. When problem (2.1) is very mBoo.nT
but nonlinear, the computed points do not remain exactly on trajectories
of the modified problem Sy_ (s). Nevertheless, the drift of the points away
from the modified trajectories is very slow: the numerical scheme gm ex-
ponentially small local truncation errors when seen as an monﬁEm.SOs to
the modified system. Therefore H. oo{h) is conserved by the ::Em:.oﬂ 80~
lutions, except for exponentially small errors, for long (O(h™1!)) periods of
time. This in turn implies that the errors in H = Hoo(h) + O(h™) possess
an O(h") bound on time intervals of length O(h~!) (Lasagni, 1988).

For ‘general’ Hamiltonians, Ge and Marsden (1988) prove that a syr-
plectic method 1),y cannot exactly conserve energy (except .mow, ﬁmm triv-
ial cases where the function 9, g actually coincides with or is a time re-
parameterization of the true flow ¢, y). Hence conservation of the symplec-
tic structure and conservation of energy are conflicting requiriments ?@F
in general, cannot be satisfied simultaneously by a numerical scheme. mE.om
both the Hamiltonian and the symplectic structure are conserved by Hamil-
tonian systems, the question naturally arises of whether when constructing
an Enmmw.@nca we should choose to conserve symplecticness and violate con-
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servation of energy or vice versa. This is a question that should probably
be answered differently for each specific application. However it should
be pointed out that, as mentioned in Section 4, symplecticness is a prop-
erty that fully characterizes Hamiltonian problems, while conservation of
an energy-like function is a feature also present in many nonHamiltonian
systems. Furthermore conservation of energy restricts the dynamics of the
numerical solution by forcing the computed points to be on the correct
(2d — 1)-dimensional manifold H = constant, but otherwise poses no re-
striction to the dynamics: within the manifold the points are free to move
anywhere and only motions orthogonal to the manifold are forbiden. When
d is large this is clearly a rather weak restriction. On the other hand, sym-
plecticness restricts the dynamics in a more global way: all directions in
phase space are taken into account.

The literature has devoted a great deal of attention to the construction
of numerical schemes that exactly conserve H (or more generally, to the
construction of integrators for a system dy/dt = f(y) that exactly conserve
one or more invariants of motion). Several ideas have been suggested:

1  stepping from ¢, to t,.; with a standard method and then projecting
the numerical result onto the correct energy surface;

2  adding the conservation constraints to the differential systemn to obtain
a system of differential-algebraic equations; and

3 constructing ad hoc schemes. However conservation of energy is not the
theme of this paper and we shall not attempt to review the relevant
literature.

14. Properties of symplectic integrators: KAM theory

The Kolmogorov—Arnold—-Moser (KAM) theory for Hamiltonian problems
explains the behaviour of Hamiltonian systems that are perturbations of
so-called integrable Hamiltonian systems (i.e. of Hamiltonian systems that
can be explicitly solved in terms of quadratures). This material is covered
in the books by Moser (1973), Arnold (1988, 1989) and MacKay and Meiss
(1987). The theory also caters for the case of symplectic mappings that
are perturbations of integrable symplectic mappings. Therefore KAM re-
sults can often be applied to the mappings ¥ g associated with symplectic
integrators.

To get the flavour of this sort of application, let us consider once more the
method (12.2) applied to (12.1). Recall that the origin is a (stable) centre
for the system (12.1). For the discrete equations (12.2), linearization around
the origin leads to

p*tl =p" + hf(0)g"TT,

a system that has, for h small, unit modulus eigenvalues. Thus the origin

Q:+H — Q: + Fﬁ:. AHAHV

“~
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is also a centre for (14.1). However to go from (14.1) to the discretization
(12.2) we must include the effects of the nonlinear terms that were discarded
in the process of linearization. Since (14.1) is only neutrally stable, it may
be feared that the nonlinear effects, small as they may be, will render the

"origin unstable for (12.2). The KAM theory can be used to show that the

symplecticness of the method implies that such a destabilization does not
occur. Full details of this example have been given in Sanz-Serna (1991a).
Incidentally, we would like to point out that it is this mechanism that renders
the standard explicit midpoint rule stable in many nonlinear problems, even
though this rule is only neutrally stable in a linear analysis. The interested
reader is referred to Sanz-Serna and Vadillo (1986, 1987).

15. Practical performance of symplectic integrators

Numerical tests provide the final verdict on the usefulness of any numerical
method. For Hamiltonian problems, are symplectic methods more advanta-
geous in practice than their nonsymplectic counterparts? Before we answer
this question, let us observe that many symplectic methods are implicit.
Even though explicit symplectic algorithms exist in the PRK and RKN
familics, they are only applicable to restricted classes of Hamiltonians. Fur-
thermore, when deriving such explicit methods, free parameters are used to
ensure symplecticness which could otherwise be directed at increasing ac-
curacy. The result is that, to achieve a given order, a symplectic explicit
PRK or RKN method usually needs more stages than a standard PRK or
RKN method. All these considerations show that there is a price to pay

“for symplecticness. Symplecticness is expected to pay back when perform-

ing very long time integrations: then a symplectic scheme has some inbuilt
features that may guarantee the right long-term qualitative behaviour and
even result in a favourable error propagation mechanism. On the other hand
for short-time integrations, where accuracy is of paramount importance, a
good standard code is expected to outperform any symplectic method.

Menyuk (1984), Feng and Qin (1987), Sanz-Serna (1989), Channell and
Scovel (1990), Miesbach and Pesch (1990), Candy and Rozmus (1991),
McLachlan and Atela (1991), Okunbor and Skeel (1991) and Pullin and
Saffman (1991) provide numerical experiments involving symplectic inte-
grators. The sort of experiment performed often consists of the application
of a symplectic method to the long-time integration of a Hamiltonian prob-
lem; some sort of graphic output is then examined. The conclusions appear
to be that symplectic integrators are very successful in identifying most rel-
evant qualitative features of Hamiltonian flows. In most of the papers cited
here, the symplectic method is tested against a standard method of the same
order of accuracy. The standard method is usually proved to require much
smaller step-sizes to correctly identify the true dynamics.
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This sort of experimentation, encouraging as it may be to the developer
of symplectic methods, is open to criticism. To begin with, the reference
standard method being used tends to be either the classical fourth-order RK
method or a low accuracy RK formula like the modified Euler scheme. These
reference methods are far away from state of the art numerical integrators.
Furthermore, in the experiments we are discussing, both the symplectic in-
tegrator and the reference standard method are implemented with constant
step-sizes, which again is far away from current numerical ODE practice. It
is legitimate to ask what would happen if in the comparisons the nonsym-
plectic method would have been chosen to be a modern variable step-size
code. On the other hand, this criticism may not be entirely fair: standard
methods have been under development for several decades, while we are at
the stone age of symplectic integration; it may then make sense to compare
our symplectic integrators with stone-age standard methods.

A somewhat more severe test has been conducted by Calvo and Sanz-Serna
(1991b,c). A fourth-order, explicit, symplectic RKN method is constructed
which is optimal in the sense that the error constants have been minimized
following a methodology due to Dormand et al. (1987). First, this symplec-
tic integrator, implemented with constant step-sizes, is compared with a
variable step-code based on an optimal fourth-order nonsymplectic formula
of Dormand et al. (1987). The result of the comparison is that, in long time
integrations, the symplectic method definitely needs less work to achieve a
given accuracy. This holds even in cases where the solution possesses several
time scales along the integration interval and the code is much benefiting
from the step-changing facility. In the integration of Kepler's problem, it
can be shown rigorously (Calvo and Sanz-Serna, 1991c) that for symplectic
integrators the errors grow linearly with ¢, while for nonsymplectic methods
grow like t2. Hence the symplectic methods are guaranteed to win if ¢ is
large enough.

15.1. Variable step-sizes

Calvo and Sanz-Serna (1991b) then go on to compare the nonsymplectic
code with a variable step-size implementation of the symplectic formula.
For this implementation, due care was exercised in constructing the error
estimator, etc. Before the experiments were conducted it was expected that
the combination of the advantages of symplecticness with those of variable
step-sizes would lead to a very efficient algorithm. The numerical results
were very disappointing: in the variable step-size implementation, the sym-
plectic formula does not show any advantage in the long-time error propa-
gation mechanism. For instance, for Kepler’s problem the error growth is
quadratic, just as if a nonsymplectic formula were used. Since the cost per
step of the simplectic algorithm is higher than that of the standard code (see
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carlier), the conclusion is that the variable step-size simplectic algorithm is
not competitive with the standard code.

It thus appears that there is a future for the practical application of sym-
plectic integration, especially if high order symplectic formulae are developed
and if advances are made in efficiently implementing the implicit symplectic
methods. However such a future seems to be limited to constant step-size
implementations!

Before closing this section it is appropriate to say some words on the
failure of variable step-size symplectic methods. In Section 12 we pointed
out that a symplectic integrator 1, i ‘almost’ provides the exact flow of a
Hamiltonian problem ¢y, ;7 (n). If A is held constant during the integration,
the initial condition is numerically advanced to t = t,, by

n
e e
Y HVnH - Ul

which for ¢,, in a compact time interval differs from

n
A

Ph Hoo (1) Pl Hoo (1) Bl Hoo(B) = Pn s Hoo (1)

in exponentially small terms: the computed points stay very close of a mod-
ified Hamiltonian trajectory. The situation is quite different for variable
step-sizes. Now the initial condition is advanced by

a\y}.:‘m@}:lT:...@}.Tm“ AHU“—.V

an approximation to
I
PhnHoo(hn) Pt Hoo(hn—1) " Py, Hoo(hr)-

i

The last expression cannot be interpreted as the t,-flow of a Hamiltonian
problem: the Hamiltonians being used at different time steps are different.
This shows that the backward error interpretation of symplectic integration
does not hold Tor variable step-sizes.

There is a difficulty here: in a variable step-size code the step points t,,
are actually functions of the initial point (p° q°) (and also of the initial
guess for the first step-size). Therefore the algorithm does not really effect a
transformation mapping the phase space ( at ¢ = 0 into the phase space 2
at time ¢, rather (2 x (¢t = 0)) is mapped into some curved 2d-dimensional
surface in the (2d+ 1)-dimensional spacetime. It is then possible to question
the relevance of (15.1) to the analysis of the variable step implementation.
However in the experiments reported by Calvo and Sanz-Serna (1991b) only
one fixed initial condition was used so that, in a ‘mental experiment’, one
could pretend that the sequence of step-sizes hj, hg,..., actually used in
the integration was recorded and would have been used to integrate neigh-
bouring initial conditions. In this context, compatible with the numerical
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experiments, the initial condition is really advanced by the symplectic trans-
formation (15.1).

The advantages of symplectic integration may well originate from the fact
that one advances from t = 0 to time ¢, by iterating n times a single sym-
plectic mapping. Advancing by composing n different symplectic mappings
does not appear to be as effective.

16. Concluding remarks

In the paper we have restricted ourselves to standard Hamiltonian problems
(2.1) on a domain § in an even-dimensional oriented Euclidean space. One
may also consider a so-called symplectic manifold, an even dimensional man-
ifold endowed with a closed, nondegenerate differential 2-form that plays the
role that was played here by dp Adq (Arnold, 1989; MacKay, 1991). In such
a manifold to each scalar function H there corresponds a Hamiltonian-like
system of differential equations. More generally one could consider a Pois-
son manifold. A reference where a symplectic integrator is derived for a
Poisson system is de Frutos et al. (1990). Another area of active research
in the physics literature is that of Lie-Poisson integrators, see e.g. Ge and
Marsden (1988).

Many partial differential equations also possess a Hamiltonian structure.
In connection with symplectic integration they pose two problems: how to
discretize them in space to obtain a Hamiltonian semi-discretization and how
to advance in time the semi-discrete solution to have an overall symplectic
algorithm. Some references are Qin (1988), Li and Qin (1988), Qin and
Zhang (1990), de Frutos et al. (1990).
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Many of the boundary value problems traditionally cast as partial differential
equations can be reformulated as integral equations over the boundary. After
an introduction to boundary integral equations, this review describes some
of the methods which have been proposed for their approximate solution. It
discusses, as simply as possible, some of the techniques used in their error
analysis, and points to areas in which the theory is still unsatisfactory.
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1. Introduction

In the past decade there has been a dramatic growth of engineering interest
in boundary integral or boundary element methods, witnessed by the large
number of recent conference proceedings with these words in the title. At the
same time, the former rivalry between advocates of BIE (boundary integral
equation) and PDE (partial differential equation) approaches seems to have
softened, as the relative strengths and weaknesses of each have become better
understood.

Boundary integral methods may be used for interior and exterior prob-
lems, but have a special advantage for the latter. As a first introduction,



