
JOURNAL OF COMPUTATIONAL PHYSICS 82, 454486 (1989)

An Adaptive Moving Grid Method
for One- Dimensional Systems of

Partial Differential Equations

J. G. VERWER AND J. G. BLOM

Cenfre for Mathematics and Computer Science,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

AND

J. M. SANZ-SERNA

Departamento de Matematica Aplicada y Computation, Facultad de Ciencias,
Universidad de Valladolid, Spain

Received: April 28, 1988

We describe a fully adaptive, moving grid method for solving initial-boundary value
problems for systems of one-space dimensional partial differential equations whose solutions
exhibit rapid variations in space and time. The method, based on finite-differences, is of the
Lagrangian type and has been derived through a co-ordinate transformation which leads to
equidistribution in space of the second derivative. Our technique is “intermediate” between
static regridding methods, where nodes remain fixed for intervals of time, and continuously
moving grid methods, where the node movement and the PDE integration are fully coupled.
In our approach, the computation of the moving grids and the solution on these grids are
carried out separately, while the nodes are moved at each time-step. Two error monitors have
been implemented, one to govern the time-step selection and the other to eventually adapt the
number of moving nodes. The method allows the use of different moving grids for different
components in the PDE system. Numerical experiments are presented for a set of five sample
problems from the literature, including two problems from combustion. I: 1989 Academic

Press, Inc.

1. INTRODUCTION

In this paper we describe a general method for the numerical solution of initial-
boundary value problems for systems of partial differential equations (PDEs) in
one space dimension. The class of problems considered have the form

u, = Uu), x,~x~xR, t>t,, (l.la)

u(x, 0) = uO(x), XL<X<XR, (l.lb)

&rL(& 4 u(x), u.(x)) = 0, x=xL, t>tor (l.lc)

gR(-& h dx), dx)) = O> x=xR, t> to, (l.ld)
454

0021-9991/89 $3.00
CopyrIght 0 1989 by Academic Press. Inc.
All rights of reproduction in any form reserved.

ADAPTIVE MOVING GRID METHOD 455

where L represents a linear or nonlinear spatial differential operator of the second
order. Of course, many problems from physics and other areas of application
necessitate the solution of such systems, a task that must be undertaken numerically,
except for the rare cases where analytical techniques are available. In recent years,
several sophisticated MOL (method of lines) packages have been developed for
one-space dimensional PDE systems like (1.1) (see, e.g., [3, 151). These packages,
which exploit the success of the automatic stiff ordinary differential equations solvers,
operate in a semi-automatic way, in the sense that they automatically adjust the
time-step but employ, throughout the computation, a fixed spatial grid, chosen by
the user before the integration starts. Such a semi-automatic approach is very
efficient not only in cases where the solution does not exhibit much spatial activity
and a uniform grid is adequate, but also in problems where the regions of rapid
variation in space do not move and are known a priori, so that a graded mesh can
be suitably positioned. However, for solutions possessing sharp moving spatial
transitions, like travelling wavefronts or emerging layers, a grid held fixed
throughout the calculation can be computationally inefficient, since, to afford a
mildly accurate approximation, such a mesh would easily have to contain hundreds
or even thousands of nodes. In such cases, adaptive and moving grid methods,
which adjust automatically both the space and the time-stepsizes, are usually more
efficient.

The finite-difference, moving grid Lagrangian method developed in this paper has
been designed for the efficient computation of solutions containing very sharp spa-
tial and temporal transitions, like those arising in many combustion problems. Of
course, the method can also be applied to compute less challenging solutions, but
then it is likely not to be competitive with fixed grid MOL algorithms. We would
also like to emphasize that we are not concerned here with genuinely discontinuous
shock solutions as those arising in hyperbolic problems, but rather with solutions
with extremely large but finite derivatives.

The present paper follows our two earlier contributions [S, 63, where we have
studied several finite-difference, Lagrangian moving grid schemes. These schemes
are “intermediate” between the static regridding methods [14, 22-241, where nodes
remain fixed for intervals of time, and continuously moving grid methods, where
the node movement and the PDE integration are fully coupled [2, 10, 17, 18, 20,
261. While the research in [S, 63 has enabled us to identify a promising scheme, the
implementation considered in those papers used fixed time-steps and did not allow
a dynamic variation of the number of spatial grid-points. Besides, the numerical
experiments reported only referred to the Burgers’ equation. Therefore, the material
in [S, 61 only provided a first step toward our ultimate goal in this area: the
development of a user-oriented, fully automatic code, applicable to a wide variety
of problems. In the present work, we describe how to incorporate variable time-
steps and how to vary the number of grid-points. Furthermore we discuss the suc-
cessful application of our method to live sample problems from the moving grid
literature, including two interesting and difficult models from combustion theory.

At each integration step of our algorithm, two simple error monitors are com-

456 VERWER,BLOM, ANDSANZ-SERNA

puted. One of them governs the time-step selection and the other the location and,
eventually, the number of space nodes. Thus the method not only automatically
adjusts the space grid to regions of high spatial activity, but also provides a facility
to adapt the number of nodes in order to meet a user-specified tolerance. This
adaptation is embedded in the generation of the new space nodes at the forward
time-level, which is based on equidistribution of the second space derivative. It
should be emphasized that the dynamic adaptation of the number of nodes is, to
some extent, of secondary importance because, even if the quantity of spatial nodes
is held fixed, the nodes move to cater for the spatial activity of the solution.
Another facility of our algorithm is that different spatial grids can be chosen for dif-
ferent PDE components. This avoids the use of finely meshed zones in regions
where, componentwise, they are not needed, but introduces overhead costs originat-
ing from the more complicated linear algebra and the extra interpolation tasks.

Above, we used the term error monitor instead of error estimator in order to
emphasize that the quantities involved are not approximations to true local errors,
but only heuristic, cheap means for efficiently computing rapidly varying solutions
of a widely different nature by keeping at a fairly acceptable level both the number
of space nodes and the number of time-steps.

In the next section we outline the Lagrangian method underlying our fully adap-
tive moving grid procedure. In Section 3 we derive the error monitors which govern
the time-step and number of space nodes selection. In Section 4 we briefly discuss
the possibility of using different moving grids for different PDE components.
Results of extensive numerical testing are presented in Section 5 and Section 6 is
devoted to final comments and conclusions.

2. THE METHOD OF SOLUTION

Until further notice it is assumed that the method is applied using the same
spatial grid for all components of the solution u.

2.1. The Time-Stepping Scheme

We advance the solution in time over a trapezoidal space-time grid

Trapezoids covering the strip xL < x < xR, t, < t < t, + , (2.1)

ADAPTIVE MOVING GRID METHOD 457

by means of the Lagrangian time-stepping scheme

(e(x:$ -x7’,‘) + (1 - e)(x:+ i -x;- ,
))(““J

- (e(uy=; - 24:‘;) + (1 - e)(U;+, -u;-,
))(x’“:-x:)

=8(x::,’ -x:‘:)Lh,i(Un+‘)+(l -@(x?+, -x:‘~,)L+;(lP). (2.2)

The notation U; represents the discrete approximation to the value u(x:, t,) and
L,?,, stands for a suitable finite-difference replacement of the spatial differential
operator L. In our current implementation L,,i is obtained by replacing in L the
operators a/ax and a2/ax2 by standard central differences, but other choices for L,,,
are clearly possible. The index i varies between 1 and m - 1, where m is the number
of trapezoids covering the strip (2.1). As usual, t, and t, + , = t, + 7 are consecutive
time-levels. The time-step 7 may depend on n, although this dependence is often not
reflected in the notation. Note that if the grid in (2.1) is rectangular, i.e., if there is
no grid motion, then (2.2) reduces to the familiar o-rule. The parameter values 8 = 1
and 8 = $ yield the Lagrangian implicit Euler and Lagrangian Crank-Nicolson
schemes, respectively. These are the only values for 0 we consider. Obviously, the
scheme must be supplemented with boundary conditions.

The scheme (2.2) may be derived as follows. Let (s, T) be new independent
variables linked to the old independent variables (x, t) through a co-ordinate trans-
formation

x = x(s, T), t = T, O<s<l, T>O. (2.3)

The Lagrangian form of (l.la) is obtained by expressing U, in terms of u7,

UT- %xT= L(u), O<s<l, T>O. (2.4)

The scheme (2.2) is now derived by first multiplying (2.4) by ax/as to obtain

xs”T -14,xT=xsL(z4), O<s<l, T>O, (2.5)

followed by standard central differencing on the uniform s-grid { si = ih, 0 d id m,
h = l/m}.

In [6] we have shown the close relation between the scheme (2.2) and a linite-
element scheme using piecewise linear approximations over trapezoidal space-time
elements, due to Bonnerot and Jamet [7] (see also Davis and Flaherty 1191).
However, the Bonnerot-Jamet scheme may suffer from a harmful form of instability
[6] and the finite-difference scheme (2.2) is free from that drawback. Experimenta-
tion with the nonlinear Burgers’ equation has indicated that the Crank-Nicolson
form (2.2) performs somewhat better than the slightly different Crank-Nicolson
scheme which would result from differencing (2.4), rather than the less natural

458 VERWER, BLOM, AND SANZ-SERNA

form (2.5). For the backward Euler case, both forms lead to the same difference
expression.

The basic idea of the Lagrangian approach is to choose the variables (s, T) so
that, with them, the problem becomes easier to handle numerically than it was with
the original pair (x, t). Note that although the new time T equals the old time t,
the derivatives au/at and du/dT are different. The former measures the changes of
u as a function of t at a fixed x-value (Eulerian description), the latter at a fixed
s-value (Lagrangian description). Thus the choice of an appropriate new spatial
variable s may:

(i) Soften the spatial behaviour of the solution, via the concentration of
x(s, T) trajectories in those regions where u varies rapidly as a function of x.

(ii) Soften the temporal behaviour of the solution. This would happen if,
through a right choice of transformation, the Lagrangian derivative uT can be made
significantly smaller than the original Eulerian derivative u,.

Ideally, we would like to find s and T in such a way that the solution of (2.5)
does not possess fast transitions in space and time, and therefore can be integrated
with fairly large time-steps on a coarse uniform s-mesh. This mesh defines, via the
transformation x = x(s, T), a moving, nonuniform x-mesh, which should allow an
efficient integration. However, the nature of the solution u being approximated
dictates to what extent the aims (i) and (ii) above can be simultaneously achieved.
We shall illustrate this point when discussing our test problems.

Although the introduction of the variables s and T is helpful in the derivation
and understanding of (2.2), it should be emphasized that (2.2) can also be regarded
as a consistent discretization of the original (Eulerian) equation (l.la) on the mesh
(2.1) in the (x, t)-space, regardless of the choice of the x-grid points. This remark is
relevant because in practice the grids must, of course, be determined along with the
computation of the numerical solution and therefore the x-grid points actually used
are subjected to errors and do not quite stem from a smooth transformation of a
uniform s-grid. This lack of smoothness of the computed grid-points is one of the
biggests problems in the development of general moving grid procedures, par-
ticularly so as far as error estimation is concerned. Note also that a rough u(x, t)
solution can only become smooth in the (s, T) variables if the roughness is trans-
ferred to the transformation x=x(s, T) and this implies that, in the cases we are
interested in, finding the “exact” grid positions is likely to be an ill-conditioned
task.

2.2. The “Intermediate” Approach

Concerning the grid determination, our algorithm can be classified as belonging
to the class of methods which are “intermediate” between the static regridding
methods, where nodes remain fixed for intervals of time [14,22-241, and con-
tinuously moving grid methods, where the node movement and the PDE integra-
tion are fully coupled [2, 10, 17, 18, 20, 261. We have successfully applied this
“intermediate” approach in [S, 63.

ADAPTIVE MOVING GRID METHOD 459

Given an x-grid at the nth time-level and the corresponding numerical solution,
stepping to the (n + 1)th time-level involves two successive computational stages:

The grid prediction stage which computes the grid at the forward (n + 1)th level.
First an implicit Euler step is performed on a fixed spatial grid (i.e., (2.2) is applied
with 8= 1 and x7+‘= x:). The implicit Euler solution then acts as input for a de
Boor [8] regridding algorithm which generates the grid-points at the advanced
time-level by equidistributing a chosen monitor function. This equidistribution
defines implicitly the co-ordinate transformation x = x(s, T).

The integration stage which computes the approximations u:+’ according to (2.2)
with 8 = I. Other values of 0 also result in good performances, but our numerical
experience shows that 6’ = $ is in general more efftcient, as it produces smaller errors
in time.

The “intermediate” approach has some clear advantages. The node movement is
easier to deal with than in a continuously moving grid method, where mesh
tangling and ill-conditioning of the arising systems of algebraic equations are well-
known threats. With de Boor’s technique points cannot cross or leave the domain.
In a sense, due to the explicitness of that technique, one has a more direct control
over the grid movement than that achieved with penalty functions in the con-
tinuous approach. On the other hand, the intermediate approach very often allows
time-steps significantly larger than those used by static regridding methods, which
must operate with (larger) Eulerian derivatives. In this connection it is fair to men-
tion that the intermediate approach precludes, to some extent, the full exploitation
of the advantages of small Lagrangian derivatives uT, because the grid prediction
stage is carried out anyway on a nonmoving grid and is likely not to allow very
large time-steps. However, the output of the static grid prediction stage is only used
for finding the new grid and plays no direct role in the computation of the new
solutions, and it turns out that, in practice, inaccuracies in the grid prediction do
not greatly impair the performance of the overall procedure. In fact, the inter-
mediate approach, as implemented in our current algorithm, is remarkably robust
and allows the use of sufftciently large time-steps.

Turning now to computational costs, observe that the intermediate approach
results in systems of algebraic equations of a smaller dimension than those
necessary in continuously moving methods, where unknown x and u values are
coupled. A drawback of the intermediate approach is that, per entire step, two
systems of algebraic equations must be solved, due to the use of implicit formulas
at both stages. (The use of an explicit prediction formula is not advisable [S, 61
because it may damage the robustness of the algorithm.)

2.3. The Regridding
As mentioned above, the actual regridding is carried out at the grid prediction

stage and effects the co-ordinate transformation (2.3) which underlies the
Lagrangian approach. We employ a transformation based on equidistribution of a
second derivative monitor function, but, of course, other choices are conceivable.
The smoothing capabilities of the used .Y =x(s, T) transformation have been

460 VERWER, BLOM, AND SANZ-SERNA

illustrated in [S] in the case of Burgers’ equation. There we observed that, for
moving front solutions, our “intermediate” algorithm moves the nodes in a
Lagrangian fashion with the true speed of the fronts. We emphasize that this front
tracking is achieved automatically by the algorithm and not via a user-supplied co-
ordinate transformation. This capability is shared by other moving grid methods
(e.g., the moving finite-element method [17, 181 and Petzold’s finite-difference
method [20]).

While the new pair of variables (s, T) is central in the theoretical derivation of
the moving grid scheme, it should be stressed that the actual computation of the
grids is completely achieved in terms of the physical variable pair (x, t), by using
the cheap (inverse interpolation) procedure of de Boor [S]. As already mentioned,
an attractive feature of this procedure is that, due to the explicit construction, the
node ordering is always maintained so that nodes cannot cross each other or leave
the space interval. Our current version of the de Boor algorithm is similar to that
used in [S, 61, except for a slight change in the monitor function. For brevity, our
description of the algorithm will be very sketchy and further details can be seen in
the papers [S, 61.

The transformation is defined by

where M is the second derivative monitor function

(2.6)

M(5, f) = a + Jk.& t)l. (2.7)

Note that, if u is vector valued, the symbol 1. I in (2.7) is to be interpreted as a
norm, for example, a weighted Euclidean norm.

If the x-grids arise from an equidistant s-grid, via the inverse transformation
x = x(s, t), then

I

r,+ I
ML t) & = rl(t)[s(xi+ 1, t) - J(Xi, t)l = q(t)/m, (2.8)

.yr

for 0 d id rn - 1. Hence the x-grid has the property that on each of its subintervals
the average of the monitor function has the same value (equidistribution of M). As
time evolves, this transformation causes grid trajectories to migrate to regions of
high spatial activity, as governed by .the choice of M. The parameter c1 serves to
regularize the transformation in regions where the solution u is very flat, i.e., where
a*u/ax’ is nearly or truly zero. Hence its magnitude is related to the number of
points to be placed in regions where, in space, the solution varies relatively slowly.
Of further interest is that q(t) may provide the basis for a heuristic space error
monitor, which would suggest when to increase or decrease m. We shall discuss this
in greater detail in the next section.

ADAPTIVE MOVING GRID METHOD 461

3. THE VARIABLE TIME-STEP AND VARIABLE NUMBER OF NODES PROCEDURES

In [5, 61 we reported some promising numerical results corresponding to
Lagrangian methods implemented with a constant time-step r and a fixed number
of nodes m. However, it is clear that the efficient treatment of many practical
problems requires that r be varied in the course of the integration in accordance to
the local (in time) behaviour of the solution. An important example is given by
combustion problems where sudden ignitions are interspersed with periods of time
in which less action takes place. Likewise, it may be desirable to change m as time
evolves, although the need for this option is less because, even with m fixed, the
method automatically makes the spatial grid liner in regions of high activity. In this
section we describe cheap monitors for the dynamic selection of appropriate values
for r and m, and our strategies for the implementation of changes in z and m.

3.1. The Variable Time-Step Procedure

3.1.1. The Time Error Monitor

The time-step selection is based on a local error expression. As mentioned before,
the scheme (2.2) can be regarded either as a discretization of (2.5) on a uniform
s-grid or as a discretization of (l.la) on the nonuniform, time-dependent x-grid
(2.1). Correspondingly, for a local error analysis of (2.2) two approaches can be
followed:

(i) In the first, Taylor expansions are carried out in the Lagrangian coor-
dinates (s, T) and the numerical approximations for u are interpreted as
approximations to the true PDE solution values U(S, T) = u(x(s, T), T) on the
uniform s-grid. By following this approach, an expression for the local error in time
of (2.2) is obtained which contains not only Lagrangian derivatives of the solution
U, but also partial derivatives of the co-ordinate transformation. This approach
would certainly be meaningful if the x-grid positions were actually derived through
an analytically defined transformation x = x(s, t). However, we have already men-
tioned that in practice the grid positions are subjected to (sometimes large) errors,
so that the assumption xi = x(i/m, t) which underlies the approach is far from being
satisfied.

(ii) The second approach is to expand in the physical coordinates (x, t) and
thus to interpret the approximations to u as approximations in the numerical node
values actually used. Following this interpretation there is no need to cater in the
analysis for errors in the x-grid positions.

Numerical experimentation has shown that the second approach should be
favoured and the following analysis is based on it.

We first consider the scheme (2.2) with 6 = 1 on the grid (2.1) (recall, however,
that the implemented algorithm actually uses 8 = 4). The notation U” represents, for

462 VERWER, BLOM, AND SANZ-SERNA

the time being, the exact solution restricted to the level n grid. We introduce the
space local truncation error [25]

dt,) = 4x;, 2”) - L,i(Un), (3.1)

which originates from replacing the true differential operator L by the linite-dif-
ference operator on the numerical grid. Next we introduce the full local truncation
error [25] (boundary conditions are ignored)

pj(t,+~)=u:+~-u:~L~,,(~“+~)-~~~~~~~ (xy+‘-q. (3.2)
r+l r-1

The error (3.2) is the defect which arises by substituting the true PDE solution into
the numerical scheme. In this section we are only interested in the time-discretiza-
tion contribution to (3.2), i.e., in the part of (3.2) which cannot be made smaller by
suitably relining the spatial grid.

We work under the very reasonable assumption that, as the space-time grid is
refined, a constant C exists such that for all grids and for all i, n,

IvyI < cz, (3.3)
where

r”=X7+1 I r -X1; (3.4)

thus the node velocity ry/z is assumed to be bounded independently of the number
of points in the grid and of the time-step.

We first introduce the auxiliary quantity

(3.5)

and Taylor expand at the point (x:+’ t , n + ,), taking (3.3) into account, to get

yi(t, + 1) = - l/22*1(,, - rzu,, - ir*u,, + ru, + O(T~), (3.6)

where r denotes r’. Next we write

ll;;; - uy-‘;

Xlf’ -xl+’
= u,~ + FDEY + ‘,

If1 r-l
(3.7)

where FDEr+’ is the (space) error involved. Hence, putting p =xi+, -xi and
q=Xi-Xj-Ip

FDE;+ L = (1/2)(P-q)u,,+~(P2-Pq+q2)u,,,+ (3.8)

On taking (3.1), (3.5), and (3.7) into (3.2) and considering the expansions
(3.6)-(3.7), we conclude

Pitt”+ I)=EST:+‘+?i(t,+,)+O(t3), (3.9)

ADAPTIVE MOVING GRID METHOD 463

where ~~(2, + ,) is the total spatial contribution

~;(t,+,)=T~,(t,+,)-rrFDEr+‘, (3.10)

and EST:+ ’ represents the leading part of the time contribution to Pi(t, + ,) at
n+l (Xl 2 L+,):

EST;+’ = - 1/2T214,, - rTu,r, - $r2u,,. (3.11)

Note that even though the expression (3.11) was derived in the (x, t)-space, it
reflects nicely the Lagrangian nature of the scheme. For instance, if u is a travelling
wave solution u(x, t) = w(x - ct), EST vanishes at those grid-points which have the
correct speed c. On the other hand, (3.11) involves Eulerian derivatives, which, in
the applications we are interested in, are likely to be extremely large. Therefore the
terms in the right-hand side of (3.11) may be individually very large and partially
cancel to yield a small EST. Under those circumstances, it is clear that EST is
numerically ill-defined and cannot be expected to be computed too accurately. As
a further difficulty, note that the estimation of u,, requires that the numerical solu-
tion at time-level n - 1 should be kept in storage and that its estimation requires
interpolation, since the u values available at different time-levels correspond to
different x locations. This interpolation provides an extra source of inaccuracies in
the computation of EST.

The corresponding error expression for the Crank-Nicolson scheme actually used
involves Eulerian derivatives of higher order and therefore would lead to practical
problems even more severe than those just cited for the backward Euler case. We
have decided to also use (3.11) for the Crank-Nicolson scheme, so that our estima-
tions should be expected to be conservative. After all these considerations, (3.11)
should be regarded as a sort of monitor, rather than as a true estimator. The
numerical experiments reported later show that EST is indeed a successful monitor.

3.1.2. The Implemented Strategy

After the step up to t,, , has been completed, the estimates EST:+ ’ at the
individual grid-points are computed and then normed over the space mesh to get

XT+’ -Xl”

>(

112 I+1
2

IEST:+‘f’+ IEST;;;12 (3.12)

where EST;;+ ’ = EST;+ ’ = 0.
The variable time-step strategy is similar to that in most current ODE codes.

NEST is subjected to the test NEST< TOLT, where TOL$T is a user-specified
tolerance parameter. If the test is passed, both the grid and the numerical solution
at the (n + 1)th level are accepted and the new stepsize is computed from

T,+, = Q((TOLT/NEST)“‘)t,, Tn=f,+,-tn. (3.13)

Q(Z) is a threshold function designed to prevent the stepsize from zigzagging and

464 VERWER, BLOM, AND SANZ-SERNA

to prevent future step rejections. Q(Z) varies, for z > 1, from 0.8 to 2.0 in a piecewise
linear way. Hence, at most, the stepsize may be doubled and when the test is barely
passed the stepsize decreases by 20%. Although the control is based on an absolute
error test, it can, of course, be changed into a mixed absolute-relative test.

If NEST> TOLT, we have a step failure. Then we not only discard the values
u”+ ’ just computed, but also the past values u’. This backstep is justified by the fact
that the expression for the error monitor (3.11) is only approximately known,
which might imply that upon a step failure we have been a little too optimistic in
one or more previous successful steps. The backstep also provides an extra safety
margin in cases where, suddenly, the solution starts changing very rapidly, as is the
case in most combustion problems. Finally, there is no explicit check on the quality
of the grids computed in the grid prediction stage; when a step failure occurs, we
must reckon with the possibility that this may be partly due to a not very
favourable location of the nodes. By backstepping we enhance the chance of timely
locating the nodes in good positions. When re-attempting the step t,-~, -+ t,, after
a rejection, we use

t n-l := 0.5r, ~, =(4l-t,-,)/2 and x’ := (x7 + xy - ‘)/2; (3.14)

in this way we save one grid prediction stage. After a rejection the threshold func-
tion Q(z) is adapted in order to avoid a too rapid increase in stepsize, which might
lead to a new step failure. Finally, backstepping is of course not possible at the start
of the process. If the initial stepsize or the first stepsize after a backstep turns out
to be too large, the step is simply redone while using (3.13) as stepsize estimate
until step acceptance.

Note that, if u is vector-valued, the stepsize procedure can be applied com-
ponentwise. After a successful step, the stepsize is set equal to the minimum of
(3.13) over all the solution components.

3.2. The Variable m Procedure

3.2.1. The Space Error Monitor

Our space error monitor is derived from the quantity v] in (2.6). Define

(3.15)

where TOLS stands for a tolerance parameter and mna, for a. nonnegative integer
parameter to be specified later. Then

v(t) = j.xR a + Jm d5 = mat ,/m-km.,,, ,/m. (3.16)
.TL

ADAPTIVE MOVING GRID METHOD 465

The equidistribution property (2.8) implies

[““’ JILCEJI d5 = s(t)/m - (xi+ 1 -xib 6 q(t)lm < ,:‘roLs, (3.17)
ii

if m is chosen as (square brackets denote integer part)

m = [mvar] + mfla, + 1. (3.18)

Neglecting the quadrature error involved, (3.17) then yields for all subintervals

t-y ,+I-- I x.1’ Iu,,(x;+ ,,2, t)l < TOLS. (3.19)

Thus, defining m by (3.18) implies that the quantity (Ax)~ lu,,j is always kept
below the prescribed tolerance TOLS. The dimensionless integer mnat is a user-
defined parameter, to be interpreted as the approximate number of nodes which
one would use if the solution were completely flat (u,,=O). We emphasize that
criterion (3.19) is merely heuristic. In all applications the genuine spatial error, both
local and global, will be essentially more complicated (cf. (3.10)). In a sense, the
present monitoring is based on the degree of spatial difficulty of the problem thus
assuming that the size of the second derivative is an appropriate measure in this
respect.

3.2.2. The Implemented Strategy

The space grid control is carried out at each successful time-step just after the
time-step control. In case of a step rejection (NEST> TOLT) no grid control is
necessary because then the next grid to be used is defined by (3.14). When the for-
mula (3.15) dictates a decrease or increase in mvar and hence in m, a de Boor loop
is made to define the new nodal positions and the solution is transferred to the new
grid by interpolation. In the implemented algorithm, simple linear interpolation is
used, as it is feared that higher-order interpolants are likely to be unsuitable to
interpolate rough functions on course grids [22].

A minimal value for m is prescribed and, further, measurements are taken in
order to avoid minor changes of m. No change is performed if the newly computed
mvar is between 0.5 and 1.2 times the current value, and, when an increase is made,
the new mvar is at least 50% larger than the old. While changing stepsize in time
is trivial due to the one-step nature of (2.2), changing the number of nodes may be
troublesome. First, we cut off all the existing grid trajectories and continue the
time-stepping on an entirely new grid. This may lead, until x-values and u-values
adjust to each other, to some transient oscillations in the grid trajectories, due to
the sensitivity of the estimation of (2.7) in solutions with steep fronts. Second, the
interpolation associated with changing m is clearly a source of errors. (The fact that
Lagrangian schemes with fixed m do not require interpolation is one of their advan-
tages when compared to static regridding methods.)

The present straightforward heuristic strategy works satisfactorily and is almost

466 VERWER, BLOM, AND SANZ-SERNA

free of extra costs. Due care should be exercised when choosing the parameters,
since the dangers of operating with coarse tolerances are well known. In particular,
although tempting, one should not choose too small values for the allowed mini-
mum value of m in problems where at the initial time the solution starts out flat
and later develops, very rapidly, large spatial gradients. In such a situation the grid
may be too coarse to see timely the onset of the variations (the choice of TOLT
also plays a role in this connection). Even if this mismatch between the value of m

and the behaviour of the solution u happens only for a few time-steps, inaccuracies
may be introduced which at best are maintained over the remainder of the time
interval, and at worst are greatly amplified by the time evolution. It should be men-
tioned that the previous considerations are not peculiar to the current heuristic
estimators. Any estimation procedure, whether based on genuine error expressions
or not, requires sufftcient grid-points for estimating the involved quantities up to
sufficient accuracy.

4. THE USE OF DIFFERENT MOVING GRIDS FOR SYSTEMS

In the “intermediate” approach the grid is determined at each time-level by
means of an explicit de Boor procedure. It is therefore straightforward to compute
different grids for the different components of the solution of a system of PDEs, in
order to avoid the frequent sampling of a solution component in regions where that
component varies slowly. This idea is not without difficulties. First, the block tri-
diagonal coupling which exists between solution values when a single grid is used
is disturbed. In fact, the structure of the coupling is likely to change in time, due
to the moving nature of the grids. Therefore, for solving the systems of linear
algebraic equations which arise in the application of the Yewton process, an
efficient sparse matrix routine must be used instead of a less sophisticated band
solver. This obviously leads to overhead costs which partly annihilate the
anticipated savings. We have used the NAG routine F04AXF due to Duff [1, 111.

A second problem, of a more serious nature, concerns the spatial finite-difference
operator. Let us consider the case of two components, denoted by u and u, and
suppose that the first component of the differential operator L in (l.la) is in the
generic form

The figure below displays a typical section of the grids

I

.X,-I
I

rr+ 1
grid of component u

I I I I grid of component v
Xk-l .Tk r:li- I -‘k + z

To approximate the right-hand side of (4.1) at the point x=xi, the terms U, au/ax

ADAPTIVE MOVING GRID METHOD 467

and a2u/ax2 pose no difficulty; au/ax and a2u/ax2 are differenced by means of the
standard replacement based on x, _ i , xi, x, + I . However, u, au/ax, and a2v/ax2 are
evaluated at xi by linearly interpolating their respective approximations at the
neighbouring points xk and xk + , , obtained by differencing in the u-grid. If xi lies
in one of the two u-grid subintervals adjacent to the boundary, linear interpolation
of 3-point differences is not possible and we have resorted to piecewise constant
interpolation, as any other alternative would lead to an increase in the coupling.

If composite expressions of variables living on different grids have to be
approximated, such as the conservation law form au/at = a(uu)/ax, then it is not
possible to first difference the variables on their own grid and then interpolate. For
approximating a(uu)/ax at the u-grid, one first has to interpolate the neighbouring
u-values and then difference, a procedure which may lead to large spatial errors.
The situation is even worse for a2(uu)/ax2, where 3-point differencing of linear inter-
polates results in an inconsistent replacement, and one should differentiate to get
UT,” + 2U.x% + U”.X.Y and then approximate the individual terms.

These difficulties make us somewhat reluctant to advocate the multiple grid
option. It is to be feared that in many cases the anticipated savings in grid-points
will not make up for the drawbacks of this option. However, the underlying
idea deserves some attention and in Section 5 we report a successful numerical
illustration.

5. NUMERICAL RESULTS

We shall present results of extensive numerical experiments on a set of live
sample problems from the literature, including two problems from combustion
theory. Some implementation details are given first.

5.1. Implementation Details

The Newton Solver

Each time-step involves the solution of two different sets of nonlinear algebraic
equations. As is the case with stiff ODE codes, the efficiency in the solution of the
nonlinear equations is partly determined by the time-step selection process; a larger
stepsize leads to larger Jacobian and solution variations over the step and thus
works against the easy solvability of the equations. While in stiff ODE packages it
is usually possible not to update the Jacobian for a number of consecutive steps, in
our situation we update the Jacobian each time a new system is to be solved, i.e.,
twice per time-step. The reasons for this strategy are as follows. We have already
noted that the transformation x = x(s, T) possesses large derivatives. As a result, the
nodal positions can be expected to change significantly over a single step, which
in turn leads to large variations in the Jacobian. Furthermore, the numerical
approximation corresponding to a given grid-point will change substantially over a
time-step if the grid-point enters or leaves a steep layer. This difficulty is made all

468 VERWER, BLOM, AND SANZ-SERNA

the worse by the fact that Lagrangian methods are constructed to operate with
relatively large time-steps.

The Jacobian matrices are computed by numerical differentiation. We readily
admit that the cost per step of our algorithm is high and, undoubtedly,
improvements in the nonlinear equation solution will be beneficial for the final per-
formance of the method.

A Newton iteration is terminated when a Newton correction is found which, in
the maximum norm, is less than a user-prescribed tolerance TOLN. Note that the
maximum norm provides a rather stringent choice. If convergence does not take
place when five Newton steps have been taken, we have a Newton failure. If the
failure takes place at the grid prediction stage of the step from t, to t,+ , = t, + t,,
we set r,,,, :=r,/2 provided that rnnew is larger than half the previous successful
stepsize z,- 1. If this last condition does not hold, then, to prevent rapid decreases
in stepsizes, we go back to t, _ , and apply (3.14), just as we do if the time-accuracy
test fails. If a Newton failure takes place at the moving grid stage of the step, we
go back to t+,, since then the last computed grid is likely to be wrong.

There remains to mention the choice of the initial estimates. The converged
implicit Euler solution of the grid prediction stage is ordinarily, after linear inter-
polation to the new grid, a satisfactorily initial estimate for the solution of the
Lagrangian scheme (2.2). For the fixed grid Euler solution, a natural candidate for
initial estimate is the converged Lagrangian solution un of the 12 th level. However,
the stepsize is determined by the variable stepsize procedure for (2.2). Since, for a
given accuracy, the moving grid scheme (2.2) has the potential of taking a larger
stepsize than the static implicit Euler, the current stepsize can be too large for the
next static step, which in turn can lead too quickly to a Newton failure. Clearly, it
is undesirable to accept smaller stepsizes merely to accommodate the iterative
Newton process of the static step. To alleviate this difficulty, we use, as initial
estimate, the values, obtained by linear interpolation, of un at the grid-points of the
(n - 1)th level, a procedure, which, in the case of running wave solutions, gives
more accurate predictions, provided that the grid-speeds are correct. For n = 0 we
use the given initial vector.

The Choice of the Initial Grid

When the solution profile at the initial time-level contains large gradients, the
choice of the initial grid deserves attention (see [S, 63). In the sample problems
below this is not the case, except perhaps for Problem V. For Problems II, III, and
IV, an equispaced initial grid has been chosen. The initial grids for Problems I
and V are nonuniform and have been computed with the de Boor algorithm.

Method Parameters

To assist in reading the following material, we recall the parameters in the
method. First of all we have the Newton tolerance TOLN, the time-step parameter
TOLT, and the initial time-step. For the spatial monitor there are two options. In
the first option, the user must specify the total, fixed number of grid-points m and

ADAPTIVE MOVING GRID METHOD 469

the regularization parameter CI. In the second option m is varied dynamically and
the user has to prescribe m,,, and TOLS, along with the minimum allowable value
for m. In all the experiments we have kept CI = l/(x, - xL) and mnat = 4. No doubt
a line tuning of these parameters would have enhanced the performance of the
method, but we have chosen to only use either m or TOLS to control the grid.

Table Information

The tables to be presented display the following information:

NODES (max, min, aver) = the maximum, minimum, and average number of
nodes over all time-steps.

STEPS = the number of successful, variable time-steps needed to complete the
integration over the given time interval.

BS = the accumulated number of all backsolves.
ETF = the number of times the stepsize was reduced due to a failure of the

time error test.
NTF = the number of times the stepsize was reduced due to a Newton failure.
JACS = the total number of Jacobian evaluations.

5.2. Problem I: Burgers’ Equation

We consider the well-known Burgers’ equation

au/at = -af (U)/aX + Ed2UjdX2, o<X< 1, t>o, f(U)=d/2, E=o.ool,

and prescribe the smooth initial function u(x, 0)= sin(nx) and homogeneous
Dirichlet conditions at x = 0 and x = 1. The solution is a wave that steepens and
moves to the right until a layer is formed at the end point x = 1. This takes place
for t z 0.6. Then, the solution slowly decays to zero, while the layer remains near
x = 1. This problem is not as difficult as the other four. The analytical solution is
available, but takes the form of a series not amenable to easy numerical computa-
tion. For each of the five problems we have computed by brute force an “exact”
reference solution, which, in the plots, appears as a solid line.

TABLE I

Problem I. Integration Information

NODES

Cases Max Min Aver STEPS BS JACS ETF NTF

(i) 10 22 188 41 0 3
(ii) 20 27 190 56 2 0
(iii) 19 11 15 18 158 38 0 3
(iv) 34 18 25 28 199 59 I 2

470 VERWER, BLOM, AND SANZ-SERNA

Using an initial time-step of &, and TOLN= 10P4, we have integrated
this problem with the Crank-Nicolson scheme four times over the time
interval 06 tg2: (i)m= 10 and TOLT=O.l; (ii) m=20 and TOLT=O.O25;
(iii) TOLS = TOLT= 0.1; (iv) TOLS= TOLT = 0.025. The allowed minimum for m
in cases (iii) and (iv) is 10. In all four cases the algorithm has performed very well.
Figure 5.1 depicts the grid trajectories with the computed solutions for the cases (ii)
and (iii) at times t = 0.6 and t = 2.0. The solution of case (ii) is very accurate
(graphically identical to the “exact” solid line solution). The crude choice for TOLT
and TOLS made for case (iii), also yields a quite satisfactory approximation,
although less accurate than that from run (ii). With respect to accuracy, cases (i)
and (iv) are comparable to (iii) and (ii), respectively. Table I contains integration

!

I

4
0.4 0.6

X

FIG. 5.1. Problem I. Grid trajectory and solution at f =0.6, 2.0. Cases (ii) (left) and (iii) (right).

ADAPTIVE MOVING GRID METHOD 471

information in terms of NODES, STEPS, etc. Observe that in all four runs the
number of time-steps required to reach t = 2 is small and that there are almost no
step failures. The average number of Newton iterations required for these stepsize
sequences amounts to approximately three, which is somewhat high. This is due to
the rather large stepsizes and the value of 10d4 for TOLN, which, since we use the
maximum norm, is certainly too stringent for the present application. Needless to
say, a lower TOLN value yields less iterations.

5.3. Problem II: Scalar Combustion Model

This is a more challenging problem to solve numerically. It is described in
Adjerid and Flaherty [2] as a model of a single step reaction with diffusion and
reads

au/at=a2u/ax2+o(i + a-24) exp(- dlu), O<x<l, 0 < t,

aqax(o, t)=0, u(1, t)= 1, 0-c t,

u(x, 0) = 1, Odx<l,

where D = Re’/(ad) and R, d, a are constant numbers. The solution represents a
temperature (of a reacting reactant in a chemical system). For small times, the tem-
perature gradually increases from unity with a “hot spot” forming at x = 0. At a
finite time, ignition occurs causing the temperature at x = 0 to rapidly increase to
1 + a. A front then forms and propagates towards x = 1 with a very large speed
(proportional to d). In real problems, a is close to 1 and d is large. The degree of
difficulty of the problem is very much determined by the value of d. Following
Adjerid and Flaherty [2], we have selected the problem parameters a = 1, d= 20,
R = 5. The problem reaches a steady state once the flame gets to x = 1. For the
current choice of problem parameters, this happens at time t z 0.29, which we take
as the end point of our integrations.

Hence two phases can be distinguished in the solution, the formation of the front
(the ignition phase) and its propagation to the right end point x = 1 (the propaga-
tion phase). For our numerical method, and presumably for most other moving
grid methods, the ignition phase is the most challenging of the two. A first difficulty
is that the formation of the front takes place very rapidly, originating widely dif-
ferent time and space scales. Consequently, variable time-steps are a necessity and
very early in the ignition many of the points must move quickly to the left (the star-
ting grid is uniform) to be in time to accurately resolve the front. A second difficulty
relates to the smoothing capabilities of the implied change of variables x = x(s, T).
It was pointed out in Section 2.1 that, in the best possible case, the transformation
should soften the problem both in space (by concentrating the nodes where
appropriate) and in time (by achieving Lagrangian time derivatives smaller than
the corresponding Eulerian time derivatives). However, for the problem at hand,
these two objectives cannot be simultaneously reached. Assuming a uniform grid at

412 VERWER, BLOM, AND SANZ-SERNA

the initial line (a choice suggested by the constant initial solution u(x, 0) = l), and
if the first objective is to be attained, the derivatives ax/aT of a great deal of the
trajectories should be negative in order to obtain the required refinement in the
region of the front. However, during the formation of the front, au/ax <O and
au/& > 0. It follows immediately that then au/aT> au/at, violating the second
objective. Most Lagrangian type methods known to us, including ours, try to attain
the first objective through a co-ordinate transformation based on spatial equi-
distribution properties. Spatial equidistribution forces nodes to migrate to regions
of high spatial activity. So, during the formation of the front in the present com-
bustion problem, these methods offer no benefit as far as the time-stepping is con-
cerned. Once the front is formed and starts to propagate, both smoothing objectives
are fulfilled if the transformation attains spatial equidistribution, because then
ax/i?T> 0 and still aujdx < 0 and au/at > 0. Any simple travelling wave form
u(x, t) = W(X - ct) becomes, in this respect, a trivial solution, provided that the grid
trajectories satisfy ax/aT= c.

Interestingly, the Lagrangian approach followed by Petzold [20] meets the
second objective. Her transformation is basically aimed at finding those trajectories
along which the time rate of solution change is minimized, that is, au/dT< &/at.
However, during the formation of the front in the present combustion example,
this then must imply that in the front region, ax/aT>O, which means that points
are moved away from the front, and thus the first objective is then violated.
Petzold’s algorithm has a built-in regridding step which corrects this deficiency. In
her method, like in ours, both smoothing objectives are attained once the front is
formed and starts to propagate.

At four selected times, adopted from Fig. 9 in Adjerid and Flaherty [2], Fig. 5.2
depicts two typical numerical Crank-Nicolson approximations. These correspond
to the following fixed m cases: (i) m = 20, TOLT=0.005; and (ii) m =40,
TOLT= 0.001. For both cases the initial stepsize is lop2 and TOLN= 10p4. Using
40 space nodes and 181 time-steps (see Table II), the Crank-Nicolson scheme yields
a very good approximation, nearly up to plotting accuracy. The second derivative
equidistribution is nicely shown in the location of the space nodes. Also note the
rapid variation in the solution from t =0.26 to t =0.27, illustrating the need for
variable time-steps. The widely different scales in the problem are also clearly

TABLE II

Problem II. Integration Information

NODES

Cases Max Min Aver STEPS BS JACS ETF NTF

(i) 20 116 835 236 1 9
(ii) 40 181 993 365 3 0
(iii) 16 10 14 112 846 232 1 11

ADAPTIVE MOVING GRID METHOD 473

shown in the grid trajectories. The solution obtained with 20 nodes and 116 time-
steps is too crude, although its qualitative behaviour is in good accordance with the
exact one. Note that 20 points suffice to represent the steady state solution, but are
not enough to accurately follow the flame front during the ignition and propagation
phase (a reduction of the stepsize in time yields no real improvement with m = 20).

Adjerid and Flaherty [2] show three approximations, two of them in their
Fig. 9 and the third one in their Fig. 11. Our case (i) solution resembles their
octagon solution of Fig. 9, which was also computed with 20 space nodes. None of
their solutions is as accurate as our case (ii) solution. The differences are significant,
especially during the ignition phase. Recall that we claim that our solid line

0.2 0.4 0.6 0.6

X

0
L

LD.

z
.

x

3,
,:

s-4
.:

0
,:

0.0 0.2 0.4 0.6 0.6 1.0

X

0.0 0.2 0.4 0.6 0.6 1.0

X

ID
,’

u!

i=

x’

33
,:

F:

9
.

0.0 0.2 0.4 0.6 0.6 1.0

X

FIG. 5.2. Problem II. Grid trajectory and solutions at I =0.26, 0.27, 0.28, 0.29. Cases (i) (left) and
(ii) (right).

474 VERWER, BLOM, AND SANZ-SERNA

represents the exact solution, up to plotting accuracy. This “exact” solution was
computed with our moving grid Crank-Nicolson scheme using (constant) m = 150,
TOLT= 10e4, TOLN= 10-6. As an extra check, we have also solved the problem
on a conventional, uniform, nonmoving mesh containing 2000 points, using the
BDF code DASSL of Petzold [20] (with time tolerance equal to lo-‘) to integrate
in time. The plots of this conventional method of lines solution are in full agreement
with our reference solution, except for a slight difference at t =0.26 in the
neighbourhood of x = 0. Our (m = 150) moving solution yields u(O,O.26) x 1.59,
whereas the uniform (m = 2000) solution yields u(O,O.26) z 1.61.

For the present combustion problem we are not yet satisfied with the perfor-
mance of the currently implemented variable m option. When the ignition takes
place the method still integrates with the number of nodes used initially. The conse-
quence is that for a short time early in the ignition phase, too few points are used,
which damages the accuracy (cf. the remark at the end of Section 3.2.2). Decreasing
TOLS would remedy this, but then the possibility exists that the method uses an
unnecessarily large amount of nodes later in the computation. An alternative is to
prescribe a suitable minimum for m. We found that satisfactory minima come very
close to reasonable values in the fixed m mode. As an illustration of the previous
remarks, we have included in Table II the results of one typical test, viz., case (iii):
TOLT=O.OO& TOLS=O.O5 with a minimum of 10 points. Concerning accuracy,
the computed solution very much resembles that of case (i) dealing with a fixed
number of 20 points. We recall that decreasing TOLS does not help much to
improve the accuracy in the initial phase, unless the allowed minimum for m is also
increased. Incidentally, it is of interest to note that in the cases (i) and (iii) for
which TOLT is equal, the integration performance in terms of STEPS etc., is virtually
identical. This indicates that the variable m strategy does not interfere significantly
with the time integration.

Of course, it remains possible that a more subtle strategy improves the perfor-
mance on this problem of the variable m algorithm. However, it is also possible that
a better recipe for coping with this specific sort of difficulty is to let the monitor
function depend on the time rate of change at the boundaries. This makes sense
because very often the birth of layers takes place at the boundary (see also
Problems III and IV). The need for such a modified monitor exists mainly in the
case of Neumann boundary conditions, and much less when Dirichlet conditions
are prescribed. In the latter case, the rapid temporal and spatial variation is enfor-
ced in an explicit way by the data of the problem, which, for control procedures,
is much easier to deal with. This is clearly illustrated in the next subsection, which
also considers a combustion problem.

5.4. Problem III: The Dwyer-Sanders Flame Propagation Model

This model, first proposed as a test example in [121, simulates several basic
features of flame propagation. It has two components, a mass density u and a
temperature v. The PDE system is given by

ADAPTIVE MOVING GRID METHOD 475

aup t = a%jax2 - uf tu 1, O<x<l, O< t<O.006,

au/at = a2tqax2 + uf(~), O<x<l, O<t<0.006,

where f(u) = 3.52 * lo6 exp(-4/v). The initial functions are u(x, 0) = 1, u(x, 0) = 0.2
(0 <x 6 1). The boundary conditions at the left boundary read
&/8x(0, t) = &/&(O, t) = 0 and at the right au/&(1, t) = 0 and U(1, t) =
0.2 + t/0.0002 (t < 0.0002) and u(1, t) = 1.2 (t > 0.0002).

The given function for u at the boundary x = 1 represents a heat source. When
u reaches its maximum, a steep flame front is generated which propagates from
right to left at a relatively high speed. For t > 0.003, the speed of propagation of the
front is almost constant. At the final time t = 0.006, the front has come close to the
left boundary. As in the previous scalar combustion model, the present problem
is made difficult both by the different scales involved and by the fact that the
co-ordinate transformation does not help with the time integration at the formation
stage.

In Table III, we present results of four runs, all of them with a value of lop5 for
the first stepsize and TOLN= lo-‘: (i) TOLT= 0.05, m = 20; (ii) TOLT= 0.01,
m = 30; (iii) TOLT= TOLS=O.O5, minimal m= 10; (iv) TOLT= TOLS= 0.01,
minimal m = 10. Figure 5.3 depicts the evolution of the exact solution and of the
numerical solutions (i) and (iv). Both numerical approximations agree very well
with the exact solution, in particular that for (iv) where no visible difference exists.
In case (i) a little overshoot can be seen at the rear end of the front and the numeri-
cal front is a little too slow. Also observe that in this case, as in (iii), the NTF value
is rather large, indicating that the choice of TOLT = 0.05 is on the optimistic side.
The approximations of cases (iii) and (ii) are very similar to those of (i) and (iv),
respectively. In the two variable number nodes runs, the average value “aver” is
close to “max,” because very early in the ignition phase the algorithm increases the
number of nodes, without any further adaptation. This is what should happen,
because when the ignition phase ends, the solution has become a travelling front
and no further spatial change takes place.

In contrast with the experience of the previous scalar problem, here the variable
m option fully met our expectations, in spite of the uniform start grid and the rapid

TABLE III

Problem III. Integration Information

NODES

Cases Max Min Aver STEPS BS JACS ETF NTF

0) 20 164 1453 351 0 23
(ii) 30 212 1418 550 2 4
(iii) 17 10 17 162 1301 338 0 14
(iv) 44 10 42 282 1480 513 2 5

s
V(

X,
fl

F
;

:i'O
,

$2

4.
4

.
9.

6
9"

$0

.

$2

: t b

0.
0

VI
X,

Tl

0.
2

0.
4

0.
6

0.
6

L.
0

1.
2

? D

5 P-

.b

~
i

,
2,

.O

.
60

$0

SF

0
q-

3
0.

0
1.

0 ,
.

,
;

4;
o

$0

.
q-

'
0.

0
1.

0
2.

0
3.

0

ADAPTIVE MOVING GRID METHOD 477

development of the flame-front near the right boundary. We attribute this to
the forcing temperature boundary function, which timely signals to the control
mechanisms to move points sufficiently fast to the right boundary. It is evident that,
in this connection, the value of the initial time-stepsize also plays a role. However,
in the present context, the difference between Neumann and Dirichlet conditions
may turn out to be essential. This will be illustrated again with Problem IV, where
Neumann conditions are imposed and boundary layers are born, not only at the
initial time, but also later in the evolution.

5.5. Problem IV/: A Problem from Mathematical Biology

We consider the FitzHugh-Nagumo type equations

aulat=a%/aX2+ f(u)-v, f‘(u)=U(U-a)(1 -U),

au/at = b(U - CV), o<x< 120, o<t.

‘This system provides a conceptual model of ionic current flow across a semi-infinite
nerve membrane; u is an electro-chemical potential and v a “recovery” variable. If
a = 0 and u = 0, the equation for u becomes Fisher’s equation. (Note that the equa-
tion for the variable u is an ODE.) The initial values for U, v are u = v = 0, while for
u the following boundary conditions are imposed for t > 0: au/&(@, t) = -Z/2,
au/ax(120, t) = 0. Note that the Neumann condition at the left is not consistent
with the prescribed initial function. The parameters possess the values: a = 0.139,
b = 0.008, c = 2.54, I= 0.45. I represents a constant current applied at the left end
of the nerve and b is the reciprocal of the time scale associated with the recovery
of the nerve.

We have taken this example from Bieterman and BabuSka [4]. Numerical
studies in Mitchell and Manoranjan [19] and elsewhere indicate the sensitivity of
the solution behaviour to changes in a, b, c, and I. Bieterman and BabuSka report
that with the present choice of parameters, travelling waves develop at the left
boundary. More precisely, repetitive pulses in u and u are generated with a firing
frequency of about 0.0077 and develop into travelling waves which move with an
approximate speed of 0.4. The time interval [0,200] is suficiently large to recover
the travelling wave forms.

TABLE IV

Problem IV. Integration Information

NODES

Cases Max Min Aver STEPS BS JACS ETF NTF

(i) 35 35 35 187 1256 378 1 3
(ii) 89 35 60 404 2233 817 5 0

478 VERWER, BLOM, AND SANZ-SERNA

The present problem is certainly not an easy one. Because incoming waves keep
arising, the computation naturally asks for variable m. As t becomes large, more
points are required to accurately represent the solution. Figure 5.4 and Table IV
show the results of two runs: (i) TOLT= TOLS=O.O5; (ii) TOLT= TOLS=O.Ol;
in both TOLN= 10e4 and the initial time-step is 10p6. To prevent stepsize control
problems due to the inconsistency between initial and boundary condition, the con-
trol was switched off for the first two steps. The allowed minimal value for m was
set to 35. We need this value (for the crude tolerances) to accurately detect the first
incoming wave. It was determined by trial and error. In case (i) this turned out to
be also the maximum value required by the control procedure, so that case (i) is
in fact a constant m run. Inspection of Fig. 5.4 reveals that, while initially 35 points
are certainly enough, this is not the case later. Specifically, between times t = 120
and t = 160, when the second wave starts to develop, the control procedure fails to
add more points near the boundary, with the result that, from that time on, the
accuracy slowly degrades. This is due to the fact that there are not enough points
near x =0 (see the grid trajectories plot) to measure the size of the new arising
gradients with sufficient accuracy. This deficiency of the control should, of course,
diminish with TOLS. Indeed, for TOLT= TOLS= 0.01, with the same minimum of
35 points, the number of points is increased (twice) in the time evolution and the
computed solution is sufficiently accurate over the entire time interval, although at
the end phase errors are noticeable. This, presumably, is inevitable for this type of
large-time wave calculations. Clearly, a further reduction of TOLT and TOLS will
improve again, but of course at the expense of more work. Finally, as already
indicated in the two previous subsections, we believe that the Neumann condition
partly prevents the control procedures from detecting timely and accurately the
rapid birth of the new incoming waves. It is very likely that an appropriate bound-
ary adapted monitor would lead to a significant improvement, but no attempts in
that direction have been undertaken so far.

5.6. Problem V: An Opposite Travelling Waves Problem

Our final example problem serves to illustrate the possibility of using different
moving grids for different PDE components. We consider the two-component
system (Madsen [161)

au/at = -au/ax - ioouv,
au/at = au/ax - ioouO,

for t > 0 and -0.5 <x < 0.5, subjected to homogeneous Dirichlet boundary condi-
tions and with initial conditions

u(x, 0) = 0.5(1 + cos(107~~)) for x E [-0.3, -0.11 and u(x, 0) = 0 otherwise,

v(x, 0) = 0.5(1 + cos(1Orcx)) for x E [O.l, 0.33 and v(x, 0) = 0 otherwise.

7: , I . I . I . I . I . 7
0.0 20.0 40.0 00.0 80.0 mo.0 120.0 0.0 20.0 40.0 60.0 80.0 m.0 laO.0

d ’ I., 1.
0.0 a.0

I.
40.0 60.0 80.0 100.0

1. I
120.0 0.0 20.0 40.0 60.0 00.0 loo.0 lal.0

X

:

-1

0.0 20.0 40.0 60.0 00.0 loo.0 120.0
X

a

Y -P c .
x -n
=d

1
P
n
PI I , I . , , .

0.0
,

20.0 40.0 80.0 00.0 103.0 120.0
X

FIG. 5.4. Problem IV. Grid trajectory and solutions at f=40, 80, 120, 160, 200. Case (i)

479

'h . 20.0 1 . 40.0 1 En.0 I 80.0 I lm.0 , 120.0 ,

X

%

h
d

Y
c^” .
5,
=d

1
?

0.0 20.0 40.0 w.0 1.0 Im.0 120.0
X

0.0 20.0 40.0 60.0 00.0 loo.0 120.0
X

3,

d ’ I 3. I , ., .,
0.0 20.0 40.0 60.0 111.0 Im.0 lzo.0

X

1

: -3

d I
’ t

0.0 20.0 40.0 60.0 1.0 Im.0 120.0
X

FIG. 5.4 (cont.) Problem IV. Grid trajectory and solutions at I = 40, 80, 120, 160, 200. Case (ii)

480

+
0 d 13r’ _ L; + -0.5 -0.3 -0.1 0.1 0.3 0.5

~!~A~~5
-0.5 -0.1 -0.1 0.1

X X

0 0
A- -:

‘9 0
a- d

a m
d d

F: ;: . .
ts x
cJ* 3,

d d

PI
d

0 0
d

-4 d
-0.5 -0.3 -0.1 0.1 0.3 0.5 5

X X

FIG. 5.5. Problem V. Grid trajectory and solutions at I = 0.1, 0.25, 0.3, 0.5. Case (iii).

481
%'82,2-16

(D
d

ID
d

z .
Ls
3s.

d

l-4
d

0
d

-0.5 -0.3 -0.1 0.1 0.S 0.5
X

5 4.3 4.1 6.1 d.Y
X

s

N
d

x
-0.5 -0.3 -0.1 0.1 0.3 0.5

X

FIG. 5.5 (cont.) Problem V. Grid trajectories and solutions at I = 0.1, 0.25, 0.3, 0.5. Case (iv)

482

ADAPTIVE MOVING GRID METHOD 483

Note that these are functions with a mere CL continuity which represent wave
pulses located at x = -0.2 and x = 0.2, respectively. Initially the nonlinear term
100~~ vanishes, so that for t > 0 these waves start to move, without change of shape
and with speed 1, u to the right and u to the left. At t = 0.1 they collide at x = 0 and
the nonlinear term becomes positive, resulting in a nonlinear interaction leading to
changes in the shapes and the speeds of the waves. Specifically, the crests of the
waves collide a little beyond t = 0.25 and they have separated again by t = 0.3
approximately, so that from this time on the solution behaviour is again dictated
by the linear terms. At the nonlinear interaction, the pulses lose their symmetry and
experience a decrease in amplitude.

We present results of four runs over the time interval 0 < I 60.5:
(i) TOLT = 0.005, TOLS = 0.05, one grid; (ii) TOLT= 0.005, TOLS = 0.05, two
grids; (iii) TOLT=O.OOl, TOLS=O.Ol, one grid; (iv) TOLT=O.OOl, TOLS=O.Ol,
two grids. In all four experiments the initial time-step is 0.01, TOLN= 10-4, and
the minimal value for m is 10. Figure 5.5 shows the computed approximations at
t = 0.1, 0.25, 0.3, and 0.5 for cases (iii) and (iv), of which (iv) is the most successful.
The two numerical waves follow satisfactorily the exact solution. Some slight
oscillations are observed at their tails. In the single grid case (iii), these oscillations
are slightly more pronounced (and significantly more in the runs (i) and (ii) not
depicted in the figure). However, in all four cases the numerical waves are in the
right position. The oscillations disappear if more nodes and time-levels are used and
originate from two error sources, viz., excessive numerical dispersion and lack of
damping in the Crank-Nicolson scheme. The behaviour is similar to that encoun-
tered in standard fixed grid nondissipative Crank-Nicolson schemes. Also observe
that if, locally, ax/aT= 1 for the u-wave and - 1 for the u-wave, then the
Lagrangian form reduces to the stiff ODE system du/dT = - lOOuu, du/dT=
- 100~~. It is well known that for such stiff problems the Crank-Nicolson scheme
readily yields oscillations, if the time-step is too large and the solution not smooth.
Further experiments have revealed that the backward Euler scheme obtained by
setting 8 = 1 in (2.2) produces significantly less oscillations. However, for most
problems the choice 8 = $ is more accurate than any other.

TABLE V

Problem V. Integration Information

NODES

Cases Max Min Aver STEPS BS JACS ETF NTF

(i) 30 30 30 58 326 116 0 0
(ii) 20 20 20 56 309 112 0 0

20 20 20
(iii) 62 32 47 132 686 266 1 0
(iv) 39 39 39 131 685 264 I 0

39 39 39

484 VERWER,BLOM, AND SANZ-SERNA

In Table V we have listed the number of time-steps and grid-points used in the
single and doub!e grid runs. As expected, the number of time-steps in the two situa-
tions are almost equal, but, when using two grids, less points in space are needed.
In this respect, the multiple grid option performs very satisfactorily for the present
problem. It should be remarked, however, that the overhead involved in using more
than one grid is large, so that the final gain in CPU time is less than that suggested
by the reduction in grid-points. For the present example we observed only a small
decrease in CPU time (about lo%), but recall that, as observed earlier, the
two-grid runs are slightly more accurate.

6. CONCLUSIONS AND COMMENTS ON FUTURE WORK

The numerical results presented in this paper are very encouraging. Obtained on
a set of rather diverse sample problems, they clearly show that our fully adaptive
moving grid algorithm, by using variable stepsizes in time and a variable number
of moving space nodes, is capable of accurately tracking rapid spatial and temporal
transitions.

The combination of a Lagrangian scheme like (2.2) with the “intermediate”
approach, which generates the forward grid by fitting a predicted solution, has
turned out to be successful. We generate the new grid through a conventional
implicit Euler step followed by a de Boor type regridding. The choice of carrying
out an extra implicit PDE calculation almost doubles the computational costs.
Although this is clearly a drawback, the computation of the moving grid is an
important task and cheap predictions should not be favoured if they deliver
unsatisfactory grids. In our experience, the benefits to be gained by using the con-
ventional implicit Euler prediction are robustness and reliabi!ity (see also Eiseman
and Erlebacher [131). Yet, for the near future, we will attempt to improve the
efficiency of the algorithm by examining alternative predictions. A possibility con-
sists of replacing the spatial equidistribu~ion transformation by a transformation
similar to that in Petzold [20] and the implicit Euler integration step by the solu-
tion of a tridiagonal system of linear algebraic equations. Details shall be reported
elsewhere.

Our ultimate goal is the development of a user-oriented code, which can be
applied almost as easily as existing, conventional MOL codes. In this connection
note that while the literature on moving grid and adaptive methods has grown
enormously in recent years, hardly any comparisons between different techniques
have been published. No doubt, the availability of user-oriented codes would
facilitate such comparisons. However, we wish to emphasize that the algorithm used
to produce the results shown above is still very much in an experimental phase.
In the near future, we plan to implement several possible improvements, mainly
directed to the enhancement of the reliability of the procedure.

One such improvement would be to suggest a monitor function which signals
effectively the rapid onset of steep layers near boundaries. As mentioned before,

ADAPTIVE MOVING GRID METHOD 485

efficiently monitoring such solution phenomena is difficult, particularly in cases of
Neumann boundary conditions.

A second area deserving attention is the de Boor regridding procedure. While this
has worked satisfactorily in the test problems reported here (and note that no fine
tuning of the grids was attempted), there is room for improvement. In fact, it is
known [21, 221 that, when iterating the de Boor algorithm on a locally steep initial
function to determine the starting grid, it is possible that the iterated grids do not
converge, unless an unrealistic number of points is used. This fact not only is a clear
drawback in itself, but also proves that it is possible to have very similar solution
profiles that lead, via a de Boor loop, to clearly different meshes. For example, in
the course of the experimental work, we once noticed that when approaching a
steady state, the algorithm kept moving significantly the points in spite of the fact
that the solution profile was changing very little. Furthermore, the gliding of the
nodes from one time-level to the next implies corresponding changes in nodal
values, which, on being detected by the step control mechanism, did prevent the
time-steps from increasing. Such a gliding of the nodes may also appear in an
application where excessively small stepsizes are being taken, because then the solu-
tion profile is almost unchanged from one time-level to the next. In passing, we note
that in such a situation the assumption (3.4) is violated.

Finally, the application of a straightforward regridding algorithm like that used
in this paper can result in grids with a fast change in grid spacing from one interval
to the next. If the ratios become too large, both the stability and the accuracy of
the approximation may deteriorate. The minimum and maximum ratios may be
monitored by using so-called padded or filtered monitor functions (clearly
explained by Furzeland [14]), or by smoothing the monitor function (see, e.g.,
formulas (4) and (5) in Dorfi and Drury [lo]). Both approaches can be easily
implemented to our regridding algorithm, since they essentially amount to an
appropriate redefinition of the monitor function. These techniques enhance the
quality of the generated grids and therefore the reliability of the complete
algorithm. A disadvantage of this type of additional grid control is that a too
strict bound on the grid ratios automatically requires more nodes than necessary
for solving the small scale structures.

ACKNOWLEDGMENT

J. M. S. acknowledges the financial support from “Fond0 National para el Desarrollo de la
Investigacibn Cientifico y Tkcnica,” under Project PB-86-0313.

REFERENCES

1. NAG FORTRAN Library Manual, Mark II (N.A.G. Ltd., Oxford, 1983).
2. S. ADJERID AND J. E. FLAHERTY, SIAM J. Numer. Anal. 23, 118 (1986).
3. M. BERZINS AND R. M. FUKZELAND, Report No. 202, Department of Computer Studies, The

University of Leeds, 1986 (unpublished).

486 VERWER, BLOM, AND SANZ-SERNA

4. M. BIETERMAN AND I. BABUSKA, J. Compur. Phys. 63, 33 (1986).
5. J. G. BLOM, J. M. SANZ-SERNA, AND J. G. VERWER, Report NM-R8713, Centre for Mathematics and

Computer Science, Amsterdam, 1987; 12th IMACS World Congress ‘88 on Scientific Computation,
Paris, July 1988 (North-Holland, Amsterdam, in press).

6. J. G. BLOM, J. M. SANZ-SERNA AND J. G. VERWER, J. Comput. Phys. 74, 191 (1988).
I. R. BONNEROT AND P. JAMET, Int. J. Numer. Methods Eng. 8, 811 (1974).
8. C. DE BOOR, in Conference on the Numerical Solution of Differential Equations, Dundee, Scotland,

1973, edited by G. A. Watson, (Springer-Verlag, Berlin, 1974) p. 12.
9. S. F. DAVIS AND J. E. FLAHERTY, SIAM J. Sci. Srar. Compur. 3, 6 (1982).

10. E. A. DORFI AND L. O’C. DRURY, J. Comput. Phys. 69, 175 (1987).
11. I. S. DUFF, AERE Report R. 8730, HMSO, London, 1977 (unpublished).
12. H. A. DWYER AND B. R. SANDERS, Report SAND77-8275, Sandia National Laboratories, Livermore,

1978 (unpublished).
13. P. R. EISEMAN AND G. ERLEBACHER, ICASE Report 87-57, NASA Langley Research Center,

Hampton, VA, 1987 (unpublished).
14. R. M. FURZELAND, Report TNER.85.022, Thornton Research Centre, Shell Research Limited, 1985

(unpublished).
15. A. C. HINDMARSH, in Advances in Computer Methods for Partial Differential Equations-IV, edited by

R. Vichnevetsky and R. S. Stepleman (IMACS, New Brunswick, NJ, 1981), p. 312.
16. N. K. MADSEN, in PDE Software: Modules, Interfaces and Systems, edited by B. Engquist and

T. Smedsaas (North-Holland, Amsterdam, 1984), p. 207.
17. K. MILLER, SIAM J. Numer. Anal. 18, 1033 (1981).
18. K. MILLER AND R. N. MILLER, SIAM J. Numer. Anal. 18, 1019 (1981).
19. A. R. MITCHELL AND V. S. MANORANJAN, in The Mathematics of Finite Elements and Applications

IV, edited by J. R. Whiteman (Academic Press, New York, 1982) p. 17.
20. L. R. PETZOLD, Appl. Numer. Math. 3, 347 (1987).
21. J. D. PRYCE, On the Convergence of Iterated Remeshing, Report, School of Mathematics, University

of Bristol, 1986 (unpublished).
22. M. A. REVILLA, Inr. J. Numer. Methods Eng. 23, 2263 (1986).
23. J. M. SANZ-SERNA AND 1. CHRISTIE, J. Comput. Phys. 67, 348 (1986).
24. M. D. SMMOOKE AND M. L. KOSZYKOWSKI, SIAM J. Sci. Stat. Comput. 7, 301 (1986).
25. J. G. VERWER AND J. M. SANZ-SERNA, Computing 33, 297 (1984).
26. A. B. WHITE, SIAM J. Numer. Anal. 19, 683 (1982).

