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PSEUDOSPECTRAL METHOD
FOR THE "GOOD" BOUSSINESQ EQUATION

J. DE FRUTOS, T. ORTEGA, AND J. M. SANZ-SERNA

Abstract. We prove the nonlinear stability and convergence of a fully discrete,

pseudospectral scheme for the "good" Boussinesq equation un = -uxxxx +

uxx + ("2)xx ■ Numerical comparisons with finite difference schemes are also

reported.

1. Introduction

The "good" Boussinesq (GB) equation

Utt = -Uxxxx + Uxx + (U\x

is similar to the well-known Korteweg-de Vries (KdV) and cubic Schrödinger

(CS) equation in that it provides a balance between dispersion and nonlinearity

that leads to the existence of solitons. However, the GB equation possesses some

remarkable peculiarities. For instance, solitary waves (i) only exist for a finite

range of velocities, (ii) can merge into a single solitary wave, (iii) can interact

to give rise to so-called anti-solitons [10].

The numerical and analytical study of the GB equation is only beginning.

Two recent papers are [9, 10]. The first of these articles provides an exact for-

mula for the interaction of solitons. The second is devoted to an analysis of

the soliton interaction mechanism and to the existence and regularity of solu-

tions of the initial-value problem. While numerical experiments are reported in

[9], little analysis is given there of the stability and convergence of the methods

employed.

In [11] two of the present authors have shown the nonlinear stability and

convergence of a family of finite difference schemes for the numerical solution of

the GB equation. While these schemes may provide a useful integration method

when high accuracy is not required, finite difference algorithms are often (see,

e.g., [15, 17]) judged not to be competitive with their spectral and pseudospectral

counterparts. The aim of the present work is the analysis and assessment of a

pseudospectral time-discrete method for the GB equation. General background

references are [5, 1, 6, 16].
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Throughout the paper, we consider that, at each time level, the algorithms

provide a vector U of approximations to nodal values of the theoretical so-

lution u. Hence, errors are measured by means of discrete norms. In an

alternative point of view, the algorithms could have been seen as providing,

at each time level, a trigonometric polynomial that approximates u over the

spatial domain. It would not be difficult to translate the discrete-norm bounds

obtained in this paper into continuous-norm bounds for the difference between

u and the trigonometric interpolant of the discrete solution U.

Our estimates for the global error are derived via the "stability plus consis-

tency" approach. The main problem encountered lies in the stability study of

the aliasing error in the nonlinear term. To alleviate these difficulties, the anal-

ysis is carried out after twice integrating the differential equation with respect

to x , so as to remove the derivatives occurring in the nonlinear term. This is

roughly equivalent to the use of negative Sobolev norms (see the remark after

Theorem 4.2).

The paper is organized as follows. In §2 we present the problem to be solved

and the numerical method. In §3 we study the energy norm, which is the key

ingredient in the stability and convergence analysis of §4. Finally, §5 is devoted

to numerical experiments.

2. A NUMERICAL METHOD

We consider the periodic problem

2
(2.1 )       uu = -uxxxx + uxx + (u )xx,        -oo < x < oo, 0 < t < T < oo,

(2.2) u(x, t) = u(x + 1, t),        -oo < x < oo, 0 < t < T,

(2.3) u(x,0) = u(x),        -oo<x<oo,

(2.4) ut(x,0) = v (x),        -oo<x<oo,

where the data u°, v° are 1-periodic functions, which are assumed to be

smooth enough for (2.1)—(2.4) to have a unique solution, classical or generalized

(see [10]). While, for simplicity, we have chosen the period in (2.2) to be 1,

it is clear that what follows can be readily extended to cover the case of an

arbitrary period.

We now define our numerical method. If 7 is a positive integer, we set

h = 1/(27) and consider the mesh points x¡ = jh , j is an integer. We denote

by ZA the space of real, 1-periodic functions defined on the mesh. Thus each

element VeZft is a sequence {^},=0 ±)     wrtn V, = Vj+2J , j = 0, ±1.

The notation [VTT refers to the pth discrete Fourier coefficient of V, i.e.,

Wp=JJ  E"   V^xV(-2nipjh),        -J<p<J,
0<j<2J
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PSEUDOSPECTRAL METHOD FOR THE "GOOD" BOUSSINESQ EQUATION 111

where the double prime in the summation means that the first and last terms

are halved. The recovery of V from its Fourier coefficients is achieved by the

inverse discrete Fourier transorm

Vj = V*(Xj),        j = 0,±l,...,

where V*(x) is the trigonometric interpolant of V given by

(2.5) V (x) =   2_^    \y\p exp(27iipx),        -oo < x < oo.
-j<p<j

Differentiation of (2.5) with respect to x and evaluation at the mesh points

lead to the following definition of the standard second difference pseudospectral

operator D   mapping Zh into itself:

(D2\)j=   £" [Y];(2nip)2exp(2nipjh),

(2.6) -j<p<j

VeZh, j = 0,±l,....

Of course, equality (2.6) can be written as the following simple formula for the

Fourier coefficients:

(2.7) [D2\]; = (2nip)2[%,        -J<p<J.

The operator D4 in Zh is, by definition, the composition D D .

Next, let k denote a parameter 0 < k < T and consider the time levels

tn = nk, n = 0, 1, ... , N, with N = [T/k]. In the sequel a superscript

n denotes a quantity associated with time level tn . With these notations, we

consider the pseudospectral scheme

(U"+1-2U" + U""1)/fc2

(2.8) = - 1{/)V+1 + 2Z)V + Z/U"-1} + D2V" + D2(\j"f,

n = 0, 1, ... ,N- I,

with initial values

(2.9) U° = a,

(2.10) (U1 -U°)/k = ß,

where a, ß eZh are given approximations to xhu , xhv , the grid restrictions

of the functions u and v in (2.3)-(2.4). The elements U" are, of course,

meant to approximate the grid restriction u" = rhu" , where u" = u(-, tn).

For implementation purposes, it is best to Fourier-transform (2.8) to get,

after taking (2.7) into account,

([u"+1];-2[u"]; + [u"-1];)A2

= -\(2nip)\[\]"+x]; + 2[u"i; + [u"-1];}

+ (27tip)2{[u"]; + [(v")2];},    -j<p<j.
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112 J. DE FRUTOS, T. ORTEGA, AND J. M. SANZ-SERNA

The last equations, for each p, give [U"+1P in terms of [U"]? , [U"_1]r,

and [(U")2]^. Therefore, if [U"]~, [\J"~XV are in storage, the computation of

the solution U"+1 requires the computation of the Fourier transform of (U")2,

plus the computation of an inverse Fourier transform to recover U"+1 from its

Fourier coefficients. Of course, in practice, 27 is chosen to be of the form 2m ,

m an integer, and the transforms are performed by FFT techniques [2].

The weights 1/4, 1/2, 1/4 of 7>V+1, flV, D4Vn~x in (2.8) have been
chosen for well-known accuracy reasons, but clearly other choices of weights

are possible and can be analyzed by using the techniques below (cf. [11]). Also

note that the time-continuous version of (2.8) is appealing when combined with

the use of a standard ODE package. The analysis of such a time-continuous

algorithm can be done along the lines of the study presented in this paper of

the fully-discrete method (2.8).

3. The energy norm

The convergence analysis to be carried out in the next section is based on the

use of an appropriate energy norm for the discrete solution U" . In order to

motivate our choice of energy norm, it is useful to consider the linear problem

given by the principal part of (2.1),

(3.1) Utt-~Uxxxx' -oo < x < oo, 0 < t <T < oo,

along with (2.2)-(2.4).

We denote by L the usual space of square-integrable 1-periodic functions,

endowed with the standard norm || • || and inner product (-, •). Furthermore,
■y t 1

we denote by dx the operator d ¡dx   and by / the average functional

l(v) = /   v(x)dx.
Jo

If v is a function in L , Fourier analysis easily shows that there is a unique

function d~2v e L2 such that

(3.2) dx(d;2v) = v-l(v),        l(d;2v) = l(v).

We apply the operator dx to (3.1) and take the inner product with d~ ut

to get

{d~x\t^;\) = -(d2xu,d;2ut).

Integration by parts yields

or

^{iiö;2",ii2 + ii"ii2} = /(«)/(«,) = mi(d;\)

<\{\\d~x2ut\\2 + \\u\\2}.
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PSEUDOSPECTRAL METHOD FOR THE "GOOD" BOUSSINESQ EQUATION 113

Now the Gronwall lemma leads to an estimate

iir\ — -¿ 11^- II       I I ̂      ^    s~i CI I rv —^      U i i ¿     ,     M      *J I I <- 1 f\     ^    ±     ^    T*

\\dx  "Jl  + IIMII   <C{\\dx  v\\  +||w ||},        0<f<7\

for the solutions of the problem (3.1), (2.2)-(2.4). This shows that the problem

is well posed in the following energy norm for pairs (v , u) e L2 x L2 :

(3-3) \\(v,u)\\E = (\\dx-2v\\2 + \\u\\2)X/2.

To construct a discrete analogue of (3.3), we begin by defining the operator

D'2 in Zh such that (cf. (3.2)),

(3.4) D2(D~2(\)) = V - [V]~l,        [D~2X]; = [V]~.

Here and later, 1 represents the grid function that takes the value 1 at every
_2

grid point. Fourier analysis reveals once more that (3.4) uniquely defines D   V.
_2

Namely, the Fourier coefficients of D   V are defined by

(3.5) [D~2\]; = (2nip)-2[\];,       p = ±l,±2,...,±J,

and the second condition in (3.4). This Fourier representation also shows that
—2 2

D     commutes with D .

Next, if (V, V*) e Zh x Zh, we set

(3.6)        Qk{\, V*) = ||ZT2(V - V*)/k\\2 + i(||V||2 + 2(V, V*) + ||V*||2),

where 11 • 11 denotes the standard discrete L -norm

l|V||2=  E" hV2
0<j<2J

and (-, •) represents the corresponding inner product. (Note that the same

symbols (•,•), || • || are used for the continuous and discrete cases, but no

confusion is possible.) The operators D , D4, D~ are clearly selfadjoint

with respect to (•,•).

Proposition. For (V, V*) e Zh x Zh we have

(3 ?) G*(V, V*) < \\D~2(\ - Y)lk\\2 + I(||V||2 + I||V*||2)

<K(r)Qk(\,Y),

where K(r) = (4 + nr )/4, with r the mesh ratio r = k/h .

Proof. We employ the technique of the proof of Proposition 3.1 of [11]. The

first inequality in (3.7) is obvious. To prove the second, we introduce the

following quadratic form Pk in Zh x Zh :

Pk(\, Y) = \\D~2(\ - \*)/k\\2 + i||V||2 + i||V*||2

and compare the eigenvalues/functions of Pk and Qk .
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114 J. DE FRUTOS, T. ORTEGA, AND J. M. SANZ-SERNA

From (3.6), the selfadjoint operator in Zh x Zh associated with Qk may be

written in block form as

■ k-2D~4 + \i   -k~2D'4 + \r

_-k-2D-4 + \I    k-2D~4 + \l . '

where D~   is the composition D~ D~ . Therefore, if (V, V*) is an eigen-

function associated with the eigenvalue X, then

k~2D~4V + ±V - k~2D~V + ¿V* = XY,

-k~2D~4\ + |V + k~2D~4\* + \\* = XV*.

By adding and subtracting these equations we obtain

(3.8) i(v + V*) = A(V + V*),

(3.9) k~2D~4(V-V*) = X(V-Y*).

When eigenfunctions with V = V* are looked for, (3.9) holds and (3.8) re-

veals that X = 1/2 is an eigenvalue with multiplicity dim(ZA) = 27. On the

other hand, if eigenfunctions with V = -V* are sought, (3.8) holds and (3.9)

implies that X is an eigenvalue of 2k~ D~ and V the associated eigenfunc-

tion.

Turning now to Pk , a similar argument yields that the eigenvalues/functions

of Pk are, on the one hand, {1/2, (V, V*)}, V arbitrary, and, on the other

hand, {1/2 + //, (V, -V*)}, with p. e Spec(2AT2ZT4) and V the associated

eigenfunction. Since Pk, Qk possess a common set of eigenfunctions, the

second inequality in (3.7) is equivalent to the condition

X(Pk)<[(4 + n4r2)/4)X(Qk)

for the corresponding eigenvalues, i.e.,

(3.10) p+l/2<[(4 + n4r2)/4]p,        p. e Spec(2k~2D~4).

Now (3.10) is easily seen to hold, after noticing that (3.4)—(3.5) imply that the

eigenvalues of D~   are 1 and l/(-2np) , p = ±1, ±2, ... , ±(7-1), 7.   D

As a first consequence of the proposition, note that Qk is positive definite

and that it is therefore possible to define a discrete energy norm by

(3.11) ||(V, V*)||£ = Qk(\, V*)1/2,        (V, V*) e Zh x Zh.

Furthermore, note that (3.6) implies that the energy norm is equivalent to the

Sobolev norm (cf. (3.3))

{||/J>-2(V-V*)A||2 + i||V||2 + i||V*||2}1/2.

The equivalence is uniform in k , h , provided that the grids are refined subject

to a restriction

(3.12) rmax := sup(^2)< oo.
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4. Nonlinear stability and convergence

We now investigate the nonlinear stability of the algorithm (2.8). To this end,

let Vo, V1, ... , V* and W°, W1, ... , W* be two sequences of elements V" ,

W" e Zh , n = 0, I, ... , N, and define the residuals

F° = V°-a,

(4.1)

and

(4.2)

F1 =\x -a-kß,

r+x = k~2(Y"+x - 2v" + y"~x) + \{d4v"+x + 2d\" + D4y"~x}

-D2\" -D2(\")2,        n=l,2,...,N-l,

G° = W°-a,

G1 = W1 - a - kß,

Gn+X = k~2(W"+X - 2W" + W""1) + i{/J4W"+1 + 2Z) V + Z)V-1}

-D2W" -D2ÇW")2,        n=l,2,...,N-l.

Thus, {V"} , {W"} can be viewed as perturbed solutions of (2.8) with {F"} ,

{G"} the corresponding perturbations. The stability analysis consists of esti-

mating the size of the differences V" - W" in terms of the size of the differences

F" - G".

Theorem 4.1. Assume that (i) the grids are refined according to (3.12) and (ii)

the, possibly generalized, solution u of (2. l)~(2.4) is a bounded function on

0 < x < 1, 0 < t <T. Let p be an arbitrary positive number, and set

M = max{«: 0 < x < 1, 0 < / < T}.

Under these hypotheses, there exist a constant kQ, depending only on rmax and

a constant S, depending on rmax, p, and M, such that if {V"}, {W"}, {F"},

{Gn} are as above and

(4.3) jkimk_i ||(V"+1 - u"+1, V" - u")||£ < phx/2,

(4.4) o£» i ||(W+1 - u"+1, W" - u")||£ < phX/2,

then, for k < k0,

max    ||(V"+1-W',+1,V"-W',)|L

<exp(5r){||F1-G1,F0-G°)||£+   "£  /c||Z>~2(F" -G")||}.

2<n<N

Proof With the abbreviations e" = V" - W", l" = F" - G" , n = 0, 1,..., N,
after subtracting (4.1) and (4.2), we get, for n = 1, 2, ... , N - I,

¿-y+1 - 2e" +6"-1) + i{Z)V+1 +2D4e" +D4e"~X}

-D2t"-D2[(\")2-(W")2] = l"+X.
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_2
Application of the operator D to the previous equality and some rearrange-

ment lead to

k-2(D~2e"+x - 2D~2e" + /TV-1) + ±{Z)V+1 + 2D2e" + D2^1}

(4.6) =e"-[eXl + (V")2-(W")2

- [(V)2 - (W)2]~l - D~2\"+x,        n = 1, 2,..., N- 1.

We now take the inner product of (4.6) and D~2(tn+X - e") + D~2(e" - e""1),

and in the result rearrange the left-hand side and apply Cauchy-Schwarz to the

right-hand side. This results in

(4.7)
Qk(*n+X, e") - Qk(en , e""1) + ¿{[e"+1]Ô + 2[e"]~ + [e^Q

—2,  n+1        «\i~  ,   rr>—2/  n        «-1>.    rrr»-2/   «+1 «\i~   .   iT\-¿t   « «_1\i^l+ {[D   (e     - e )]0 + [D   (e  - e     )]„ }

< ||e" - [e"]^l + (V")2 - (W")2 - [(V")2 - (W)2]~l - ZTY+1||

+ (||Z)-2(e',+1-e")|| + ||/J)-2(e"-e"-1)||),        n = 1, 2, ... , N- I.

Now the definition of Qk implies

||ß"2(V-V*)||<Ä:[ß,(V,V*)]1/2,        V,V*eZ„,

and therefore (4.7) leads to

||(e"+1,e'I)||£-||(e")e'I-1)||£

<^l|{[e"+1]f; + 2[eX + [e'!"1Ol

(4.8) + fc||e«_[e«ri + (V")2-(W'!)2

[(V")2-(W'I)2Cl + Z)"2l"+1|

n= 1,2, ... , TV- 1.

The proposition of the previous section shows that

i¡[e"+1]¿T + [e"]~l < C,||(e"+1, e")||£,    n = 1,2,... , N-I,

He" -[e\l|| < C2||(e\ e"_1)||£,    n = 1,2, ... , N - I,

where Cx , C2 are constants depending only on rmax. On the other hand, in

view of (4.3)-(4.4),

||(V")2-(W',)2||<||(V'! + W")|U|e"||

.    r\\**7n Tilt HiirW ^ l l ,    ^11     11 I       -ill    lii

<{IIV    "■   lloo + HW    -U   Hoc + 2HU   Hoc}He   H
^ f\\A-  .   i -l/2iiiri «n   ,   i -l/2nlï7n linn   «n
<{2M + h   ' ||V -u || + fl      ||W  -u ||}||e ||

<{2M + h~X/2C2p}\\e"\\,        n = l,2,...,N -I,

where C2 is another constant depending only on rmax. On using these estimates

in (4.8) we obtain

(1 - C,*)||(e"+1, e")||£ < (1 + CAk)\\(e" , e""1)^ + ||D"V+1||,

n = l,2,...,N-l,
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where C4 depends on p, M, A-max. The discrete Gronwall lemma now implies

(4.5).     D

Of importance is the fact that the stability bound (4.5) does not hold for

{V"}, {W"} arbitrary, but only for discrete solutions {V"}, {WM} near the

theoretical solution ("near" in the sense that the threshold conditions (4.3), (4.4)

hold). For the implications of this localized definition of stability, see [7, 8, 3].

For applications of the notion of stability threshold to other discretizations, see

[13,4, 11].
We now turn to the study of the consistency of (2.8). The truncation errors

3~n , n = 0, 1, ... , N, are the residuals in the theoretical solution u" , defined

as in (4.1) or (4.2):

(4.9) y° - u° - a,

(4.10) 9~x =vx -a-kß,

arn+l        1-2,   n+1       ~   n   ,     «-K   ,    i r r»4   «+1   ,   i r»4   «   ,   r»4   "_1i
3      = k    (u      -2u  +u     ) + ${Du     +2Du  +Du     }

-D2u"-D2(u")2,        n = l,2,...,N-l.

From (4.11) we get

D~23~"+x =

(4.12) + |{£>VT1 +2DV+DV"*}

-u" + [u"];i-(u")2[(u")2i;i,       n=l,2,...,N-l,

On the other hand, integration in (2.1) leads to

0 = -d~2utt - dxu + u- l(u) + u + l(u),

a result that when restricted to the grid and subtracted from (4.12) implies that

_.-2 C7-«+l —,«+1     ,   rr,«+l     ,   ™.«+l     ,   r»,«+l     ,    rWJ+1     ,   r—«+1 , t »7-1
D   3      =Tj    +T2    +T3    +T4    +T5    +T6    ,        n = 1, 2, ... , N-1,

where, with rh denoting, as before, grid restriction,

—n+l        ^-2,1-2,   n+1      ^   n   ,     n-K n.
T,    =D   [k   (u     -2u  +u     )-rhutl],
rr.n+1       ,-.-2       n 0-2   n

T2      =D     rhUtt-rhdx   Utt'

n«+' _  1 r/r\2__«+l       _   q2../!+1x   ,   *,/T\2__n      _   r,2.,nN

T\-2C7-n+l       „-2,, -2,  n+1      »   n   ,     n-K,
D   3      = D    [k    (u      - 2u  + u     )]

3      =H(Dn        ~rhdxU       ) + 2(D u   ~hdxU  )

+ (£>u      -rhdxu     )},

rr = \rh{d;w- + lay + dy-' - 4d2u"),

r5+x = (-[u% + i(u"))i,

r6+x = (-[(un)2); + i((un)2))i.

For the first and fourth term, which are linked to the discretization in time, we

can write maxn||T"+ || =cf(k ), maxn||T4+ || =cf(k ) if, say, uxxtt and umt
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are bounded in 0 < x < 1, 0 < / < T. The remaining terms T2+1, Tj+1,

T„+1 ̂  ^„+1 come fTOm me discret:ization in space. It is in these terms that the

accuracy of the pseudospectral technique should manifest itself. For instance,

by reasoning as in the proof of Lemma 2.2 in [14], it is easily shown that, if

utt(-, tn) belongs to the periodic Sobolev space Hs, s > 1/2, then ||T2+1|| <

Cshs\\utt(-,tn)\\Hs. Thus, for uu sufficiently smooth, ||T2+1|| = cf(hs), for

any 5 > 0 (in fact, this term may even be exponentially small, see [14]). In a

similar way, maxJIT""1"1!! is cf(hs), if «(•, tn) is in Hs+2 uniformly in t [14,

Lemma 2.2]. Finally, the aliasing errors |jT"-*"111, ||T£+1|| are cf(hs) if u , u2

respectively are in Hs, uniformly in t. To sum up, for the truncation error it

is possible to derive bounds

(4.13) max    \\D'23r"+x\\ = cf(k2 + hs),       h,k^0,
\<n<N-l

provided that the theoretical solution u is sufficiently smooth. Furthermore, it

would also be possible to replace the term hs by an exponential term exp(- l/h)

under further smoothness assumptions.

We now investigate the behavior of the truncation errors 3~~ , 3~ associ-

ated with the starting values of the algorithm. In view of the structure of the

right-hand side of (4.5), 3~ , 3~x contribute to the bound for the global error

through \\(3~x, 3~ )\\E. Therefore, we should require

(4.14) \\(3~x ,3-\\E=tf(k2 + hs),        h,k^0,

if the error in approximating the initial conditions is not to dominate over the

truncation error of (2.8). Note that, by (3.7), the estimate (4.14) holds if a is

chosen to be the restriction u   of u   and ß satisfies

(4.15) \\(u -n)/k-ß\\E=cf(k2 + hs),        h,k^0.

The relation (4.15), in turn, holds if u is smooth and ß is taken to be the grid

restriction of the following Taylor expansion of ut(-, k/2) :

(4.16) (ul + (k/2)Uil)\l=0.

Note that ult (t = 0) is available from differentiation of u with respect to x in

the differential equation (2.1). Alternatively, the x-derivatives of u required

can be replaced by pseudospectral differences.

We are now in a position to prove the convergence of the method.

Theorem 4.2. Suppose that the hypotheses of the stability theorem 4.1 hold. As-

sume that the choice of starting vectors a, ß and the smoothness of the theo-

retical solution guarantee that (4.13)—(4.14) hold with s > 1/2. Then

max   ||U"+1-u"+1,U',-u'!||,=^(^2 + /2i),       h,k^0,
l<n<N-l h

2
so that in particular the following L -estimate holds:

max ||U" - u"|| = @(k2 + hs),       h , k -» 0.
0<n<N
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Proof. Basically, we apply the stability bound with the choice V" = U" , W" =

u" , n = 0, I,..., N. However, it is not clear that, with this choice, the

threshold conditions (4.4) hold. It is then necessary to apply the main theorem

of [7], based on an important lemma due to Stetter [12, Lemma 1.2.1].   D

It is of course clear that, for u sufficiently smooth, the estimates cf(hs) for

the spatial contribution can be replaced by exponential estimates cf(exn(- l/h)).

Remark. As a first step in the analysis in this section, the differential equation

and the numerical method have been integrated twice with respect to x . This

device was introduced to alleviate the difficulties found in the stability analysis

of the nonlinear term: dealing with (V") - (W") is easier than dealing with

D (\") -D (W") . As a result, our energy norm is an L -norm of u combined

with a negative norm of ut. This should be compared with the energy norm

in [8]: there, no integration with respect to x is necessary and convergence is

proved in H2 for u and L2 for ut.

5. Numerical experiments

The pseudospectral scheme analyzed above has been tested in the long-time

integration of solitary waves and collisions of solitary waves.

The solitary wave of the GB equation is given by

(5.1) u(x,t) = -Asech2[(P/2)(^-^0)],       Ç = x-ct,

where £0 and P are real parameters, 0 < P < 1, and the amplitude A and

velocity c of the wave are related to P through the formulas

A = 3P2/2,        c = ±(l-P2)1'2.

Equation (5.1) shows that the solitary waves decay exponentially as \x\ —> oo .

Therefore, it is possible to use the periodic pseudospectral scheme (2.8) on an

interval [xL, xR], where the artificial boundaries are located far out enough for

the theoretical solution to satisfy the conditions

(d'/dx')u(xL, t) = (d'/dx)u(xR, t),        0<t<T, i = 0,1,2,3,

except for a negligible remainder.

The scheme was implemented in single precision on a VAX-11/780 machine

with a VAX-11 FORTRAN compiler. The Fourier transforms were carried out

by the Cooley-Tuckey [2] algorithm coded by us in FORTRAN.

Table 1

Single soliton error

27   h A: = 0.8 k = 0.4 k = Q.2 k = 0.1
32 2.5 0.0805 0.0729 0.0717 0.0715
64 1.25 0.0328 0.0078 0.0019 0.0005

128 0.625 unstable 0.0078 0.0019 0.0005
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Table 1 corresponds to a single soliton (5.1) with a (moderate) amplitude

A = 0.5 and an initial phase ¿;0 = 0. The missing starting level U1 was

obtained as in (4.16), boundaries were placed at xL = -40, xR = 40, and the

integration was followed up to T = 40. The table provides the L -errors at

the final time.

Note that, for 27 = 32, a reduction in k does not significantly change the

error. This shows that for this value of 7 the error orginates, almost entirely,

from the space discretization (i.e., the results given by the scheme are the same

as those of the time-continuous version of the pseudospectral method). How-

ever, when 27 is doubled to 27 = 64, the picture is different: halving k results

in a division by 4 of the error, showing that now the space discretization is

far more accurate than the integration in time. This is confirmed by the fact

that a further doubling of 27 from 64 to 128 has no effect on the error for

k > 0.4. For 27 = 128, k = 0.8 , we have observed marked solution growth.

This does not contradict the stability theorem 4.1, since that result holds only

for k small enough with respect to the mesh ratio. Observe that in this and

later experiments the unstable runs correspond to situations where a large value

of k is combined with a large value of r. Before leaving Table 1, we would

like to emphasize that the great gain in accuracy observed when comparing the

two runs 27 = 32, k - 0.1 and 27 = 64, k = 0.1 nicely illustrates the

consistency advantages of the spectral technique.

Table 2

Collision errors/pseudospectral

27   h          k = 0.S k = 0.4 k = 0.2
32  3.75    0.0848 0.0821 0.0816

(0.8) (1.8)    (3.6)
64  1.875   0.0053 0.0014 0.0005

_(1.7) (3.3)    (6.6)

Table 2 corresponds to a collision of two solitons of equal (small) ampli-

tude Ax = A2 = 0.25, initially located at x = -20 and x = 20, respectively.

Since the amplitudes are small, the solitons emerge from the interaction with-

out changes in shape or velocity. The theoretical solution is given by a rather

complicated expression that can be seen in [9] or [10]. Again, T = 40, but now

xL = 60, xR = 60, and U1 was taken from the theoretical solutions. The ta-

ble provides the L -errors at the final time, along with the corresponding CPU

times in seconds (quantities in parentheses). The spectral accuracy property is

again clearly visible and, in fact, the errors for 27 = 128 (not given in the

table) are identical to those for 27 = 64.
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In order to gain some appreciation of the performance of algorithms based

on spatial finite differences, we have implemented the scheme

k-2(\j"+x-2V"+V"-x) = -I{i)*4U'!+1+2Z)*V + D*V-1}

+ D*2V" + D*2(V")2,

where D*2, D*4 are the standard central difference discretizations of d2/dx2,

d4/dx4 , respectively. Note that (2.8) and (5.2) are identical as far as the time-

integration is concerned. The computation of U"+1 in (5.2) requires the so-

lution of a linear system whose matrix can be factored once and for all at the

beginning of the time-stepping. To simplify the structure of this matrix, (5.2)

was implemented with the boundary conditions u = ux = 0 at x = xL, xR,

rather than with periodicity conditions. This is a standard practice in this sort

of problem (cf., e.g., the experiments in [11]). The method (5.2) is clearly

second-order accurate in space and time. Furthermore, it can be shown to be

stable in the sense of Theorem 4.1.

Table 3

Collision errors/finite differences

27 h k = 0.8        k = 0.4 k = 0.2
128      0.9375 0.0407 0.0401 0.0409

(0.6) (1.1) (2.3)
256     0.46875      unstable 0.0092 0.0092

_(4.1***) (8.2***)

Table 3 corresponds to the application of (5.2) to the collision experiment

that was integrated before by the pseudospectral method. Here we give results
for 27 = 128, 256, as those for 27 = 32, 64 are very inaccurate. Note

the cf(h ) behavior of the error. The stars on the CPU times mean that the

run was carried out in double precision, since the single-precision results were

badly affected by roundoff errors. A comparison of the errors in Tables 2 and

3 shows that for given h and k , the pseudospectral scheme is definitely more

accurate than its finite difference counterpart. When computer times are taken

into account, finite differences do well if low accuracy is required (for instance,

they can give errors below 0.05 with 0.6 seconds of CPU). However, if smaller

errors are required (say below 0.005 ), the pseudospectral method should be

preferred. It should also be kept in mind that a better coding of the FFT would

further enhance the efficiency of the pseudospectral algorithm.
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