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A model of a gas fluidized bed is considered which leads to a hyperbolic system of conserva- 
tion !aws with a source term. The system is solved numerica!Iy by a second-orde: operator 
splitting technique based on a Rot approximate Riemann solver. NumericZ expcrimcnts 
demonstrate the ability of the model to reproduce qualitatively the siilgging phenomencn iz 
the case when the bed is subject to a relatively large gas f!ux i‘ 1’51 .Acadsmic Prcu. Ix 

1. INTRODUCTION 

To Ruidize a bed of particles, a flow of gas is forced through the spaces between 
the particles. If the gas flow is increased, a point is reached where the weight of &e 
particles is first balanced by the upward force of the gas and the bed becomes 
fluidized (see, for example, Zcnz and Othmer [21]). Beyond this state of minimrim 
fluidization. a further increase of the gas velocity frequently leads to other equi- 
librium states. These are characterized by virtually constant concentration acd zero 
average veiocity for the particle phase throughout the bed. With faster ga.s now ihe 
corresponding equilibrium concentration become s smaller. This passage :hror;gh 
stable equilibrium states continues, as the flow rate is increased, until a critical flow 
rate is reached when non-uniformities, known as “brrbbles” or ‘Yugs.” appear in 
particle concentrations. 

By viewing the parGcles as a continuum, conservation equations can be w:itten 
for the particle phase, as well as for the gas phase (Drew LX]). With appropriate 
choices for the constitutive equations, various mathematical models arise for the 
study of fluidized beds. These models have been analyzed using linear theorg to 
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investigate the onset of slugging (Foscolo and Gibilaro [6], Needham and Merkin 
[12]). This has shown that with the proper choice of constitutive assumptions, the 
equilibrium states are initially stable and become unstable at a larger critical gas 
flow. To determine the fate of the model at a flow rate above this critical velocity, 
nonlinear analyses have been performed on the equations of motion (Fanucci et al. 
[4, 51, Foscolo and Gibilaro [6], Needham and Merkin [12]). 

The models used in nonlinear studies can be distinguished by the presence or 
exclusion of a particle viscosity term. It has been suggested (Fanucci et al. [S], 
Needham and Merkin [12]) that particle viscosity, no matter how small, is essen- 
tial for the periodic behaviour corresponding to slugging. In the studies of the 
hyperbolic models with no particle viscosity, the oscillatory behaviour was guaran- 
teed by analyzing the evolution of periodic initial data (Fanucci et al. [4], Foscolo 
and Gibilaro [6]). Although the appearance of a shock prevented the numerical 
calculations from proceeding further, it was interpreted as the start of slugging. 

The goal of this paper is to demonstrate numerically that a simple hyperbolic 
model, without particle viscosity, is capable of reproducing the oscillatory slugging 
behaviour. Moreover, the procedure developed here allows the solution to develop 
large amplitude shocks and enables us to study their evolution. An analytical study 
of travelling wave solutions of our system, by Ganser and Lightbourne [7], has 
verified the existence of this type of solution. 

The hyperbolic model has the form of a system of conservation laws with a 
source term. The numerical algorithm employed is based on known techniques. It 
uses Strang’s second-order splitting [19] to separate the contribution of the source 
term. The flux terms are integrated by the formally second-order method suggested 
by Roe [15,16] with a superbee flux limiter (Sweby [20]) and supplemented by 
the “entropy fix” of Harten and Hyman [9]. The body force term is dealt with in 
closed form. 

In Section 2 we describe the background of the model. In Section 3 we comment 
on our choice of numerical algorithm. The most salient features of the code 
employed are outlined, with special emphasis on the construction of the 
approximate Jacobian and the difficulties encountered by the occurrence of 
vacuums. In Section 4 numerical experiments are presented that clearly demonstrate 
the ability of the model to simulate the slugging phenomenon. 

2. DIFFERENTIAL EQUATIONS 

In this section we present the system of differential equations to be solved. 
References for these models are Foscolo and Gibilaro [6]? Drew [3], Needham 
and Merkin [12], and Homsy et al. [lo]. Since large amplitude solutions are 
expected, some care is necessary in selecting constitutive equations to capture the 
correct qualitative behaviour over a wide range of particle concentrations and 
velocities. The concentration of particles by volume is denoted by c( and the 
velocities of the particle and continuous phases are represented by u and L’, respec- 
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tive!y. If we assume that each phase is incompressible, the conservation of mass 
equations are 

where x is the coordinate along the vertical axis and t is time. From (2.1 j and (2.2: I* 
the quantity ru + ( 1 - CI j L' is x-independent. It is clear that this quantity represents 
the total volumetric fluxj through the bed, which here is assumed to be a constan:, 
Therefore, L’ may be expressed as the following function of u and x: 

L’=(j-X4)/(1-%). !3,3) 

The conservation of momentum in the particle phase is given by 

apjzr, + llzl,) = -‘& + (pi - p)oc, - q3g + (2.4) 

where p is the particle density, p is the pressure in the particle phase, pI is ‘he 
pressure at the interface, g is the acceleration of gravity, and B = B(a) is the drag 
coefficient. Friction between the particle phase and the tube wall has not been 
accounted for in (2.4). Friction factors are available for very small particle concen- 
trations because of the importance of pneumatic conveyance of solid particles. 
However, there appear to be no suitable particle-wall friction factors for the larger 
particle concentrations occurring in the present application (Baker and Geldart 
[a]). Although this implies that a meaningful quantitative comparison between 
theory and experiment is not possible, it should not significantly affect the 
qualitative behaviour, since the particleewall friction factor would not contain any 
gradients. As in Needham and Merkin [12] and Fanucci et at’. [S], we are using 
a linear drag law, primarily due to its analytical simplicity. The simplicity u-as espe- 
cially useful in the analysis by Ganser and Lightbourne [?I, k comparison of the 
analysis in [7] and the numerical computations produced by the algorithm 
developed here will form part of our future work. It seems likely that the use of 
more realistic drag laws such as given by Foscolo and Gibilaro [6] will not change 
the qualitative behaviour. 

Since the density of the gas is much smaller than p (Weedham and Merkin [12]j- 
the gas momentum equation can be written as the equilibrium between friction and 
gradient of pressure, 

where ps is the pressure in the gas. 
It is further assumed that in (2.4) pi = ps and p = pp + ~5, where /3 = p(z) is a 

non-negative function of tl. Therefore, the pressure in the dispersed phase is larger 
than the pressure in the continuous phase, and this excess is a function of par%& 
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concentration. The motivation for these assumptions is discussed in Homsy et al. [lo] 
and Drew [3]. 

With these simplifications, (2.5) can be used to eliminate p from (2.4) and to 
arrive at the equation 

ap(u,+uu,)= -(aB),-apg+(l-cc)~~‘B(L~-2~). 

Now, considering (2.3), we obtain 

ccp(u,+zIu,)= -(ap).,-clpg+(1-a)-2B(j-u), 

which can be combined with (2.1) to obtain the conservation form to be used for 
numerical purposes (cf. Lax and Wendroff [ Ill), 

-Ug+p--‘(l -@)-I B(j-u). (2.6) 

The differential relations (2.1), (2.6), along with the functions B= B(a), ~=P(u), 
provide a complete system of equations for the determination of CI and II (Needham 
and Merkin [IZ]). 

We now discuss the functions B(a) and P(E). A simple form for the drag coef- 
ficient B is (Anderson and Jackson Cl], Needham and Merkin [ 121) 

B(cc)=Kcl(l -a)2-“, (2.7) 

where K denotes a constant related to the particle size and gas viscosity and n is 
a constant with typical values of 3 or 4. Other forms for B(a) can also be chosen 
(Fanucci et al. [IS]). In a qualitative theory, Ganser and Lightbourne [7] show 
that the common properties of these functions are best put in terms of the related 
function 

H(a) = 
-al(l-a)‘pg 

B(a) ’ 

where H(a) has the following properties: 

(ij H(0) = 0, H’(0) = -v,, , where v, is the terminal velocity for isolated 
falling particles. 

(ii) H(l)=O, H/(1)30. 
(iii) There exists O<a,< 1 such that 

H”(U) > 0 for O<u<cr, 

H”(cc,) = 0 

H”(a) < 0 for a,<cr<l. 
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For our numerical calculations, the form (2.7) will be used. From property (i i we 
have that K = gp/a ~. 

The constant solutions CI, zi of (2.1), (2.6) satisfy 

-olg+p-‘(I -cl-” B(aj(j-uj=O 

U=j-L’,(l--x)‘L. (22) 

Equation (2.8) shows that the concentration of particles a,, which is at equilibrium 
with u = 0, satisfies 

Observe that, increasing j (i.e., turning up the i&owing gas) leads to a smakr 
value of x0 for linearly stable IX~ states (see (2.12) below). These relations make it 
possible to specify LQ, U, as parameters in the model, in lieu of J and K. T 
concludes our discussion of the coefficient B. 

To understand the role of the particle phase pressure p - ‘~$3 it is useful to 
consider an analogy. The non-homogeneous system of conservation laws j2.i 1 and 
(2.6) coincides, from a mathematical point of view, with the Euler equations for an 
isentropic gas flow, subject to volumetric forces. Here CI, U, p ~~ lx,!? play, respectively, 
the role of density, velocity, and pressure in the Euler equations. This interpretation 
makes it clear that for (2.1), (2.6) the characteristic velocities are u + c, with c equal 
to the pressure wave speed 

c’= (Qdoc)(pPLaBj. (2,!Gj 

The choice for the particle phase pressure p -‘c@ is determined by the need tc 
model the behaviour of the bed over a wide range of particle concentrations and the 
desire to study beds which display slugging in its purest form. The type of sluggirsg 
we have been discussing is characterized by alternating regimes of dense and dilute 
concentrations of particles separated by horizontal interfaces through which 
particles rain evenly. This type of behaviour is widely observed in beds of maId 

diameter containing large and very dense particles (Baker and Geldarr [2] ). 
Moreover, these systems tend to become unstable almost immediately after the 
point of minimum fluidization. 

To model this behaviour, we have chosen 

c(a) = sa/(a, - a), (a.lr) 

with 3 > 0, 0 < up < 1 constants; rxP, the packing concentration, sets an upper limit 
for CL For large particles, up also corresponds to the equilibrium concentration In 
the bed at minimum fluidization. The M in the numerator guarantees that in the 
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limit as a + 0 +, (2.6) reduces to the momentum equation for an isolated particle 
unless c(, = co. This choice for c(a) is qualitatively similar to the models discussed 
in Drew [3] and will allow us to approach the incompressible model as s -+ 0 +. 
Integration with respect to CI in (2.10) determines the function /I, 

A linearized stability analysis (Needham and Merkin [12]) shows that the 
constant solution a = a,, u = 0 referred to above is stable under the condition 

(c(a,)/v,)2 > n2( 1 - cXO)2n-mZ U$ 

Taking (2.11) into account, the stability requirement becomes 

No ’ uou 3 

where cloU is given by 

(2.12) 

s=n(l -c(oU)‘ZP1 (c(P-cloU)zIxl. (2.13) 

Since an increase in volumetric flux i implies a decrease in the equilibrium con- 
centration ~1~ (cf. (2.9)), the condition (2.12) establishes that, as expected, turning 
the gas up will endanger the stability of the bed. Note that s + 0 + corresponds to 

- cGJ* + u p , thus giving the desired behaviour of a bed which becomes unstable 
almost immediately after minimum fluidization. 

The system (2.1), (2.6) will be solved numerically subject to initial conditions for 
u and CIU and reflecting boundary conditions 

z4 = 0, x=xL, XR. (2.14) 

These correspond physically to perforated plates preventing the flow of particles. 
Before we close this section, it is expedient to seek steady state solutions of (2.1), 

(2.6), (2.14). Clearly these are given by u = 0, along with a solution c( = U(X) of the 
ODE 

(pmmla~)x= -ag+pP’(l-E)P2 Bj, 

i.e., (cf. (2.10)) 

c2(cx)u,= -&g+p-‘(1--a)-‘Bj. (2.15) 

A typical steady state c1= a(x) (uniform fluidization) has been graphed in Fig. 1. 
Here, with appropriate units, we choose xL = 0, xR =OS, p = 1, g= 1, v, = 1, 
n = 3.5, 01~ = 0.6, and CI~ = 0.55. The constant s is computed according to (2.13) with 
M oU =0.55. Note that, following mathematical conventions, we have drawn the 
x-axis horizontally, even though here x corresponds physically to the vertical coor- 
dinate along the bed. Thus, in the situation of Fig. 1, the fluidized particles occupy 
the bottom of the bed up to a height of approximately x,,, = 0.15. Above this 
height the concentration is zero. More generally, for the time-dependent problem 
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Q. E il- 

FIG. 1. A tlpicai steady state J = z(x) (uniform fluidizaiionj 

(2.1 j. (2.6), (2.14) it is possible that, at any given time t > 0, x-intervals with r = i! 
(no particles) coexist with .u-intervals where x >O. At the boundary between an 
r J- 0 and an o! = 0 region, the function a must be continuous: a discontinuity in 
concentration would imply a discontinuity in the pressure-like magnitude pP ‘a$ 
that is not compatible with the conservation of particle momentum. 

Returning to the steady state in Fig. 1, it is interesting to observe that at the foot 
of the curve we have c(,= #CD, in agreement with c(a = 0) = 0 in (2.10). (2.15). Also 
note that, except for a boundary layer, the solution virtually coincides with he 
equilibrium concentration CI,, associated with the current total volumetric 
observed earlier, a larger value ofj corresponds to a smaller value of x0 and, there- 
fore, to a steady solution where the particles would reach a larger height smsp in 
the bed, 

3. NU~RICAL METHOD 

The literature on hyperbolic problems has grown enormously in recent years and 
many numerical methods are now available. Our aim in this paper is to determine 
the behaviour of the solutions of (2.1) (2.6). A detailed comparison of the merits 
of several possible algorithms is not our goal and not within the scope of the paper, 
We shall, therefore, limit ourselves to a description of the algorithm actually used 
to produce the numerical results presented in the next section. However, some 
remarks concerning the use of alternative schemes will be given at the end of this 
section. 
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The system (2.1) (2.6) being solved is of the form 

(3.1) 

where nz = MU. Note that we have written c& rather than m’/~ as the latter expres- 
sion is not defined when CI = 0. 

Following Sod [lS], we solve (3.1) by operator splitting taking separately into 
account the flux term [nz, clu’+F(a)]z and the body force term [0, b(a, nr)]=. 
Sod’s approach involved a low-order random choice method for the flux term. Since 
the fluxes here will ultimately be approximated to second-order accuracy, we 
employ the well-known, second-order time-splitting due to Strang [ 191, rather than 
the simple time-splitting used by Sod [18]. In the present approach, the advance- 
ment of the solution over a time interval of length At involves taking successively 
a step of length At/2 with the body force term, a step of length At with the flux 
term, and a final At/2 step with the body force. 

For the fractional step corresponding to the system 

we have employed Roe’s linearized Riemann solver [14]. For a Riemann problem 
with given left and right variables aL > 0, 171~ and CI~ > 0, mg, we first compute the 
corresponding velocities 

uL = mLbL, uR = nzR/ciR (3.3) 

and then find an approximate Jacobian J that satisfies 

(3.4) 

The first row in (3.4) implies that J is of the form 

J= .’ 
1 1 1 21 A2 ’ 

On computing the characteristic equation det(J- AI) = 0, it is found that j,, , jZ2 are 
related to the eigenvalues /2,, 1, of J by 

so that J is determined by its eigenvalues. As in Roe [14] and Glaister [S], we 
choose 

A,=U-2, 1,=u+c, (3.5) 



FLUIDlZED BED MODEL 

where li is the average velocity 

and C is an approximate pressure wave speed. On taking these expressions to the 
second row of (3.4) we find, cf. (2.10) 

c2 = (F, - F, )/(x, - XL j. j.3.7: 

For numerical purposes, formula (3.7) should be replaced by 

C’ = dF/dcx, at ~x=(x,ia,j,Q 

whenever ri and CI~ are close. 
Other choices of an approximate Jacobian J satisfying (3.4) would have been 

possible. An example is given by selecting ,I 1, ,Ir as 

43.8) 

So far the Riemann problem being solved was assumed to satisfy a,>O: rx >L?. 
As discussed in the previous section, regions with zero concentration are hkeiy to 
be found and we are therefore interested in solving Riemann problems where either 
3~~ or ‘xR is zero. Assume that aL = 0, aR > 0. Then, by consistency, ~4~ = 0. In (3.3) 
U, is undetermined, in agreement with the fact that the case of zero concentration 
corresponds physically to a number of isolated particles which may be mov-ing at 
any speed. However, note that even though ziL is undetermined, the averages G, C 
in (3X5)(3.7) have well-defined values ii= uR, C’ = ERjctR. Therefore, the construc- 
tion of J. when either ~~ or @R is zero, can be done by using the same form*ulas 
(3.5))(3.7) as in the case CL~ >O, a,>O. Finally, a Riemann problem with ~1~ = 
‘2 3 = 0 should have, by consistency, 171~ = mR = 0 and therefore lea 
x E 0. m 3 0. idote that if we had used the alternative Jacobian in 
have found i,,, undetermined when either 01~ = 0 or zR =O. The approximate 
Jacobian in (3.5)-(3.7) can be used to construct first- and second-order accurate 
schemes for (3.2), as suggested by Roe [ 1.5, 161. 

The interval [xL, -xR] is subdivided into N cells of equal length dx = (.rR - r,),:N 
and the solution (cc, nz) is assumed to have a constant value xi, nrj in the cefl 
[Xi- I, Xi], i= 1> 2, . ..) N; li = xL + i Ax, i = 0, 1, . . . . N. Tn the first-order method, the 
solution is updated as follows At a cell interface xi, i= I, 2, . ..~ N- 1, t 
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is projected onto the eigenvectors r1 = [l, A,]‘, c2 = [l, &IT of 
J(cr,, mi, c(;+ 1, mi+ ,) to find the wave strengths 11~) 11~. The corresponding formulas 
are 

(3.9) 

The correction vectors 

-(At/Ax) ljyj~j, j= 1, 2, (3.10) 

are used to update either [ai, mi]’ or [aitl, WZ~+,]’ in an upwind fashion; i.e., if 
Lj is positive (negative) then (3.10) is added to [G(~+,, IIZ~+~]~ ([ai, m;]‘). 

The previous formulas are meaningful even in cases where either tli or C(~+ I is 
zero. At a cell interface xi where both ai, xi+, are zero, the computation of A,, II,, 
yl, y’2 is omitted and the corrections (3.10) are replaced by the zero vector. 

In practice, the condition a = 0 should be replaced by a condition IX < THRES, 
where THRES is a small value such that, for CI > THRES, the pressure wave speed 
C is large enough for the eigenvalues ;1,,2 = U f C to be sufficiently different for the 
denominators in (3.9) to cause no problem. (Note that, as c( --) 0 + the eigenvectors 
[l, zr+ c(a)]=, [l, U- C(U)]’ of the Jacobian of (3.2) become linearly dependent 
and in the limit the system is not strictly hyperbolic.) 

Our code tests the condition a, < THRES, i= 1, 2, . . . . N and sets a flag to 
monitor the locations xi at which c(~ = xi+, = 0. At these locations the approximate 
eigenvalues 11,2 and wave strengths yl.Z are not computed. Furthermore, whenever 
tlj < THRES we set nz, = 0 and 14~ = 0. In fact a cell with cli 6 THRES should be 
regarded as empty and allocated no momentum. If an empty cell becomes occupied 
at a later stage, it should only have the momentum of the particles entering that 
cell, rather than the spurious momentum it would have if mi had not been set equal 
to zero. The choice ui = 0 at empty cells is immaterial in light of previous discus- 
sions: Any other choice of ui would essentially lead to the same approximate 
Jacobian. Note that it is not appropriate to set to zero the values of ui below 
THRES as this would prevent a cell from turning from empty to occupied through 
a succession of updates less than THRES. 

It is well known that the simple upwind method just described may produce non- 
physical shocks and in fact these were encountered here. The literature contains a 
variety of techniques (“entropy fixes”) for avoiding the occurrence of such shocks. 
In our code we implemented the procedure described in Harten and Hyman [9]. 

Formal second-order accuracy is obtained following the recipe of Roe [15] 
whereby fractions of the corrections (3.10) are used to provide an antidiffusive flux. 
To avoid oscillations, flux limiters are required (Sweby [20]) and our code uses 
Roe’s superbee limiter [ 171. 

The reflecting boundary conditions, for both the first- and second-order methods 
are implemented in a standard fashion by the addition of extra, mirror-image cells. 
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For the fractional time steps involving the body force, the values 171,. i = 1, 2, ~,I~ 27 
are updated using the ODE 

dmJdt = b(a,. mii. i3.11 ; 

Since the expression for b is linear in tnir Eq. (3.11) is integrated in closed !orm. 
Finally: the choice of At is discussed. We proceed from L,? to 1, + dr,, with a stew 

length dt,, computed at the step from t,,-, to t,,. After completing a At,,j2 step xxi~h. 
the body force, we compute the maximum modulus p of the eigenvalues of the 
approximate dacobians throughout the domain. If At,, > (COURANT) As/p, whert 
COURANT is a prescribed constant between 0 and 1, then the CFL conditisr. s 
violated, the step is rejected and reattempted with a new length 

O&COURANT) ds,i/~ (3,;2) 

When the CFE condition is satisfied, the fiux stage and the remaining body force 
stage are completed and the length At,, + I of the next step is set equal to (3, E 2 ), This 
completes our description of the algorithm used in the next section. 

Alternative algorithms were also implemented. The simple form of the body forse 
makes closed form integration possible when using splitting, For this reason a’l 
alternative algorithms employed splitting, either in Strang’s form or in the samp?:: 
form of [Is]. For the flux term we considered the extension of the Engquist-C&her 
scheme described by &her and Solomon [ 131 and several random choice mettoos, 
In the E-O scheme, the Jacobian is averaged over a path of states joining the states 
(a,, PI,), (a,? m,j. Even when xR and zL are both positive, some portions of the 
connecting paths may lie in the a < 0 region of the (M, m )-plane and special prcvi- 
ston must be made to cater for such situations. As a result. the algorithm becomes 
very involved and we abandoned it in favour of Roe’s approximate solver. We did 
not succeed in obtaining good results when using random choice methods, The 
failtire is perhaps due to the splitting nature of the overall algorithm, bu; fi~r:her 
analysis and experimentation would be required to make a definite assessmen;. 

4. NUMEERICAL ESULTS 

In this section we describe a selection of the numerical experiments we ha;~ 
carried out. There are two types of results given: those validating t 
algorithm and those illustrating the slug-producing capabilities of the model. 

lJnless stated otherwise, all of the constants in the model have the values quoted 
for Fig. 1 (see Section 2). The first set of numerical calcuiations concerns the 
homogeneous system (3.2) together with the initial data 
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-0. 2 0. 0 0. 2 

FIG. 2. First-order Roe method (continuous line) and exact solution; I = 0.5 and N= 100. 

The exact solution of this Riemann problem, prior to contact with the boundaries, 
consists of a left-moving shock wave and a right rarefaction wave and this is used 
to compare the performances of the first- and second-order methods developed in 
Section 3. The solutions are found, using 100 cells, at t = 0.5 (83 time steps for both 
methods). In Fig. 2 the solution using the first-order method (continuous line) is 
compared with the exact solution (broken line) and in Fig. 3 the second-order solu- 
tion is shown. The second-order results are clearly superior to those found by the 
first-order method in terms of a sharper shock resolution and a rarefaction wave 
which is indiscernible from the exact form on the scale of Fig. 3. 

The second set of numerical experiments is given for the non-homogeneous 
system (3.1) with a view to investigating the slug-producing capabilities of the 
model. At t = 0 the initial concentration is taken to be the steady state form shown 
in Fig. 1 and the velocity is zero. As described in Section 2, with the choice cq, = 
c(OU = 0.55, used in the computation of Fig. 1, this profile represents a steady state 
of the system (3.1). However, our runs had a, = 0.4, while keeping aoU =0.55, so 

-0.2 0. 0 0. 2 

FIG. 3. Second-order Roe method (continuous line) and exact solution: t = 0.5 and N= 100. 
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0. 0 0. s 

FIG. 4. Second-order Roe method for (3.2), unstable case; I = 1 and N= 400 

that we do not have a steady state any longer. Since, furthermore, (2.12) is violated: 
instabilities are to be expected. Note that the decrease in #xc from 0.55 to 0.4 
corresponds to an increase in the gas flow. Figure 4 shows the results obtained by 
the second-order method with 400 cells at t = 4.0 (6167 time steps). The presence 
of a slug-like behaviour is apparent and the method resolves shocks sharply. The 
position of the right-hand elbow varies as the bed expands and contracts in time. 
A comparison of these results was made with those obtained using finer grids and 
this indicated convergence of the scheme. 

FIG. 5, Second-order Roe method for (3.2 ). unstable case. right boundary, I = 0.5, a-d ?I = iO0 
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0. 6 I- 

i 

0. 00 0. 25 

FIG. 6. Second-order Roe method for (3.?), unstable case, right boundary, I =4, and N=400. 

In the experiment just described, the boundary at x = 0.5 is not active. We there- 
fore decided to run the same experiment with the right boundary located at 
x=0.25. Although this does not correspond strictly to an actual fluidized bed 
(which will normally not have a lid), it is presented here as an illustration of the 
satisfactory performance of the numerical method when both boundaries have an 
influence. In Fig. 5 the concentration computed by the second-order method at 
t = 0.5 (705 time steps), with 400 cells shows the early evolution of slugs before the 
particles hit the right boundary. In Fig. 6 the situation at t = 4, also with 400 cells, 
demonstrates the interaction with the boundary. As a result of the collision of par- 
ticles with the right boundary, values of c1 are reached close to the packing concen- 
tration up_ The pressure wave speed tends to infinity as CI approaches a, (cf. (2.11)) 
and, as a consequence, the time step reduced drastically so that 43,320 time steps 
were required. As in Fig. 4, we have a clear demonstration of the slugging 
phenomenon. 

5. CONCLUSIONS 

We have demonstrated that a simple hyperbolic model of a fluidized bed, without 
particle viscosity, is capable of reproducing the oscillatory behaviour or slugging, 
for sufficiently high gas velocities. Current work is focused on establishing whether 
the travelling waves found in the numerical experiments actually correspond to the 
solution found by Ganser and Lightbourne [7]. If successful, this increased con- 
fidence will allow us to explore models which could be quantitatively compared to 
physical experiments. As discussed in Section 2, the most serious drawback to this 
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program is the lack of a suitable friction factor between the particles and the wall 
for high particle concentrations. 

Earlier numerical experimentation with hyperbolic modeis had used the method 
of characteristics and failed at the onset of shocks. We have used a shock-trapping 

scheme based on Roe’s approximate Riemann solver. While our code is built on 
known ideas. adjustments had to be made to cater for the presence of vacuums. 
A Jacobian was employed which could easily cope with vacuums. The Engquis~~ 
&her scheme did not render itself to such a simple treatment of vacuums and 
random choice methods fared badly on this problem. 
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