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4
Two Topics in Nonlinear Stability

J. M. Sanz-Serna

4.1 Introduction

There are several ways in which the word stability may be understood in
a numerical analysis context. First of all, stability is used in expressions
like ‘stability and consistency imply convergence’. In this first sense, sta-
bility refers to dependence of a numerical result on the data, and, as such,
applies to most numerical computations, including numerical linear alge-
bra, quadrature, differential equations, etc. This first notion is akin to the
idea of ‘well posedness’. In fact, in many cases, a numerical procedure is
said to be stable in this sense if it is well posed uniformly with respect to
the relevant parameters, such as the dimension of the problem, grid-size,
etc. In a second use, the term stability applies in connection with the long
time behaviour of discretizations of time-dependent problems in ordinary
or partial differential equations. The stability of discretizations of nonlin-
ear differential equations, ordinary or partial, is the unifying theme of the
present work. In Sections 4.2 to 4.8, we deal with the question of how best
to define ‘stability’ of a nonlinear discretization so that the familiar ‘sta-
bility and consistency imply convergence’ holds. We present a definition of
stability, that when combined with an important lemma due to Stetter and
with a suitable linearization theorem, has revealed itself to be very help-
ful in proving the convergence of nonlinear finite-difference, spectral and
Galerkin methods. In Sections 4.9-4.11 we are concerned with stability in
the second sense. We show how to employ dynamical system results to
investigate the stability of numerical methods that in a linear analysis are
neutrally stable. Our study leads in a natural way to the consideration of
symplectic or canonical integrators, a subject briefly surveyed in the final
Section 4.12.

4.2 Discretizations

In order to study the idea of stability, it is advisable to work in an ab-
stract framework, so that the attention may be focused on the key issues
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148 Two Topics in Nonlinear Stability

and a number of application fields can be covered at once. Here we work
within the framework used in Sanz-Serna[29], that, while being general
enough to treat most application areas, is not unnecessarily abstract. In
this section we summarize some of the basic ideas of Sanz-Serna[29]. The
reader is referred to the original paper for a more detailed treatment and
for information on other available general frameworks.

We consider a given problem involving a linear or nonlinear differen-
tial equation supplemented by suitable side conditions, such as boundary
conditions, initial conditions, etc. Let u denote a solution of this problem
(well-behaved nonlinear problems may of course possess more than one
solution). For the numerical solution we use the notation Uy, where the
subscript h reflects the dependence of Uy, on a (small) parameter such as a
mesh-size, element diameter, reciprocal of number of terms retained when
truncating a series, etc. We always assume that h takes values in a set H
of positive numbers with inf H = 0. The numerical approximation Uy is
reached by solving a discretized problem

®,(Un) =0, (2.1)

where, for each h in H, ®, is a mapping with domain Dy, and taking values
in Y. Here Y}, is a vector space and Dy, is a subset of a vector space X
with

dim({X3) = dim(Y}3) < oo. (2.2)

It is typical of nonlinear situations that ®, cannot be defined everywhere
in X}j: the analytic expression of ®, may involve logarithms, square roots,
etc., which only make sense for vectors in a set Dy smaller that Xp. As h
ranges in H, the family of discrete problems (2.1) is called a discretization.

Most discretizations used in practice for stationary and time-dependent
problems may readily be cast in the format (2.1). This applies not only
to finite-difference techniques, but also to Galerkin, collocation, spectral
methods, etc., (more on this later).

When a solution Up, of (2.1) has been obtained, the question arises as to
what extent does Uy, provide a good approximation to u. A first difficulty
in answering this question stems from the fact that U can be completely
dissimilar to u. Typically, in finite differences, Uy, is a vector with, say, d
entries, while u is a function of one or several continuous variables. This
difficulty is circumvented as follows. Since any solution Uy, of (2.1) is bound
to be an element in Dj,, we first make up our minds as to which element up,
in Dy, should be regarded as the most desirable numerical result. Typically
in finite differences up contains d nodal values of u. Once up has been
chosen, the vector e;, = up — Uy, is defined to be the (global) error in Up,.
In order to measure the size of e;, we introduce, for each h in H, a norm ||-||
in X;. (Norms in different spaces will simply be denoted by || - || without
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mention of the space.) We say that the discretization (2.1) is convergent if
there exists h* > 0, such that for h in H, h < h*, (2.1) possesses a solution
U, such that lim ||up, — Ul = 0, b — 0. If, furthermore, |ley| = O(h?),
h — 0, then the convergence is said to be of order p.

The (local) discretization error 1, in up is, by definition, the element
Th = Op(up) € Yi, ie., the residual by which the element u, fails to
satisfy the discrete equations. The measurement of the size of 7, requires,
therefore, the introduction, for each h in H, of a norm || - || in ¥,. When
these norms have been chosen, (2.1) is said to be consistent (resp. consistent
of order p) if, as h — 0, ||74]| — 0 (resp. ||7a| = O(hP)).

Before we review how convergence is obtained from consistency and
stability, it is convenient to illustrate the set-up described above with an
example. In the interest of clarity, the example refers to a simple finite-
difference scheme. More interesting finite-difference discretizations have
been treated within our framework in Lépez-Marcos and Sanz-Serna[20],
Frutos and Sanz-Serna[10], Ortega and Sanz-Serna[23]. For examples of
the application to Galerkin methods see Lépez-Marcos and Sanz-Serna [21],
Siili[44], Murdoch and Budd[22] and for spectral and pseudospectral tech-
niques see Frutos and Sanz-Serna[9], Frutos, Ortega and Sanz-Serna[l11],
Abia and Sanz-Serna[1].

Example A. Consider the following periodic initial-value reaction-diffusion
problem

Up = Uy + fu), —00<r<00,0<t<T < o0, (2.3)
u(z+1,t) = u(z,t), —oco<z<o00, 0<t<T <00, (2.4)
u(z,0) = u’(z), —oo <z < oo (2.5)

In (2.3), f is a smooth real function of the real variable u, —o0 < u < oo.
In (2.5), u® is a given real 1-periodic function and it is assumed that f, T
and u° are such that (2.3)-(2.5) possesses a unique smooth solution up to
t="T.

To set up the numerical scheme, choose a positive constant r (the mesh-
ratio) and an integer J > 2. Set h = 1/J and consider the grid-points z; =
jh, j integer, and the time levels ¢, = nk, k =rh%, n=0,...,N = [T/k].
Forj=1,...,Jandn=0,...,N —1 set

n+l _ rrn no_ n n

k h?

- fwp =0, (26)
where it is obviously understood that Ug = U} and U},, = Ul. For
3=1,...,J set

U]Q —up(z;) =0. (2.7)
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Formulae (2.6)—(2.7) are cast in the format (2.1) as follows. Let Z
denote the vector space of grid functions U = [U},..., U] defined on {z; :
1 < j < J}. For each n, all the numerical approximations U} associated
with the time level ¢, form a vector U™ in Z,. Thus (2.6)—(2.7) may be
rewritten

U'—u’=0, u®=[L(z1),...,u"(z))], (2.8)

Un+1 -y
k

where D? is the standard matrix replacement of the second derivative op-
erator with periodic boundary conditions and the notation £(U™) is self-
explanatory. Next choose Xp, = Dj, = Y3 equal to the product of N +1
copies Zp X ... X Z. Thus Uy := [U%...,U¥] is a vector in Xj, and
(2.8)-(2.9) are clearly of the form (2.1) for a suitable choice of ®,. For us
the obvious choice is given by the vector of grid restrictions [ug,...,uy] of
u. In Z;, we use the maximum norm and in X}, we use the Loo(Loo) norm

-DW"-f(U) =0, n=0,....,N—-1, (2.9)

IIVO,..., VN = max|[Va], [V%,...,V]€ X (2.10)

With this norm, convergence in the sense of the abstract framework means
uniform convergence in time of the maximum spatial norm. The local
discretization error 7y, is of the form [7°, ..., 7V], where, according to (2.8),
70 = 0, while for n =0,..., N — 1, 7°*! contains the familiar truncation
errors of the formula (2.6), i.e., the value of the left hand side of (2.6)
after replacing each ‘numerical’ up by its ‘theoretical’ counterpart u(z;, tn).
Standard Taylor expansions show that each component of 7* is O(h% + k).
If in Y}, we use the L;(Ly) norm

N
10°, - ™ = 16°1+ D klle™, [6°--, o7 € Y, (2.11)
n=1

the O(h? + k) behaviour of the components of 7" yields
l7a]| = O(h® + k) = O(h? + rh?) = O(h?),

i.e., second order of consistency.

4.3 Stability in the linear case

The general idea of stability will first be presented in the context of linear
discretizations. Let us suppose that (2.1) takes the linear form

O4(Un) = VpUp — gn = 0, (3.1)
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i.e.
YpUn = gh, (3.2)

where, for each h in H, ¥}, is a linear operator (matrix) mapping X}, into Y
and gy, is a fixed vector in Y. The discretization (3.1)—(3.2) is stable with
respect to the chosen norms in Xy, and Y}, if there exist positive constants
5 (the stability constant) and hy such that for each A in H, h < hg, and
for each V}, in X,

Vil < SI[TaVall. (3.3)

In other words stability represents an a priori bound for the solutions of
(3.2) with a constant S that must be independent of h. The bound (3.3)
can be used in two ways:

(i) For h fixed, h < hg, (3.3) implies that the kernel of ¥}, is trivial. This
combined with (2.2) reveals that the solution Uy, of (3.1)—(3.2) exists
and is unique. The unique existence of the numerical solution is obvi-
ous in some cases, e.g., explicit algorithms in initial value problems,
but of course cannot in general be taken for granted. We emphasize
that, in the linear case, existence and uniqueness of U, follow from
stability.

(ii) For h < hg, we may write

llur = Unll £ S[¥n(un = Up)|l = S||@a(ur) — @n(Un)ll,  (3.4)

which according to (2.1) and the definition of local discretization
error, implies

llenll = {lun — Unll < Sl|®a(un) — @n(Un)ll = Sliall. (3.5)

This bounds the global error in terms of local discretization error and
shows that “consistent (of order p) + stable => convergent (of order

p)” .

Example A (revisited). Consider (2.3)—(2.7) with f = 0 and let us
check whether (3.3) holds. If V, = [V?,...,V¥] € X, and ®,(V},) =
[0°...,p"] € Y, then

Vo= pO, (36)

Vn+1 B VAL
k

It is expedient to rewrite (3.7) in the form

-D?V"=p"*! pn=0,...,N-1. (3.7)

V7l = O, V™ + kp™tl, (3.8)



152 Two Topics in Nonlinear Stability

where

Cp=I+kD? (3.9)

is the ‘transition matrix’, i.e. the matrix that in (2.9) with f = 0 maps U™
into U™*1, Recursion in (3.8) shows that for n =0,..., N,

V= CPVO + kCP 1o + KkCF 202 + ... + ko™,
so that, by (2.10)-(2.11) and (3.6)

VAl < {,max, [CRIHI TR, (3.10)

where ||C}|| is the operator norm for linear transformations in Zp. It is
easy to check that the constant in brackets in the bound (3.10) is the
best possible. Therefore stability in the sense of the framework with (best)
stability constant S is equivalent to the following Lax-stability requirement
(boundedness of powers of the transition matrix)

S :=max{||C}||: h € H, h < hg, 0 < n < N}, (3.11)

(cf. Palencia and Sanz-Serna[24]). It is well known that (3.11) holds if
and only if r < 1/2, and then ||C}|| = 1 for all » and n. Note that the
equivalence between stability in the abstract sense and Lax stability is quite
general in that it holds for (3.8) independently of the specific nature of Z,
and Ch. (The equivalence hinges on the Lo (Z,) and Li(Zy) choice of
norms for X5 and Y}, see Sanz-Serna and Palencia[35).)

4.4 Nonlinear stability

When trying to decide how to modify the linear stability definition to cater
for nonlinear cases, the key observation is of course that we would like (3.5)
to be valid, i.e., in the linear case (3.3) is applied to differences of vectors in
X4. Therefore, it is natural to define (2.1) to be stable if positive constants
ho and S exist such that for each h in H, h < hg, and each pair V4, Wy of
vectors in Dy,

IVh = Wall < S(12n(Va) — @n(Wh)ll- (4.1)

Clearly, in linear cases, this is equivalent to (3.3). We shall say that dis-
cretizations stable in the sense of this definition are N-stable (N for natural
or for naive, according to your preferences). If the existence of Uy, is obvious
or has been proved in some way, then “consistent (of order p) + N-stable
= convergent (of order p)”. The trivial proof is again given by (3.5).
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Example A (revisited). Consider (2.3)-(2.7) with r < 1/2 and f globally
Lipschitz, i.e.

|F(v) = f(w)| < Ljv — w|, (4.2)
for all v,w € R. Then, if V} = [VO,...,VN] W, = [W?,... WV],
(Vi) = [p°,...,0N], ®n(Wh) = [0°,...,0"],

VO —u® = p° (4.3)
Xnﬂki —D¥WV"—f(V)=p"! n=0,...,N-1. (4.4)
Wy —u’ =of, (4.5)
M—Dzwn—f(W")=a"+l, n=0,...,N—1. (4.6)

Subtract (4.6) from (4.4) and use (3.9), to obtain, forn =0,...,N — 1,
VAW = Cp (VW) +E[f(V™) — £ (W) +k[p" T -], (4.7)
{cf. (3.8)). Note that (4.2) implies
[ECV®) — £(W™)|| < L|IV" — W7, (4.8)
so that, since ||Ch|| = 1, (4.7) yields
[VPrt — W < L+ EL) V™ = WP + El[p" = o™, (49)

and a standard recursion leads to (4.1) with S = exp(LT). Thus, for r <
1/2, and f globally Lipschitz, the scheme is N-stable and hence convergent.

The argument used in this example to show N-stability is essentially
identical to the argument frequently used to show that one or multistep
ordinary differential equation discretizations for 3’ = f(y) are N-stable if
they are N-stable as applied to y’ = 0 (0-stability see e.g. Hairer et al.[14],
Section III.4).

4.5 Stability thresholds

As pointed out before, the abstract N-stability definition (4.1) includes, as
particular cases, the notions of Lax-stability of linear initial-value problems
in partial differential equations and of 0-stability in numerical ordinary dif-
ferential equations. In these two application areas the idea of stability is
well understood and frequently invoked. However, for nonlinear partial dif-
ferential equations there is no general notion of stability that is commonly
invoked to prove convergence. This may be due to the fact that the the-
ory in Section 4.4 suffers from some drawbacks. Firstly, the question of
existence of discrete solutions, which in the linear case is implied by sta-
bility, was not addressed. Secondly the scope of application of (4.1) is too
restrictive. Let us illustrate this second point in the context of Example A.
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Example A (revisited). The global Lipschitz condition used in the proof
of N-stability is so demanding that few functions of interest satisfy it. In
fact in reaction-diffusion problems f(u) is often a polynomial and (4.2)
does not hold. Now it is not difficult to see that, when f is not globally
Lipschitz, the scheme (2.8)-(2.9) is not N-stable. In fact, set f(u) = u?
T=1V*"=0,n=0,...,N; WO =[1,...,1]and W**! n=0,...,N-1,
determined by (4.6) with ™*! = 0. Then

@1 (Va) = @a (W)l = IV® = W°|| = [W°|| =1,

while
IV = Wal > [VY = WV = [WH]],

a quantity that, according to Sanz-Serna and Verwer([38], grows like
1/(h|log h|).

This behaviour of the difference scheme should not be surprising. The
vectors {V"} and {W"} are the numerical solutions of the scheme (2.8)-
(2.9) when u® = 0 and u® = 1, respectively. For these initial conditions
the solutions of (2.3)-(2.5) are, respectively, v = 0 and u* = 1/(1 —¢t).
Clearly u(z,t) — u*(z,t) cannot be bounded in terms of the difference in
initial condition and it cannot be hoped that, in the numerical scheme,
|[V® — W"|| can be bounded in terms of ||V — WP||.

Since, for f not globally Lipschitz, (2.8)—(2.9) is not N-stable, it fol-
lows that the convergence of the scheme cannot be derived by invoking
the ‘consistency + N-stability’ result of Section 4.4. In practice the con-
vergence of (2.8)-(2.9) can be proved by using various well-known ad hoc
techniques (tricks). Probably the quickest trick is the following (Shampine
and Gordon[39], p.24). Introduce a globally Lipschitz function f* that co-
incides with f in a neighbourhood § of {u(z,t): 0 <z <1, 0<t< T}
The scheme for f* is convergent by the material in Section 4.4. Now the
theoretical solution u* corresponding to f* is the solution u corresponding
to f. Hence the numerical solution U} corresponding to f*, for h small,
takes values in , which in turn shows that U is the numerical solution
U, corresponding to f. Therefore, the convergence of Uy to u* actually
implies the convergence of Uy to u. This technique is often used for terms
of the form f(u), but does not apply to more general nonlinearities such
as the common uug. A second trick, of a wider applicability, is as follows.
Since f is smooth, (4.2) holds when v and w are restricted to belong to
the neighbourhood €2 introduced above. Assume a prior: that the numer-
ical solution takes values in . Then (4.8) holds for the particular choice
V* = u®, W™ = U". Consequently, recursion from (4.9), taking into
account that p"*! = O(h?), e™t! = 0, leads to a O(h?) estimate for
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[[un*! — U"*||, as long as the vectors U?, U"~1,... U have their com-
ponents in . The estimate shows that for h small enough U*! will also
have its components in Q. By induction, the estimate holds for n up to N.

The lack of applicability of the N-definition to the case at hand may be
attributed to its global character: all V;, and W}, are allowed in (4.1). On the
other hand the tricks used to prove convergence attract the attention to the
point that in error estimation we are only interested in the local behaviour
of @, near the theoretical solution. The question arises of whether the
definition in (4.1) cannot be made local in some way, so that with the new
local definition common convergent schemes like (2.8)—(2.9), are again clas-
sified as stable. Local versions of the idea of stability have been introduced
by Stetter[42] and H. B. Keller[16]. The advantages and drawbacks of the
two versions have been compared by Lépez-Marcos and Sanz-Serna[20]. It
turns out that Keller's approach should be favoured. Keller’s definition is
as follows. The discretization (2.1) is said to be K-stable (K for Keller) if
there exist constants § > 0, hg > 0 and R, 0 < R < o0, such that for each
hin H, h < hg, the open ball

B(up,R) = {V4 € Xp, : |V — un|| < R}

is contained in the domain Dy, and, for each V}, and W}, in B(uy, R), (4.1)
holds.

The quantity R is called the stability threshold. It is easy to show that
when (2.1) takes the linear form (3.1), a discretization that is stable with
threshold R < oo is also stable for the threshold R = oc. For this choice
(4.1), is asked to hold for all V;,, W, in X and we recover the standard
linear definition. Note that K-stability is a local notion that explicitly refers
to the ‘theoretical’ vectors uj. This is different from the naive situation
whether the stability or otherwise of a discretization does not relate to the
theoretical solution being approximated.

For each real R > 0, the scheme (2.8)—(2.9), with r < 1/2 and f smooth,
is K-stable with threshold R and stability constant S = exp(LT), where
L = L(R) is the Lispchitz constant of f in

Q={v:|v—u(z,t)] < Rfor some (z,t),0<z<1,0<t<T}

This is shown by the argument in (4.3)—(4.9). Note that now (4.1) has only
to be proved for V;, and W), in B(us, R) and that such vectors have their
components in €2, so that (4.8) holds for them.

Now that we know that, in the new sense, (2.8)—(2.9) is stable, it is
appropriate to ask whether this knowledge is of any help in proving the
convergence of that discretization. Actually, it is not evident that, for gen-
eral discretizations (2.1), consistency and K-stability imply convergence.
To begin with, the question of the existence of U, must be answered. Then,
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it is doubtful that the argument in (3.5) can be applied as it is not clear
that Uy, lies in the ball B(uy, R) where the stability bound (4.1) holds. At
first glance it may seem that the general result would read ‘consistency +
K-stability + existence of Uy, + a priori estimate ||up — Up|| < R’ imply
convergence’. In the context of the scheme (2.8)-(2.9), where the existence
of Uy, is obvious, we would need, on top of stability and convergence, the a
priori bounds |u(z;,t,) — U] < R. This more or less sends us back to the
tricks mentioned above, so that apparently little has been gained from the
introduction of the notion of K-stability.

However the considerations just outlined are unduly pessimistic. It is
true that consistency and K-stability on their own imply convergence. The
key ingredient of the proof is the following Lemma due to Stetter[42], whose
usefulness in this context was first shown by Lépez-Marcos[18].

Lemma 5.1. Let & be a Y-valued mapping defined and continuous in
an open ball B(v*,R) = {v € X : |lv —v*|| < R}, where X and Y are
finite-dimensional normed spaces with dim(X) = dim(Y’). Assume that a
positive constant S exists such that for all v and w in Bg

lv = wll < S|8(v) — (w)]-

Then the inverse mapping ®~! exists (uniquely) in the open ball of radius
R/S centered at ®(v*).

Now assume that in (2.1) @5 is a continuous mapping (a hypothesis
usually satisfied in the applications) and suppose that (2.1) is consistent
and K-stable. The application of the lemma to @, in the ball centered at
up, with radius equal to the stability threshold shows that for h sufficiently
small ®~1(0) exists in the open ball B(us, R), i.e., there is a solution U of
the discrete equations that satisfies the bound ||up — Un|| < R. Then (3.5)
can be used to bound the global error in terms of the local discretization
error and convergence follows.

The discrete solution Uy, is unique in B(un, R), so that any other solu-
tion U} of (2.1) is away from uy, in the sense that |lup —Uj|| > R. However
global uniqueness of Uj, cannot be expected. On the one hand, the orig-
inal problem being solved is likely to possess several solutions u. In this
situation, often found in nonlinear stationary problems, (2.1) will typically
have a solution approximating each possible up. Also nonlinear discretiza-
tions should be expected to have spurious discrete solutions, i.e., solutions
with no ‘theoretical counterpart’. As a simple example take the backward
Euler discretization u®t! = 4™ + h[—u"*! + (u™*1)?2], of the well behaved
ordinary differential equation Cauchy problem v’ = —u + w2, 0 <t <1,
u(0) = 1/2. The equation to be solved at each step is quadratic and, for
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u™ near the theoretical solution has two real roots one of which is spuri-
ous. Hence the discretized equations (2.1) that embrace the computation
of u™ at all time levels t,, n = 1,...,[1/h] certainly possess many solu-
tions. This multiplicity of solutions is very frequent in real-life nonlinear
discretizations (for ordinary differential equation problems see Hairer et al.
[13], Iserles[15]). Yet it is found to be suprising by some numerical analysts
that have been brought up with the concept of naive stability. (Note that
N-stability clearly implies global uniqueness of solutions.)

4.6 h-dependent stability thresholds

As shown above, the notion of stability due to Keller, when combined
with Stetter’s lemma, provides a very convenient method for the analysis
of discretizations. Unfortunately some interesting numerical schemes for
partial differential equation problems are not K-stable (see e.g., Frutos and
Sanz-Serna[10]). In this section we present a useful extension of Keller’s
definition. It is expedient to study first the following example.

Example B. Consider the periodic initial-value hyperbolic problem

U +uty =0, —-c0<r<o0, 0<t<T < 0, (6.1)
u(lz +1,t) = u(z,t), —0<z<00,0<t<T < o0, (6.2)
u(z,0) = u(z), —o0 <z < o0. (6.3)

In (6.3) u® is a given smooth, 1-periodic function and it is assumed
T is small enough so that the solution of (6.1)-(6.3) is smooth up to t =
T, i.e., the first crossing of characteristics occurs after ¢ = T (see e.g.,
Whitham([47]). The equation (6.1) has often been used in the study of
nonlinear stability issues, see e.g., Richtmyer and Morton[26], Fornberg|[8],
Vadillo and Sanz-Serna[46].

The notation for the numerical scheme is similar to that employed in
Example A. Choose a positive constant r (the mesh-ratio) and an integer
J > 2 Set h=1/J; x; = jh, j integer; t, =nk, k=rh,n=0,...,N =
[T/k]. For j=1,...,J andn=0,...,N — 1 set

+1/2 +1/2
UP - Up | e U - U

- ; 57 =0, (6.4)

where the index j must be understood in the obvious periodic way and

U;’H/z stands for the average (U]’.""'l +U})/2. For j=1,...,J set

Uo

7 —ul(z;) =0. (6.5)
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Denote by Z, the space of grid functions U = [Uy,...,Uy], endowed with
the standard discrete Lo-norm. The scheme (6.4)-(6.5) may be rewritten

U’-u’ =0, (6.6)

Un+1 —-yn
k
where Q is a nonlinear operator in Z;. Next set again uj equal to the grid
restriction of u and X;, = Dp =Y}, equal to the product of N + 1 copies
Zy X ... % Zp. The norms in X and Y} are derived from the Ly-norm in
Zy, via (2.10) and (2.11). The scheme is easily seen to be consistent of the
second order.

The scheme (6.6)-(6.7) is not Keller stable. In fact consider the case
u® = 0, T = 1. Introduce the vectors V;, = 0 € Xy, W, = [W?,... W] ¢
X, where W" =0, n=0,1,...,N — 1 and W¥ has components W;¥ =
0,j =3,4,...,J, WV = 8/r, WV = —8/r. It is trivial to check that
®,(Vy) = @ (Wr) = 0 € Yy, If the scheme were K-stable with threshold
R then, by the local uniqueness of the discrete solution, |W; — up|| > R
(h sufficiently small). On the other hand,

+ QUMY =0, n=0,...,N—-1, (6.7)

[Wh — unll = [|Wall = [WY]|| = 8V2h/r,
and we have reached a contradiction.

This example shows that local uniqueness does not take place in an
open ball around uy of radius larger than 8\/%/7‘. In this way we are
led to the idea of h-dependent stability thresholds. In his thesis, J. C.
Loépez-Marcos[18] introduced the following definition.

Definition 6.1. Suppose that, for each h in H, Ry, is a value 0 < Ry, < 0.
The discretization (2.1) is said to be stable restricted to the thresholds Ry
if there exist positive constants hg and S such that for h in H, h < hyg, the
open ball B(uy, Ry) is contained in the domain Dy, and for any Vi, and W),
in B(up, Ry) the bound (4.1) holds.

For linear problems, this notion reduces to the standard (3.3). In gen-
eral, this definition is weaker than that of Keller, so that it considers as
stable schemes that are not K-stable. However the definition is strong
enough to prove in some cases that consistency and stability lead to con-
vergence. In fact the following theorem is a direct consequence of Stetter’s
lemma.

Theorem 6.2. Assume that (2.1) is consistent and stable with thresholds
Ry,. If ®, is continuous in B(up, Ry,) and ||74|| = o(Ry) as h — 0, then:
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(i) For h sufficiently small the equations (2.1) possess a unique Uy
solution in B(up, Ry).

(ii) The global errors in the solutions considered in (i) have a bound
llur, — Urll € S||7w|l, where S is the stability constant. In particular
the discretization is convergent with an order not smaller than the
order of consistency.

Example B (revisited). Let us apply this theorem to the discretization
(6.6)-(6.7). We first show stability restricted to thresholds ph3/2, where
p is any positive constant. If V;, = [VO, ... VN] W, = [WO,... WN],
Oy (V) = [po, cey pN], o, (Wy) = [UO, .. ,O'N], then

VO —u®=p° (6.8)
—lek—_\ﬁ+Q(V“+1/2) =p"*, n=0,...,N-1, (6.9)
W -y =g (6.10)
Wn—ﬂk_E+Q(W"+1/2) =o', n=0,...,N-1. (6.11)

We need the following estimate, valid for any V, W in Z:
|<Q(V) - QW),V-W>| < M||V-W|? (6.12)

where

M=M(V,W)= gmjax (lvj“h_ Vil | |Wj+1h_ le) . (6.13)

In (6.12), angular brackets denote the standard Ls-inner product. The
proof of (6.12), not given here, follows standard finite-difference energy
method manipulations, see e.g., Lépez-Marcos[19]. Subtract (6.11) from
(6.9) and take the inner product with V*+1/2 — Wn+1/2 {0 obtain

(en+1)2 _ (6")2

o < M(V”+1/2,W"+1/2)||V"+1/2 _ Wn+1/2”2+

”pn+1 _ U"+1H”Vn+1/2 _ Wn+1/2”’

where we have used the abbreviation e, = ||V, — W,||. Next

“Vn+l/2 _ Wn+1/2|| < M—+‘BTL
= 2 !
so that
+1 +1
T < M(un WS g pn(6.14)
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The key observation is now that if V}, and W, satisfy the threshold condition
Vi, Wa € B(un, Rp), then M(V™+1/2 Wn+1/2) can be bounded uniformly.
This is because bounds ||V — u®|| = O(h3/2), |W — u™|| = O(h%/?) imply
that the components of V, W are O(h) away from the components of
u™ and hence M(V, W) is O(1) away from M(u®,u™) = O(1). This is
just an example of the use of inverse inequalities. The stability of the
scheme restricted to the thresholds R, = ph®? may now be proved by a
standard recursion in (6.14). Convergence of the second order (including
the existence of solutions of the implicit equations for & small) follows from
the theorem above. We emphasize that the study of the solvability of the
equations (6.7) has required no separate proof.

To end the section we show that the restriction to thresholds of the form
ph3/? is tight. Again we focus our attention on the case u® = 0, T = 1.
Fix a number 5, 0 < 7 < 2, and for each h in H, consider the recursion

_ 2
ﬂ"“k b _ (ﬂ"“;ﬂ") , k=rh,n=0,...,N—1, N =[1/k],
with initial condition By = 1. This is the implicit mid-point discretization
of the problem d@/dt = (%/2, 8(0) = n, with solution 21/(2 — nt), and
therefore

By —2n/(2—1n) ash—0. (6.15)

Now consider vectors V), = 0 € X, Wy = [WO,...,WN] € Xy, where
W = hB,E, with E = [Ey,...,Ey], E1 =1, Eo = -1, E; =0, j =
3,...,J. The vector E is an ‘eigenfunction’ of the quadratic opertor Q in
(6.7) (see Vadillo and Sanz-Serna[46]). It is readily checked that W}, satisfy
the equations (6.7). Thus ||®4(Wy)| = |[W°|| = v2h%/2. On the other
hand |Wy|| = |[W¥|| = v/2h%/?8x, so that, on taking into account (6.15),

Vi = Whll _ w2
1®r(Va) — (W)l I2a(WR)l  2—m

, h— 0.

By implication, if the discretization is stable for some thresholds R >
||Wh —un||, then the corresponding stability constant S satisfies § > 2/(2—
n). Since S must be finite, 7 cannot be allowed to become arbitrarily close
to 2. In other words, for n close to 2, and h small, W, must violate the
threshold condition, i.e.,

Ry < “Wh _uh” = ”Wh“ = \/§h3/2IBN - O(hS/Z)
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4.7 Linear investigation of nonlinear stability

In most practical situations, the mapping ® in (2.1) is smooth, so that the
(Fréchet) derivative (i.e., roughly the Jacobian matrix) &} (up) of ®5 at up,
exists. Furthermore, if the discretization (2.1) is successful, a solution Uy
of (2.1), close to up, exists. Thus

0= ,(Un) ~ @n(un) + @} (un)(Un — us)
and one is led to consider the linearized discretization
Eh(Uh) = <I>h(uh) — @g(uh)uh + @;l(uh)Uh = 0. (7.1)

Our aim is to study the relation between the stability of (2.1) and that of
its linearization (7.1). The main motivation for this sort of research is of
course that the stability or otherwise of linear discretizations is more easily
investigated than that of their nonlinear counterparts. Our presentation
in this section follows closely that in Lépez-Marcos and Sanz-Serna[21].
The following result shows that, under suitable technical assumptions, the
stability of (7.1) and (2.1) are equivalent.

Theorem 7.1. (i) Assume that for h in H, h sufficiently small, the map-
ping ®y, in (2.1) is (Fréchet) differentiable at uy,. If (2.1) is stable restricted
to some thresholds Ry, then (7.1) is stable.

(ii) Assume that, for each h in H, h sufficiently small, the mapping ®, in
(2.1) is (Fréchet) differentiable at each point vy, in an open ball B(up, Rp).
Suppose that (7.1) is stable with stability constant L and that there exists
a constant @, with 0 < @ < 1, such that, for h in H, sufficiently small, and
for each vy, in B{up, Ry,), we have

1@ (va) — @h(un)ll < Q/L. (7.2)
Then (2.1) is stable with thresholds Ry, and stability constant L(1 — Q).
Let us look closer at part (ii) above in the common case where ®; in
(2.1) is (Fréchet) differentiable at each point vy in an open ball B(up, Rp)
and

1@k (vn) — @4 (un)l| < Knllon —unll, for v € Blun, Rn).  (7.3)

Choose a number S larger than the stability constant L of (7.1). If h is
sufficiently small and |lvx — ua|| < min{Rp, (L~ = S~1)K; '}, then

@5 (vn) — @ (un)l| < Kn(L™t — S™HK; ' =[(S - L)/S]/L,
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so that (7.2) holds with @ = (S — L)/S. We conclude that, for discretiza-
tions (2.1) satisfying (7.3), linearized stability with constant L implies sta-
bility with constant S > L and thresholds

min{Ry, (L7 = SHK; '} (7.4)

In particular (7.3) holds if the @), are continuously differentiable. Thus
for smooth discretizations linearized stability is equivalent to stability with
some suitable (h-dependent) thresholds. According to (7.4), the size of the
thresholds decreases when K} in (7.3) increases, i.e., when the problem
becomes more nonlinear.

It is perhaps useful to reconsider the stability of (2.8)—(2.9) with f
smooth. If V; = [®}(vn) — @}, (un)]Wh, where Wy, is any vector in Xp; Vi
has components

vl = o
V* = —(diaglf'(v")] - diag[f'(w™))W", n=1,...,N. (7.5)

Note that only the nonlinear term in (2.9) has contributed here; the con-
tributions of the linear terms in (2.9) to the Fréchet derivative cancel
when subtracting @}, (up) from @} (vg). It is an easy task to see that
(7.5) implies (7.3), where Ry can be chosen to be any (h-independent)
positive number R and K}, can also be chosen to be independent of A
(K}, is essentially the Lipschitz constant of f in an R-neighbourhood of
{w(z,t):0<z <1, 0<t<T}).

When working similarly in the case of Example B, the components of
[®),(vn) — @} (ur)]Whr have negative powers of h, a fact that results, via
(7.4) in thresholds that decrease with h.

4.8 Discussion: some open problems

The theory outlined in Sections 4.6 and 4.7 has been proved to be useful
in the analysis of convergence of nonlinear discretizations, see the list of
references before Example A in Section 4.2. The theory provides a sys-
tematic approach to the study of stability and convergence and replaces a
number of problem-dependent tricks. Furthermore, with the methodology
presented here, the existence of solutions is a consequence of stability and
consistency and many a priori bounds can be done away with (Frutos and
Sanz-Serna[10]).

The issue of whether stability in the senses of Keller or Lopez-Marcos
implies stability has not been discussed here. For consistent discretizations,
equivalence theorems between convergence and stability can be proved.
The reader is referred to the discussions in Sanz-Serna(29] and Palencia
and Sanz-Serna[25]).
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The theorem in Section 4.6, requires the hypothesis ||74]] = o(Ry) as
h — 0. In practice, the thresholds are often of the form R, = uh®, and
this hypothesis means that the order p of consistency should satisfy p > s.
It is still possible, via an idea of Strang’s[43], to prove convergence in some
cases where s > p. A systematic treatment of Strang’s idea can be seen in
Spijker[41]; see also Sanz-Serna[28].

Let us examine some open questions. Consider again the vectors Wy =
Whr(n) introduced at the end of Section 4.6. We saw that any threshold
condition that renders (6.7) stable (u® = 0, T = 1) must exclude these vec-
tors when 7 is large. On recalling that W° = hnE, we see that any smooth
function v® whose restriction to the z; nodes coincides with W? satisfies
max(dv®/dz) > 2n. Therefore, in the solution of (6.2)-(6.3) with initial
condition v° the characteristics cross (Whitham[47]) before ¢ = 1/(27), so
that we should not expect the vectors W” to behave smoothly if > 1/2:
they cannot be conceived as approximations of a smooth solution. Even
though, as measured in the Ly-norm (in which convergence is proved), W°
is a small O(h%/2) perturbation of u® = 0, W° is an O(1) perturbation in
the seminorm max |(dv®/dz)|. It is the latter seminorm which is relevant in
deciding the fate of an initial profile. This suggests that the O(h%/?) thresh-
olds in the Ls-norm could be replaced by more meaningful h-independent
thresholds in a Sobolev norm including the maximum of the first derivative
(see also (6.13)). A theory could be considered where a norm in X}, is used
to measure global errors and write the stability bound and a different norm
is used to impose the threshold condition. Stability in this alternative set-
ting could then be related to the well-posedness of the continuous problem
whose solution u is being numerically approximated. Such a relation is not
possible with the definition in Section 4.6, where it is difficult to find a
continuous analogue to the h-dependency of the thresholds. It would also
be interesting to investigate continuous versions of the linearization results
in Section 4.7.

4.9 Stability of equilibria via Moser’s twist theorem

We now leave the idea of stability in connection with convergence/error
bounds and turn our attention to the idea of stability in connection with the
long-time qualitative behaviour of discretizations of evolutionary problems.

We consider the familiar systems of ordinary differential equations that
describe the motion of a pendulum

dp/dt = —sing, dg/dt =p. 9.1)

The system (9.1) is Hamiltonian with the Hamiltonian function (energy)
H = p?/2+(1~cos q). Let ¢; denote the flow of (9.1), i.e., the mapping that
associates with each point (p°,¢°) the value at time ¢, (p(t),q(t)), of the
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solution of (9.1) that satisfies p(0) = p°, g(0) = ¢°. Then, it is well known
(see e. g. Arnold[3], Section 16) that ¢; is an area-preserving mapping, so
that for each bounded open set €2 in the phase (p, ¢)-plane, the sets Q and
$:(Q0) have the same area. Recall also that (9.1) has periodic solutions,
whose trajectories in the phase plane are closed curves which fill the region
0 < H(p,q) < 2. Hence H is a Liapunov function in the neighbourhood of
the origin and the equilibrium p = g = 0 is stable.
The system (9.1) is discretized by the formulae
pn+1 _pn — —ksinq", qn+1 _ qn — kp . (9'2)
Our choice of numerical method has been determined by the fact that the
transformation in phase space

pt = p—ksing, gt =q+kp—k?sing (9.3)

that maps (p",¢") into (p"*1,¢"*1!) is area-preserving (its Jacobian deter-
minant is 1).

We are interested in ascertaining whether the origin is a stable equilib-
rium of (9.2), i.e., whether numerical solutions remain in the neighbourhood
of the origin provided that |p°|, |¢°| are small enough.

The linearization

pT=p—kq, gt =q+kp—k%q (9.4)

of (9.3) near the origin has eigenvalues

(1—k%/2) £ /—k2 + k*/4.

For k > 2, the eigenvalues are real and one of them is greater than 1. The
origin is therefore unstable, both for (9.4) and for the original (9.3). For
0 < k < 2, we find unimodular complex conjugate eigenvalues A and A*,

with
A= (1-k2%/2) +iky/1 - k2/4. (9.5)

In this range of values of k, the linearization is neutrally stable and no
conclusion on the stability of (9.3) can be obtained from the linear analysis.
We are going to prove that, for 0 < k < 2, and k # Vv2,/3, the origin is
in fact a stable equilibrium of (9.2)-(9.3). The excluded values V2, V3
are those for which X in (9.5) takes respectively the values ¢ and (—1 +
iv/3)/2 (roots of unity). Our first step is to find the normal form of (9.3)
(Guckenheimer and Holmes[12], Sections 3.3 and 3.5; Arnold[2], Chapter
5, Arnold [3], Appendix 7). Essentially, this means changing variables in
(9.3) so as to rewrite the problem in a form better suited for the analysis.
The theory of normal forms shows that, because the eigenvalue A satisfies
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A% # 1, A* # 1, there exists an origin-preserving, invertible, cubic change
of variables P = P(p,q), @ = Q(p, ¢), so that in the new variables P, Q
the mapping (9.3) is given by

(Pt +4Q™) = Aexp[iv(P? + Q))](P +iQ) + O(4), (9.6)

where O(4) denotes terms of order four and higher in the variables P and
Q, and

2 4 _ 1401 _ 12
5 = —(k/256) /1= R2ja o+ 4k JEf’i - /’“4)(1 E1D e

In (9.6), we have used a complex form for convenience. A real form may
clearly be obtained by separating real and imaginary parts. As k increases
from 0 to 2, v in (9.7) decreases monotonically from 0 to —occo. The variables
P, @ have been normalized so that, for k=0, P =p, Q =gq.

Let us know discard the O(4) terms in (9.6) and introduce polar coor-
dinates (R, ©) with P = Rcos ©, @ = Rsin©. We obtain

Rt =R, ©T =0 +arg())+~R%. (9.8)

This mapping clearly leaves invariant all circles R = constant in the (P, Q)-
plane. On each circle, the mapping acts as a rotation by an angle w =
arg(A) +vR? that, because «y # 0, varies with the radius of the circle. Such
mappings are called twists. Clearly the origin is a stable equilibrium of
(9.8), surrounded by invariant circles. If we change back to the original
(p,q) variables, we obtain invariant closed curves of equation P(p,q)? +
Q(p,q)® = constant that surround the origin and hence stability can be
concluded.

Note however that the preceding argument applies to (9.8), i.e., to the
mapping (9.6) after removal of the O(4) terms. The question arises as to
whether the stability of the full (9.6) can be concluded from the stability of
the truncated (9.8). At first glance, one may guess that the answer should
be negative: since (9.8) is only neutrally stable, arbitrarily small perturba-
tions may render the origin either unstable or asymptotically stable. Nev-
ertheless the answer is positive: (9.6) is an area-preserving perturbation of
a twist mapping, and, by restricting the attention to a sufficiently small
neighbourhood of the origin, the size of the perturbation can be made arbi-
trarily small. Now according to Moser’s twist theorem (see e.g. Siegel and
Moser(40], Sections 31-34), if an area-preserving mapping is a sufficiently
small perturbation of a twist, then it has an invariant curve surrounding
the origin. Thus, in the announced range of values of k, the origin is a
stable equilibrium of the numerical method.

The above technique is very general. Assume that we have a numerical
method described by an area-preserving mapping in R? for which the origin
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is an elliptic equilibrium (i.e., the eigenvalues are complex conjugate A and
A* with unit modulus). Then, except in the resonant cases where X is a
cubic or fourth root of unity, the mapping can be brought into the form (9.6)
for a suitable real v. The origin is therefore a stable equilibrium, except,
perhaps, in the ‘degenerate’ case v = 0. (Note that degeneracy means,
that, except for O(4) terms, the mapping acts as a linear rotation, i.e., a
rotation where the angular velocity and hence the period are independent
of the amplitude.)

4.10 Behaviour of numerical methods near elliptic equilibria

Let us return to the example (9.2). Now that we know that the origin is a
stable equilibrium, we may ask ourselves about the qualitative behaviour
of the computed points (p™, ¢") near the origin. Judging by the situation
in the truncation (9.8), one may guess that there exists a neighbourhood
of the origin that is made up of invariant curves of (9.3). If this guess were
true, near the origin, the qualitative behaviour of (9.2) would be the same
as that of the problem (9.1) being discretized (cf. Beyn[4], Sanz-Serna[32]).
However, it turns out that the dynamics of (9.2) is far more complicated
that the dynamics of the flow of (9.1).

Let us reconsider the twist T' in (9.8). Assume that, for a given radius
R, w = arg(\) + vR? is rational with respect to 2, i.e., of the form 27p/q
with p, q integers, ¢ > 1. Then, for each point in the circle of radius R,
g applications of the twist send the point back to its initial position after
having completed p revolutions around the origin. Hence T'? restricted
to such a circle is the identity, a structurally unstable mapping whose
dynamics is highly sensitive to perturbations. Accordingly, for such values
of R, it can be shown that the invariant circle of the twist 7' disappears
under the addition of the O(4) perturbation leading to the full mapping
(9.6). On the other hand, the circles of the twist for which w is very
irrational with respect to 27 are not destroyed under the perturbation,
and give rise to invariant curves of (9.6). Here very w/2r irrational means
(Arnold[2], Sections 12-13) that for some suitable positive numbers K and
s’

> q% (10.1)

v _ P
2r  q

for all integers p and ¢, ¢ > 0. (Recall that for any irrational number v
there exist infinitely many rational approximations whose error is less than
the reciprocal value of the square of the denominator |v — p/q| < 1/¢%.)
The set of invariant curves of (9.6) obtained in this way form a subset of the
(P, Q)-plane with positive measure. In actual fact the complement of this
subset in the circle P2 + Q% < p has an area o(mp?) so that the majority
of points near the equilibrium belong to the set of invariant curves. In
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Fig. 4.1. Solutions of 9.2 with varying initial conditions

the gaps between the invariant curves the dynamics of (9.6) is exceedingly
complicated (see e.g., Guckenheimer and Holmes|[12], Section 4.8).

An illustration is provided in Figure 4.1, where the solutions of (9.2) cor-
responding to 12 different initial conditions have been presented. We have
used k = 1 and for each solution 2000 points have been displayed. For the
initial conditions (p°, ¢°) given by (0,0.1), (0,0.3), (0,0.5),...,(0,1.5) we
observe that the solutions correspond to invariant curves. The initial con-
dition (0, 1.7) gives rise to an orbit consisting of eight suborbits (islands), so
that after eight time-steps the point returns to the original suborbit. Thus,
if only every eigth iterate were plotted or in other words the 8-th power M8
of the mapping M in (9.3) were considered, then only one suborbit would
be seen. In fact this suborbit is a twist theorem invariant curve of M8
around an elliptic equilibria (i.e. around an elliptic 8-periodic equilibrium
of (9.3)). For the initial condition (0,2.1) we see again an invariant curve
and for (.26,2.55) a structure of 10 islands is found. Finally for (.33,2.55)
the computed points behave erratically and eventually leave the plotting
window.

Note that the dynamics depicted in Figure 4.1 cannot be the dynamics
of the k-flow of a differential system: in the latter, all trajectories would
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lie on curves. This shows that, in general, numerical trajectories cannot be
viewed as exact trajectories of a system of ordinary differential equations
close to that being integrated.

4.11 An alternative application of Moser’s twist theorem

It is useful to emphasize that the analysis above has only employed the
properties of the numerical method (9.2), without taking into account any
feature of the system (9.1) being approximated. Furthermore the analysis
is valid for any fixed & in the announced range and (p, q) sufficiently small
There is an alternative way in which Moser’s twist theorem could have been
used (Sanz-Serna and Vadillo[36,37]). The starting point for the alternative
approach is that in the region H(p,q) < 2, it is possible to change the
dependent variables (p, ¢) of the continuous problem (9.1) into the so-called
action/angle variables (I, a) (Arnold[3], Chapter 10). (The abstract angle
a should not be confused with the physical angle ¢ by which the pendulum
deviates from the vertical axis.) Among the properties of (I, ¢) we need
the following three: (i) p = p(I,a), ¢ = ¢(I,a) are 2r-periodic in «, i.e.,
a behaves as a genuine angle. (ii) I takes the value 0 at the origin and
increases away from it. (iii) In the new variables (9.1) takes the simple

form
dijdt =0, da/dt=J(I), (11.1)

where J is a known function of the action I. It is possible to give closed
form expressions for I(p, g}, a(p,q), J(I) in terms of elliptic integrals, but
such expressions are not actually needed. The main advantage of the new
variables is that now (11.1) is readily integrated to yield

1) = 1(0), a(t) = JII(O)]t + a(0). (11.2)

As a consequence, the k-flow of the system is now simply given by (I, @) —
(I,a + J[I(0)]k), i.e., by a twist. By consistency, (9.3), when written in
action/angle variables, is an O(k?) perturbation of this O(k) twist. For
0 < H(p,q) < 2, k small enough, Moser’s theorem can be invoked to prove
the existence of invariant curves.

We make a final remark. It is well known that the function J(I) in
(11.1) is decreasing so that the period 27 /J(I) of the oscillations increases
with T (i.e., the larger the amplitude gmq, of the swing of the pendulum
the larger the period). This matches the fact that v in (9.7) is negative.
Moreover the classical theory of the motion of the pendulum shows that the
period is given by 27(1L + (1/16)¢2,,,) + 0(g2sx). This should be compared
with the value 27(1+4(1/16)g2,,,)+0o(k+¢2,,,) in the numerical (9.7)—(9.8).
This agreement is of course no coincidence and could have been anticipated
by the convergence of (9.2).
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4.12 Symplectic numerical integrators

The material in the previous sections has used the twist theorem, a re-
sult restricted to dynamical systems with two dependent variables. In
numerical analysis we are of course interested in mutidimensional systems,
including those resulting from the space discretization of evolutionary par-
tial differential equations. The KAM theory (see e.g. Arnold[3], Appendix
8, Guckenheimer and Holmes[12], Section 4.8) provides the multidimen-
sional extension of the twist theorem. The role played above by area-
preserving mappings is now played by symplectic mappings. A mapping
T:p" =p*(p,q), a" =q*(p,q), p € RY, q € RY is called symplectic or
canonical (Arnold[3] Chapters 8-9) if it preserves the differential form

dp Adq = dp™ Adg™D + ... +dp'9 Adg9), (12.1)

(superscripts denote components). In plain terms, this means that if we
choose an open bounded set 2 in phase space R x RY, project it onto the
g two-dimensional planes of the variables (p¥,¢()), 1 < { < g and sum
the two-dimensional areas of the resulting projections, we obtain the same
result for 2 and for the image T(f2).

The flow ¢ of a differential system is canonical if and only if the system
is Hamiltonian, i.e. there exists a real function H(p,q) in phase space so
that

dp® /dt = —8H/8q®),  dgD/dt = —8H/dp), 1<i<yg.

Consequently the numerical integration of Hamiltonian systems is the nat-
ural setting in which symplectic mappings can occur in numerical analysis.
A one-step method for the numerical integration of Hamiltonian system
is said to be symplectic or canonical if when applied to any Hamiltonian
system with any step-length it gives rise to a symplectic transformation in
phase-space (Ruth[27], Feng[7], Sanz-Serna[31,33], Lasagni[17], Suris[45]).

For symplectic schemes, the KAM theory can be applied to obtain re-
sults like those in Sections 4.9-4.11. Furthermore, since the symplectic
character of the flow characterizes Hamiltonian systems, the qualitative
features of Hamiltonian dynamics derive from the conservation of (12.1).
Hence the dynamics of symplectic schemes should be expected to mimic the
qualitative features of the Hamiltonian flow. This point has been discussed
in Sanz-Serna[33].

Let us present some examples of symplectic methods.

Example (A). An s-stage Runge-Kutta method of the form
Y, = yn +k Z a,-jF(Yj), 1<i<s,
1<5<s

YU = Ytk ) BF(Y),

1<i<s
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is canonical provided that for each i,j =1,...,s,
biaij + bjaji - bibj =0, (12.2)

(see Sanz-Serna[31], Lasagni[17], Suris[45]). The Gauss-Legendre methods
with s stages and order 2s are canonical. This includes the standard mid-
point rule. It is interesting to note that, as shown by Sanz-Serna and
Abia[34]), when condition (12.2) holds, the conditions for the RK method
to be of order p are notably simplified. Rather than a condition per rooted
tree with p or fewer nodes (Butcher[6]), we have a condition per so-called
non-superfluous tree. For instance, for order p = 5, 17 order conditions are
required in general and only 6 when (12.2) holds.

Example (B). The explicit mid-point rule is often used to advance in time
the solution of systems of ordinary differential equations arising from the
space-discretization of time-dependent partial differential equations (leap-
frog schemes). Since this rule is not a one-step method, it does not give rise
directly to a mapping in phase space and the definition of canonicity is not
applicable. Sanz-Serna[30] noticed that it is possible to rewrite the rule as
one-step convergent discretization. The technique is as follows. Write two
consecutive steps of the explicit mid-point rule

Y22 =y 4 opF(y2ntl) yIntS = vl g opF(y2nt?) (12.3)
as applied to a general system of ordinary differential equations
dy/dt = F(y), (y€R?). (12.4)
On denoting y?* = u®, y?**! = v™, n integer, (12.3) becomes
u"t! = u® + 2kF(v"), vl =v" 4+ 2kF(u™t). (12.5)

Now (12.5) is a convergent one-step method for the integration of the 2d-
dimensional system

du/dt = F(v), dv/dt=F(u). (12.6)

This is called the augmented system corresponding to the original system
(12.4). While (12.3) and (12.5) differ only in notation, the interpretation
associated with (12.5) should be preferred in the study of the dynamics
of the solution. In fact (12.3) is a linear two-step method violating the
strong root condition and hence gives rise to a dynamics widely different
from that of the original (12.4). On the other hand, (12.5), being of a one-
step nature, inherits many features of the dynamics of the system (12.6)
it approximates (see Beyn[4,5], Sanz-Serna[32] and the references therein).
Sanz-Serna and Vadillo[37] show that, if the original system is Hamilto-
nian, then the augmented system is also Hamiltonian and that, in such a
case, (12.5) is a symplectic scheme for the approximation of the augmented
system.
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For other symplectic methods see Sanz-Serna[33] and references therein.
There is much work to be done in constructing, implementing and testing
symplectic formulae.
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