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We describe a fully adaptive, moving grid method for solving initial-boundary value 
problems for systems of one-space dimensional partial differential equations whose solutions 
exhibit rapid variations in space and time. The method, based on finite-differences, is of the 
Lagrangian type and has been derived through a co-ordinate transformation which leads to 
equidistribution in space of the second derivative. Our technique is “intermediate” between 
static regridding methods, where nodes remain fixed for intervals of time, and continuously 
moving grid methods, where the node movement and the PDE integration are fully coupled. 
In our approach, the computation of the moving grids and the solution on these grids are 
carried out separately, while the nodes are moved at each time-step. Two error monitors have 
been implemented, one to govern the time-step selection and the other to eventually adapt the 
number of moving nodes. The method allows the use of different moving grids for different 
components in the PDE system. Numerical experiments are presented for a set of five sample 
problems from the literature, including two problems from combustion. I: 1989 Academic 

Press, Inc. 

1. INTRODUCTION 

In this paper we describe a general method for the numerical solution of initial- 
boundary value problems for systems of partial differential equations (PDEs) in 
one space dimension. The class of problems considered have the form 

u, = Uu), x,~x~xR, t>t,, (l.la) 

u(x, 0) = uO(x), XL<X<XR, (l.lb) 

&rL(& 4 u(x), u.(x)) = 0, x=xL, t>tor (l.lc) 

gR(-& h dx), dx)) = O> x=xR, t> to, (l.ld) 
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where L represents a linear or nonlinear spatial differential operator of the second 
order. Of course, many problems from physics and other areas of application 
necessitate the solution of such systems, a task that must be undertaken numerically, 
except for the rare cases where analytical techniques are available. In recent years, 
several sophisticated MOL (method of lines) packages have been developed for 
one-space dimensional PDE systems like (1.1) (see, e.g., [3, 151). These packages, 
which exploit the success of the automatic stiff ordinary differential equations solvers, 
operate in a semi-automatic way, in the sense that they automatically adjust the 
time-step but employ, throughout the computation, a fixed spatial grid, chosen by 
the user before the integration starts. Such a semi-automatic approach is very 
efficient not only in cases where the solution does not exhibit much spatial activity 
and a uniform grid is adequate, but also in problems where the regions of rapid 
variation in space do not move and are known a priori, so that a graded mesh can 
be suitably positioned. However, for solutions possessing sharp moving spatial 
transitions, like travelling wavefronts or emerging layers, a grid held fixed 
throughout the calculation can be computationally inefficient, since, to afford a 
mildly accurate approximation, such a mesh would easily have to contain hundreds 
or even thousands of nodes. In such cases, adaptive and moving grid methods, 
which adjust automatically both the space and the time-stepsizes, are usually more 
efficient. 

The finite-difference, moving grid Lagrangian method developed in this paper has 
been designed for the efficient computation of solutions containing very sharp spa- 
tial and temporal transitions, like those arising in many combustion problems. Of 
course, the method can also be applied to compute less challenging solutions, but 
then it is likely not to be competitive with fixed grid MOL algorithms. We would 
also like to emphasize that we are not concerned here with genuinely discontinuous 
shock solutions as those arising in hyperbolic problems, but rather with solutions 
with extremely large but finite derivatives. 

The present paper follows our two earlier contributions [S, 63, where we have 
studied several finite-difference, Lagrangian moving grid schemes. These schemes 
are “intermediate” between the static regridding methods [ 14, 22-241, where nodes 
remain fixed for intervals of time, and continuously moving grid methods, where 
the node movement and the PDE integration are fully coupled [2, 10, 17, 18, 20, 
261. While the research in [S, 63 has enabled us to identify a promising scheme, the 
implementation considered in those papers used fixed time-steps and did not allow 
a dynamic variation of the number of spatial grid-points. Besides, the numerical 
experiments reported only referred to the Burgers’ equation. Therefore, the material 
in [S, 61 only provided a first step toward our ultimate goal in this area: the 
development of a user-oriented, fully automatic code, applicable to a wide variety 
of problems. In the present work, we describe how to incorporate variable time- 
steps and how to vary the number of grid-points. Furthermore we discuss the suc- 
cessful application of our method to live sample problems from the moving grid 
literature, including two interesting and difficult models from combustion theory. 

At each integration step of our algorithm, two simple error monitors are com- 
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puted. One of them governs the time-step selection and the other the location and, 
eventually, the number of space nodes. Thus the method not only automatically 
adjusts the space grid to regions of high spatial activity, but also provides a facility 
to adapt the number of nodes in order to meet a user-specified tolerance. This 
adaptation is embedded in the generation of the new space nodes at the forward 
time-level, which is based on equidistribution of the second space derivative. It 
should be emphasized that the dynamic adaptation of the number of nodes is, to 
some extent, of secondary importance because, even if the quantity of spatial nodes 
is held fixed, the nodes move to cater for the spatial activity of the solution. 
Another facility of our algorithm is that different spatial grids can be chosen for dif- 
ferent PDE components. This avoids the use of finely meshed zones in regions 
where, componentwise, they are not needed, but introduces overhead costs originat- 
ing from the more complicated linear algebra and the extra interpolation tasks. 

Above, we used the term error monitor instead of error estimator in order to 
emphasize that the quantities involved are not approximations to true local errors, 
but only heuristic, cheap means for efficiently computing rapidly varying solutions 
of a widely different nature by keeping at a fairly acceptable level both the number 
of space nodes and the number of time-steps. 

In the next section we outline the Lagrangian method underlying our fully adap- 
tive moving grid procedure. In Section 3 we derive the error monitors which govern 
the time-step and number of space nodes selection. In Section 4 we briefly discuss 
the possibility of using different moving grids for different PDE components. 
Results of extensive numerical testing are presented in Section 5 and Section 6 is 
devoted to final comments and conclusions. 

2. THE METHOD OF SOLUTION 

Until further notice it is assumed that the method is applied using the same 
spatial grid for all components of the solution u. 

2.1. The Time-Stepping Scheme 

We advance the solution in time over a trapezoidal space-time grid 

Trapezoids covering the strip xL < x < xR, t, < t < t, + , (2.1) 
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by means of the Lagrangian time-stepping scheme 

(e(x:$ -x7’,‘) + (1 - e)(x:+ i -x;- , 
))(““J 

- (e(uy=; - 24:‘;) + (1 - e)(U;+, -u;-, 
))(x’“:-x:) 

=8(x::,’ -x:‘:)Lh,i(Un+‘)+(l -@(x?+, -x:‘~,)L+;(lP). (2.2) 

The notation U; represents the discrete approximation to the value u(x:, t,) and 
L,?,, stands for a suitable finite-difference replacement of the spatial differential 
operator L. In our current implementation L,,i is obtained by replacing in L the 
operators a/ax and a2/ax2 by standard central differences, but other choices for L,,, 
are clearly possible. The index i varies between 1 and m - 1, where m is the number 
of trapezoids covering the strip (2.1). As usual, t, and t, + , = t, + 7 are consecutive 
time-levels. The time-step 7 may depend on n, although this dependence is often not 
reflected in the notation. Note that if the grid in (2.1) is rectangular, i.e., if there is 
no grid motion, then (2.2) reduces to the familiar o-rule. The parameter values 8 = 1 
and 8 = $ yield the Lagrangian implicit Euler and Lagrangian Crank-Nicolson 
schemes, respectively. These are the only values for 0 we consider. Obviously, the 
scheme must be supplemented with boundary conditions. 

The scheme (2.2) may be derived as follows. Let (s, T) be new independent 
variables linked to the old independent variables (x, t) through a co-ordinate trans- 
formation 

x = x(s, T), t = T, O<s<l, T>O. (2.3) 

The Lagrangian form of (l.la) is obtained by expressing U, in terms of u7, 

UT- %xT= L(u), O<s<l, T>O. (2.4) 

The scheme (2.2) is now derived by first multiplying (2.4) by ax/as to obtain 

xs”T -14,xT=xsL(z4), O<s<l, T>O, (2.5) 

followed by standard central differencing on the uniform s-grid { si = ih, 0 d id m, 
h = l/m}. 

In [6] we have shown the close relation between the scheme (2.2) and a linite- 
element scheme using piecewise linear approximations over trapezoidal space-time 
elements, due to Bonnerot and Jamet [7] (see also Davis and Flaherty 1191). 
However, the Bonnerot-Jamet scheme may suffer from a harmful form of instability 
[6] and the finite-difference scheme (2.2) is free from that drawback. Experimenta- 
tion with the nonlinear Burgers’ equation has indicated that the Crank-Nicolson 
form (2.2) performs somewhat better than the slightly different Crank-Nicolson 
scheme which would result from differencing (2.4), rather than the less natural 
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form (2.5). For the backward Euler case, both forms lead to the same difference 
expression. 

The basic idea of the Lagrangian approach is to choose the variables (s, T) so 
that, with them, the problem becomes easier to handle numerically than it was with 
the original pair (x, t). Note that although the new time T equals the old time t, 
the derivatives au/at and du/dT are different. The former measures the changes of 
u as a function of t at a fixed x-value (Eulerian description), the latter at a fixed 
s-value (Lagrangian description). Thus the choice of an appropriate new spatial 
variable s may: 

(i) Soften the spatial behaviour of the solution, via the concentration of 
x(s, T) trajectories in those regions where u varies rapidly as a function of x. 

(ii) Soften the temporal behaviour of the solution. This would happen if, 
through a right choice of transformation, the Lagrangian derivative uT can be made 
significantly smaller than the original Eulerian derivative u,. 

Ideally, we would like to find s and T in such a way that the solution of (2.5) 
does not possess fast transitions in space and time, and therefore can be integrated 
with fairly large time-steps on a coarse uniform s-mesh. This mesh defines, via the 
transformation x = x(s, T), a moving, nonuniform x-mesh, which should allow an 
efficient integration. However, the nature of the solution u being approximated 
dictates to what extent the aims (i) and (ii) above can be simultaneously achieved. 
We shall illustrate this point when discussing our test problems. 

Although the introduction of the variables s and T is helpful in the derivation 
and understanding of (2.2), it should be emphasized that (2.2) can also be regarded 
as a consistent discretization of the original (Eulerian) equation (l.la) on the mesh 
(2.1) in the (x, t)-space, regardless of the choice of the x-grid points. This remark is 
relevant because in practice the grids must, of course, be determined along with the 
computation of the numerical solution and therefore the x-grid points actually used 
are subjected to errors and do not quite stem from a smooth transformation of a 
uniform s-grid. This lack of smoothness of the computed grid-points is one of the 
biggests problems in the development of general moving grid procedures, par- 
ticularly so as far as error estimation is concerned. Note also that a rough u(x, t) 
solution can only become smooth in the (s, T) variables if the roughness is trans- 
ferred to the transformation x=x(s, T) and this implies that, in the cases we are 
interested in, finding the “exact” grid positions is likely to be an ill-conditioned 
task. 

2.2. The “Intermediate” Approach 

Concerning the grid determination, our algorithm can be classified as belonging 
to the class of methods which are “intermediate” between the static regridding 
methods, where nodes remain fixed for intervals of time [ 14,22-241, and con- 
tinuously moving grid methods, where the node movement and the PDE integra- 
tion are fully coupled [2, 10, 17, 18, 20, 261. We have successfully applied this 
“intermediate” approach in [S, 63. 
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Given an x-grid at the nth time-level and the corresponding numerical solution, 
stepping to the (n + 1)th time-level involves two successive computational stages: 

The grid prediction stage which computes the grid at the forward (n + 1)th level. 
First an implicit Euler step is performed on a fixed spatial grid (i.e., (2.2) is applied 
with 8= 1 and x7+‘= x:). The implicit Euler solution then acts as input for a de 
Boor [8] regridding algorithm which generates the grid-points at the advanced 
time-level by equidistributing a chosen monitor function. This equidistribution 
defines implicitly the co-ordinate transformation x = x(s, T). 

The integration stage which computes the approximations u:+’ according to (2.2) 
with 8 = I. Other values of 0 also result in good performances, but our numerical 
experience shows that 6’ = $ is in general more efftcient, as it produces smaller errors 
in time. 

The “intermediate” approach has some clear advantages. The node movement is 
easier to deal with than in a continuously moving grid method, where mesh 
tangling and ill-conditioning of the arising systems of algebraic equations are well- 
known threats. With de Boor’s technique points cannot cross or leave the domain. 
In a sense, due to the explicitness of that technique, one has a more direct control 
over the grid movement than that achieved with penalty functions in the con- 
tinuous approach. On the other hand, the intermediate approach very often allows 
time-steps significantly larger than those used by static regridding methods, which 
must operate with (larger) Eulerian derivatives. In this connection it is fair to men- 
tion that the intermediate approach precludes, to some extent, the full exploitation 
of the advantages of small Lagrangian derivatives uT, because the grid prediction 
stage is carried out anyway on a nonmoving grid and is likely not to allow very 
large time-steps. However, the output of the static grid prediction stage is only used 
for finding the new grid and plays no direct role in the computation of the new 
solutions, and it turns out that, in practice, inaccuracies in the grid prediction do 
not greatly impair the performance of the overall procedure. In fact, the inter- 
mediate approach, as implemented in our current algorithm, is remarkably robust 
and allows the use of sufftciently large time-steps. 

Turning now to computational costs, observe that the intermediate approach 
results in systems of algebraic equations of a smaller dimension than those 
necessary in continuously moving methods, where unknown x and u values are 
coupled. A drawback of the intermediate approach is that, per entire step, two 
systems of algebraic equations must be solved, due to the use of implicit formulas 
at both stages. (The use of an explicit prediction formula is not advisable [S, 61 
because it may damage the robustness of the algorithm.) 

2.3. The Regridding 
As mentioned above, the actual regridding is carried out at the grid prediction 

stage and effects the co-ordinate transformation (2.3) which underlies the 
Lagrangian approach. We employ a transformation based on equidistribution of a 
second derivative monitor function, but, of course, other choices are conceivable. 
The smoothing capabilities of the used .Y =x(s, T) transformation have been 
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illustrated in [S] in the case of Burgers’ equation. There we observed that, for 
moving front solutions, our “intermediate” algorithm moves the nodes in a 
Lagrangian fashion with the true speed of the fronts. We emphasize that this front 
tracking is achieved automatically by the algorithm and not via a user-supplied co- 
ordinate transformation. This capability is shared by other moving grid methods 
(e.g., the moving finite-element method [ 17, 181 and Petzold’s finite-difference 
method [20]). 

While the new pair of variables (s, T) is central in the theoretical derivation of 
the moving grid scheme, it should be stressed that the actual computation of the 
grids is completely achieved in terms of the physical variable pair (x, t), by using 
the cheap (inverse interpolation) procedure of de Boor [S]. As already mentioned, 
an attractive feature of this procedure is that, due to the explicit construction, the 
node ordering is always maintained so that nodes cannot cross each other or leave 
the space interval. Our current version of the de Boor algorithm is similar to that 
used in [S, 61, except for a slight change in the monitor function. For brevity, our 
description of the algorithm will be very sketchy and further details can be seen in 
the papers [S, 61. 

The transformation is defined by 

where M is the second derivative monitor function 

(2.6) 

M(5, f) = a + Jk.& t)l. (2.7) 

Note that, if u is vector valued, the symbol 1. I in (2.7) is to be interpreted as a 
norm, for example, a weighted Euclidean norm. 

If the x-grids arise from an equidistant s-grid, via the inverse transformation 
x = x(s, t), then 

I 

r,+ I 
ML t) & = rl(t)[s(xi+ 1, t) - J(Xi, t)l = q(t)/m, (2.8) 

.yr 

for 0 d id rn - 1. Hence the x-grid has the property that on each of its subintervals 
the average of the monitor function has the same value (equidistribution of M). As 
time evolves, this transformation causes grid trajectories to migrate to regions of 
high spatial activity, as governed by .the choice of M. The parameter c1 serves to 
regularize the transformation in regions where the solution u is very flat, i.e., where 
a*u/ax’ is nearly or truly zero. Hence its magnitude is related to the number of 
points to be placed in regions where, in space, the solution varies relatively slowly. 
Of further interest is that q(t) may provide the basis for a heuristic space error 
monitor, which would suggest when to increase or decrease m. We shall discuss this 
in greater detail in the next section. 
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3. THE VARIABLE TIME-STEP AND VARIABLE NUMBER OF NODES PROCEDURES 

In [5, 61 we reported some promising numerical results corresponding to 
Lagrangian methods implemented with a constant time-step r and a fixed number 
of nodes m. However, it is clear that the efficient treatment of many practical 
problems requires that r be varied in the course of the integration in accordance to 
the local (in time) behaviour of the solution. An important example is given by 
combustion problems where sudden ignitions are interspersed with periods of time 
in which less action takes place. Likewise, it may be desirable to change m as time 
evolves, although the need for this option is less because, even with m fixed, the 
method automatically makes the spatial grid liner in regions of high activity. In this 
section we describe cheap monitors for the dynamic selection of appropriate values 
for r and m, and our strategies for the implementation of changes in z and m. 

3.1. The Variable Time-Step Procedure 

3.1.1. The Time Error Monitor 

The time-step selection is based on a local error expression. As mentioned before, 
the scheme (2.2) can be regarded either as a discretization of (2.5) on a uniform 
s-grid or as a discretization of (l.la) on the nonuniform, time-dependent x-grid 
(2.1). Correspondingly, for a local error analysis of (2.2) two approaches can be 
followed: 

(i) In the first, Taylor expansions are carried out in the Lagrangian coor- 
dinates (s, T) and the numerical approximations for u are interpreted as 
approximations to the true PDE solution values U(S, T) = u(x(s, T), T) on the 
uniform s-grid. By following this approach, an expression for the local error in time 
of (2.2) is obtained which contains not only Lagrangian derivatives of the solution 
U, but also partial derivatives of the co-ordinate transformation. This approach 
would certainly be meaningful if the x-grid positions were actually derived through 
an analytically defined transformation x = x(s, t). However, we have already men- 
tioned that in practice the grid positions are subjected to (sometimes large) errors, 
so that the assumption xi = x(i/m, t) which underlies the approach is far from being 
satisfied. 

(ii) The second approach is to expand in the physical coordinates (x, t) and 
thus to interpret the approximations to u as approximations in the numerical node 
values actually used. Following this interpretation there is no need to cater in the 
analysis for errors in the x-grid positions. 

Numerical experimentation has shown that the second approach should be 
favoured and the following analysis is based on it. 

We first consider the scheme (2.2) with 6 = 1 on the grid (2.1) (recall, however, 
that the implemented algorithm actually uses 8 = 4). The notation U” represents, for 
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the time being, the exact solution restricted to the level n grid. We introduce the 
space local truncation error [ 25 ] 

dt,) = 4x;, 2”) - L,i(Un), (3.1) 

which originates from replacing the true differential operator L by the linite-dif- 
ference operator on the numerical grid. Next we introduce the full local truncation 
error [25] (boundary conditions are ignored) 

pj(t,+~)=u:+~-u:~L~,,(~“+~)-~~~~~~~ (xy+‘-q. (3.2) 
r+l r-1 

The error (3.2) is the defect which arises by substituting the true PDE solution into 
the numerical scheme. In this section we are only interested in the time-discretiza- 
tion contribution to (3.2), i.e., in the part of (3.2) which cannot be made smaller by 
suitably relining the spatial grid. 

We work under the very reasonable assumption that, as the space-time grid is 
refined, a constant C exists such that for all grids and for all i, n, 

IvyI < cz, (3.3) 
where 

r”=X7+1 I r -X1; (3.4) 

thus the node velocity ry/z is assumed to be bounded independently of the number 
of points in the grid and of the time-step. 

We first introduce the auxiliary quantity 

(3.5) 

and Taylor expand at the point (x:+’ t , n + ,), taking (3.3) into account, to get 

yi( t, + 1) = - l/22*1(,, - rzu,, - ir*u,, + ru, + O(T~), (3.6) 

where r denotes r’. Next we write 

ll;;; - uy-‘; 

Xlf’ -xl+’ 
= u,~ + FDEY + ‘, 

If1 r-l 
(3.7) 

where FDEr+’ is the (space) error involved. Hence, putting p =xi+, -xi and 
q=Xi-Xj-Ip 

FDE;+ L = (1/2)(P-q)u,,+~(P2-Pq+q2)u,,,+ .... (3.8) 

On taking (3.1), (3.5), and (3.7) into (3.2) and considering the expansions 
(3.6)-( 3.7), we conclude 

Pitt”+ I )=EST:+‘+?i(t,+,)+O(t3), (3.9) 
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where ~~(2, + ,) is the total spatial contribution 

~;(t,+,)=T~,(t,+,)-rrFDEr+‘, (3.10) 

and EST:+ ’ represents the leading part of the time contribution to Pi(t, + ,) at 
n+l (Xl 2 L+,): 

EST;+’ = - 1/2T214,, - rTu,r, - $r2u,,. (3.11) 

Note that even though the expression (3.11) was derived in the (x, t)-space, it 
reflects nicely the Lagrangian nature of the scheme. For instance, if u is a travelling 
wave solution u(x, t) = w(x - ct), EST vanishes at those grid-points which have the 
correct speed c. On the other hand, (3.11) involves Eulerian derivatives, which, in 
the applications we are interested in, are likely to be extremely large. Therefore the 
terms in the right-hand side of (3.11) may be individually very large and partially 
cancel to yield a small EST. Under those circumstances, it is clear that EST is 
numerically ill-defined and cannot be expected to be computed too accurately. As 
a further difficulty, note that the estimation of u,, requires that the numerical solu- 
tion at time-level n - 1 should be kept in storage and that its estimation requires 
interpolation, since the u values available at different time-levels correspond to 
different x locations. This interpolation provides an extra source of inaccuracies in 
the computation of EST. 

The corresponding error expression for the Crank-Nicolson scheme actually used 
involves Eulerian derivatives of higher order and therefore would lead to practical 
problems even more severe than those just cited for the backward Euler case. We 
have decided to also use (3.11) for the Crank-Nicolson scheme, so that our estima- 
tions should be expected to be conservative. After all these considerations, (3.11) 
should be regarded as a sort of monitor, rather than as a true estimator. The 
numerical experiments reported later show that EST is indeed a successful monitor. 

3.1.2. The Implemented Strategy 

After the step up to t,, , has been completed, the estimates EST:+ ’ at the 
individual grid-points are computed and then normed over the space mesh to get 

XT+’ -Xl” 

>( 

112 I+1 
2 

IEST:+‘f’+ IEST;;;12 (3.12) 

where EST;;+ ’ = EST;+ ’ = 0. 
The variable time-step strategy is similar to that in most current ODE codes. 

NEST is subjected to the test NEST< TOLT, where TOL$T is a user-specified 
tolerance parameter. If the test is passed, both the grid and the numerical solution 
at the (n + 1)th level are accepted and the new stepsize is computed from 

T,+, = Q((TOLT/NEST)“‘)t,, Tn=f,+,-tn. (3.13) 

Q(Z) is a threshold function designed to prevent the stepsize from zigzagging and 
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to prevent future step rejections. Q(Z) varies, for z > 1, from 0.8 to 2.0 in a piecewise 
linear way. Hence, at most, the stepsize may be doubled and when the test is barely 
passed the stepsize decreases by 20%. Although the control is based on an absolute 
error test, it can, of course, be changed into a mixed absolute-relative test. 

If NEST> TOLT, we have a step failure. Then we not only discard the values 
u”+ ’ just computed, but also the past values u’. This backstep is justified by the fact 
that the expression for the error monitor (3.11) is only approximately known, 
which might imply that upon a step failure we have been a little too optimistic in 
one or more previous successful steps. The backstep also provides an extra safety 
margin in cases where, suddenly, the solution starts changing very rapidly, as is the 
case in most combustion problems. Finally, there is no explicit check on the quality 
of the grids computed in the grid prediction stage; when a step failure occurs, we 
must reckon with the possibility that this may be partly due to a not very 
favourable location of the nodes. By backstepping we enhance the chance of timely 
locating the nodes in good positions. When re-attempting the step t,-~, -+ t,, after 
a rejection, we use 

t n-l := 0.5r, ~, =(4l-t,-,)/2 and x’ := (x7 + xy - ‘)/2; (3.14) 

in this way we save one grid prediction stage. After a rejection the threshold func- 
tion Q(z) is adapted in order to avoid a too rapid increase in stepsize, which might 
lead to a new step failure. Finally, backstepping is of course not possible at the start 
of the process. If the initial stepsize or the first stepsize after a backstep turns out 
to be too large, the step is simply redone while using (3.13) as stepsize estimate 
until step acceptance. 

Note that, if u is vector-valued, the stepsize procedure can be applied com- 
ponentwise. After a successful step, the stepsize is set equal to the minimum of 
(3.13) over all the solution components. 

3.2. The Variable m Procedure 

3.2.1. The Space Error Monitor 

Our space error monitor is derived from the quantity v] in (2.6). Define 

(3.15) 

where TOLS stands for a tolerance parameter and mna, for a. nonnegative integer 
parameter to be specified later. Then 

v(t) = j.xR a + Jm d5 = mat ,/m-km.,,, ,/m. (3.16) 
.TL 
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The equidistribution property (2.8) implies 

[““’ JILCEJI d5 = s(t)/m - (xi+ 1 -xib 6 q(t)lm < ,:‘roLs, (3.17) 
ii 

if m is chosen as (square brackets denote integer part) 

m = [mvar] + mfla, + 1. (3.18) 

Neglecting the quadrature error involved, (3.17) then yields for all subintervals 

t-y ,+I-- I x.1’ Iu,,(x;+ ,,2, t)l < TOLS. (3.19) 

Thus, defining m by (3.18) implies that the quantity (Ax)~ lu,,j is always kept 
below the prescribed tolerance TOLS. The dimensionless integer mnat is a user- 
defined parameter, to be interpreted as the approximate number of nodes which 
one would use if the solution were completely flat (u,,=O). We emphasize that 
criterion (3.19) is merely heuristic. In all applications the genuine spatial error, both 
local and global, will be essentially more complicated (cf. (3.10)). In a sense, the 
present monitoring is based on the degree of spatial difficulty of the problem thus 
assuming that the size of the second derivative is an appropriate measure in this 
respect. 

3.2.2. The Implemented Strategy 

The space grid control is carried out at each successful time-step just after the 
time-step control. In case of a step rejection (NEST> TOLT) no grid control is 
necessary because then the next grid to be used is defined by (3.14). When the for- 
mula (3.15) dictates a decrease or increase in mvar and hence in m, a de Boor loop 
is made to define the new nodal positions and the solution is transferred to the new 
grid by interpolation. In the implemented algorithm, simple linear interpolation is 
used, as it is feared that higher-order interpolants are likely to be unsuitable to 
interpolate rough functions on course grids [22]. 

A minimal value for m is prescribed and, further, measurements are taken in 
order to avoid minor changes of m. No change is performed if the newly computed 
mvar is between 0.5 and 1.2 times the current value, and, when an increase is made, 
the new mvar is at least 50% larger than the old. While changing stepsize in time 
is trivial due to the one-step nature of (2.2), changing the number of nodes may be 
troublesome. First, we cut off all the existing grid trajectories and continue the 
time-stepping on an entirely new grid. This may lead, until x-values and u-values 
adjust to each other, to some transient oscillations in the grid trajectories, due to 
the sensitivity of the estimation of (2.7) in solutions with steep fronts. Second, the 
interpolation associated with changing m is clearly a source of errors. (The fact that 
Lagrangian schemes with fixed m do not require interpolation is one of their advan- 
tages when compared to static regridding methods.) 

The present straightforward heuristic strategy works satisfactorily and is almost 
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free of extra costs. Due care should be exercised when choosing the parameters, 
since the dangers of operating with coarse tolerances are well known. In particular, 
although tempting, one should not choose too small values for the allowed mini- 
mum value of m in problems where at the initial time the solution starts out flat 
and later develops, very rapidly, large spatial gradients. In such a situation the grid 
may be too coarse to see timely the onset of the variations (the choice of TOLT 
also plays a role in this connection). Even if this mismatch between the value of m 

and the behaviour of the solution u happens only for a few time-steps, inaccuracies 
may be introduced which at best are maintained over the remainder of the time 
interval, and at worst are greatly amplified by the time evolution. It should be men- 
tioned that the previous considerations are not peculiar to the current heuristic 
estimators. Any estimation procedure, whether based on genuine error expressions 
or not, requires sufftcient grid-points for estimating the involved quantities up to 
sufficient accuracy. 

4. THE USE OF DIFFERENT MOVING GRIDS FOR SYSTEMS 

In the “intermediate” approach the grid is determined at each time-level by 
means of an explicit de Boor procedure. It is therefore straightforward to compute 
different grids for the different components of the solution of a system of PDEs, in 
order to avoid the frequent sampling of a solution component in regions where that 
component varies slowly. This idea is not without difficulties. First, the block tri- 
diagonal coupling which exists between solution values when a single grid is used 
is disturbed. In fact, the structure of the coupling is likely to change in time, due 
to the moving nature of the grids. Therefore, for solving the systems of linear 
algebraic equations which arise in the application of the Yewton process, an 
efficient sparse matrix routine must be used instead of a less sophisticated band 
solver. This obviously leads to overhead costs which partly annihilate the 
anticipated savings. We have used the NAG routine F04AXF due to Duff [ 1, 111. 

A second problem, of a more serious nature, concerns the spatial finite-difference 
operator. Let us consider the case of two components, denoted by u and u, and 
suppose that the first component of the differential operator L in (l.la) is in the 
generic form 

The figure below displays a typical section of the grids 

I 

.X,-I 
I 

rr+ 1 
grid of component u 

I I I I grid of component v 
Xk-l .Tk r:li- I -‘k + z 

To approximate the right-hand side of (4.1) at the point x=xi, the terms U, au/ax 
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and a2u/ax2 pose no difficulty; au/ax and a2u/ax2 are differenced by means of the 
standard replacement based on x, _ i , xi, x, + I . However, u, au/ax, and a2v/ax2 are 
evaluated at xi by linearly interpolating their respective approximations at the 
neighbouring points xk and xk + , , obtained by differencing in the u-grid. If xi lies 
in one of the two u-grid subintervals adjacent to the boundary, linear interpolation 
of 3-point differences is not possible and we have resorted to piecewise constant 
interpolation, as any other alternative would lead to an increase in the coupling. 

If composite expressions of variables living on different grids have to be 
approximated, such as the conservation law form au/at = a(uu)/ax, then it is not 
possible to first difference the variables on their own grid and then interpolate. For 
approximating a(uu)/ax at the u-grid, one first has to interpolate the neighbouring 
u-values and then difference, a procedure which may lead to large spatial errors. 
The situation is even worse for a2(uu)/ax2, where 3-point differencing of linear inter- 
polates results in an inconsistent replacement, and one should differentiate to get 
UT,” + 2U.x% + U”.X.Y and then approximate the individual terms. 

These difficulties make us somewhat reluctant to advocate the multiple grid 
option. It is to be feared that in many cases the anticipated savings in grid-points 
will not make up for the drawbacks of this option. However, the underlying 
idea deserves some attention and in Section 5 we report a successful numerical 
illustration. 

5. NUMERICAL RESULTS 

We shall present results of extensive numerical experiments on a set of live 
sample problems from the literature, including two problems from combustion 
theory. Some implementation details are given first. 

5.1. Implementation Details 

The Newton Solver 

Each time-step involves the solution of two different sets of nonlinear algebraic 
equations. As is the case with stiff ODE codes, the efficiency in the solution of the 
nonlinear equations is partly determined by the time-step selection process; a larger 
stepsize leads to larger Jacobian and solution variations over the step and thus 
works against the easy solvability of the equations. While in stiff ODE packages it 
is usually possible not to update the Jacobian for a number of consecutive steps, in 
our situation we update the Jacobian each time a new system is to be solved, i.e., 
twice per time-step. The reasons for this strategy are as follows. We have already 
noted that the transformation x = x(s, T) possesses large derivatives. As a result, the 
nodal positions can be expected to change significantly over a single step, which 
in turn leads to large variations in the Jacobian. Furthermore, the numerical 
approximation corresponding to a given grid-point will change substantially over a 
time-step if the grid-point enters or leaves a steep layer. This difficulty is made all 
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the worse by the fact that Lagrangian methods are constructed to operate with 
relatively large time-steps. 

The Jacobian matrices are computed by numerical differentiation. We readily 
admit that the cost per step of our algorithm is high and, undoubtedly, 
improvements in the nonlinear equation solution will be beneficial for the final per- 
formance of the method. 

A Newton iteration is terminated when a Newton correction is found which, in 
the maximum norm, is less than a user-prescribed tolerance TOLN. Note that the 
maximum norm provides a rather stringent choice. If convergence does not take 
place when five Newton steps have been taken, we have a Newton failure. If the 
failure takes place at the grid prediction stage of the step from t, to t,+ , = t, + t,, 
we set r,,,, :=r,/2 provided that rnnew is larger than half the previous successful 
stepsize z,- 1. If this last condition does not hold, then, to prevent rapid decreases 
in stepsizes, we go back to t, _ , and apply (3.14), just as we do if the time-accuracy 
test fails. If a Newton failure takes place at the moving grid stage of the step, we 
go back to t+,, since then the last computed grid is likely to be wrong. 

There remains to mention the choice of the initial estimates. The converged 
implicit Euler solution of the grid prediction stage is ordinarily, after linear inter- 
polation to the new grid, a satisfactorily initial estimate for the solution of the 
Lagrangian scheme (2.2). For the fixed grid Euler solution, a natural candidate for 
initial estimate is the converged Lagrangian solution un of the 12 th level. However, 
the stepsize is determined by the variable stepsize procedure for (2.2). Since, for a 
given accuracy, the moving grid scheme (2.2) has the potential of taking a larger 
stepsize than the static implicit Euler, the current stepsize can be too large for the 
next static step, which in turn can lead too quickly to a Newton failure. Clearly, it 
is undesirable to accept smaller stepsizes merely to accommodate the iterative 
Newton process of the static step. To alleviate this difficulty, we use, as initial 
estimate, the values, obtained by linear interpolation, of un at the grid-points of the 
(n - 1 )th level, a procedure, which, in the case of running wave solutions, gives 
more accurate predictions, provided that the grid-speeds are correct. For n = 0 we 
use the given initial vector. 

The Choice of the Initial Grid 

When the solution profile at the initial time-level contains large gradients, the 
choice of the initial grid deserves attention (see [S, 63). In the sample problems 
below this is not the case, except perhaps for Problem V. For Problems II, III, and 
IV, an equispaced initial grid has been chosen. The initial grids for Problems I 
and V are nonuniform and have been computed with the de Boor algorithm. 

Method Parameters 

To assist in reading the following material, we recall the parameters in the 
method. First of all we have the Newton tolerance TOLN, the time-step parameter 
TOLT, and the initial time-step. For the spatial monitor there are two options. In 
the first option, the user must specify the total, fixed number of grid-points m and 
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the regularization parameter CI. In the second option m is varied dynamically and 
the user has to prescribe m,,, and TOLS, along with the minimum allowable value 
for m. In all the experiments we have kept CI = l/(x, - xL) and mnat = 4. No doubt 
a line tuning of these parameters would have enhanced the performance of the 
method, but we have chosen to only use either m or TOLS to control the grid. 

Table Information 

The tables to be presented display the following information: 

NODES (max, min, aver) = the maximum, minimum, and average number of 
nodes over all time-steps. 

STEPS = the number of successful, variable time-steps needed to complete the 
integration over the given time interval. 

BS = the accumulated number of all backsolves. 
ETF = the number of times the stepsize was reduced due to a failure of the 

time error test. 
NTF = the number of times the stepsize was reduced due to a Newton failure. 
JACS = the total number of Jacobian evaluations. 

5.2. Problem I: Burgers’ Equation 

We consider the well-known Burgers’ equation 

au/at = -af (U)/aX + Ed2UjdX2, o<X< 1, t>o, f(U)=d/2, E=o.ool, 

and prescribe the smooth initial function u(x, 0)= sin(nx) and homogeneous 
Dirichlet conditions at x = 0 and x = 1. The solution is a wave that steepens and 
moves to the right until a layer is formed at the end point x = 1. This takes place 
for t z 0.6. Then, the solution slowly decays to zero, while the layer remains near 
x = 1. This problem is not as difficult as the other four. The analytical solution is 
available, but takes the form of a series not amenable to easy numerical computa- 
tion. For each of the five problems we have computed by brute force an “exact” 
reference solution, which, in the plots, appears as a solid line. 

TABLE I 

Problem I. Integration Information 

NODES 

Cases Max Min Aver STEPS BS JACS ETF NTF 

(i) 10 22 188 41 0 3 
(ii) 20 27 190 56 2 0 
(iii) 19 11 15 18 158 38 0 3 
(iv) 34 18 25 28 199 59 I 2 
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Using an initial time-step of &, and TOLN= 10P4, we have integrated 
this problem with the Crank-Nicolson scheme four times over the time 
interval 06 tg2: (i)m= 10 and TOLT=O.l; (ii) m=20 and TOLT=O.O25; 
(iii) TOLS = TOLT= 0.1; (iv) TOLS= TOLT = 0.025. The allowed minimum for m 
in cases (iii) and (iv) is 10. In all four cases the algorithm has performed very well. 
Figure 5.1 depicts the grid trajectories with the computed solutions for the cases (ii) 
and (iii) at times t = 0.6 and t = 2.0. The solution of case (ii) is very accurate 
(graphically identical to the “exact” solid line solution). The crude choice for TOLT 
and TOLS made for case (iii), also yields a quite satisfactory approximation, 
although less accurate than that from run (ii). With respect to accuracy, cases (i) 
and (iv) are comparable to (iii) and (ii), respectively. Table I contains integration 

! 

I 

4 
0.4 0.6 

X 

FIG. 5.1. Problem I. Grid trajectory and solution at f =0.6, 2.0. Cases (ii) (left) and (iii) (right). 
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information in terms of NODES, STEPS, etc. Observe that in all four runs the 
number of time-steps required to reach t = 2 is small and that there are almost no 
step failures. The average number of Newton iterations required for these stepsize 
sequences amounts to approximately three, which is somewhat high. This is due to 
the rather large stepsizes and the value of 10d4 for TOLN, which, since we use the 
maximum norm, is certainly too stringent for the present application. Needless to 
say, a lower TOLN value yields less iterations. 

5.3. Problem II: Scalar Combustion Model 

This is a more challenging problem to solve numerically. It is described in 
Adjerid and Flaherty [2] as a model of a single step reaction with diffusion and 
reads 

au/at=a2u/ax2+o(i + a-24) exp(- dlu), O<x<l, 0 < t, 

aqax(o, t)=0, u(1, t)= 1, 0-c t, 

u(x, 0) = 1, Odx<l, 

where D = Re’/(ad) and R, d, a are constant numbers. The solution represents a 
temperature (of a reacting reactant in a chemical system). For small times, the tem- 
perature gradually increases from unity with a “hot spot” forming at x = 0. At a 
finite time, ignition occurs causing the temperature at x = 0 to rapidly increase to 
1 + a. A front then forms and propagates towards x = 1 with a very large speed 
(proportional to d). In real problems, a is close to 1 and d is large. The degree of 
difficulty of the problem is very much determined by the value of d. Following 
Adjerid and Flaherty [2], we have selected the problem parameters a = 1, d= 20, 
R = 5. The problem reaches a steady state once the flame gets to x = 1. For the 
current choice of problem parameters, this happens at time t z 0.29, which we take 
as the end point of our integrations. 

Hence two phases can be distinguished in the solution, the formation of the front 
(the ignition phase) and its propagation to the right end point x = 1 (the propaga- 
tion phase). For our numerical method, and presumably for most other moving 
grid methods, the ignition phase is the most challenging of the two. A first difficulty 
is that the formation of the front takes place very rapidly, originating widely dif- 
ferent time and space scales. Consequently, variable time-steps are a necessity and 
very early in the ignition many of the points must move quickly to the left (the star- 
ting grid is uniform) to be in time to accurately resolve the front. A second difficulty 
relates to the smoothing capabilities of the implied change of variables x = x(s, T). 
It was pointed out in Section 2.1 that, in the best possible case, the transformation 
should soften the problem both in space (by concentrating the nodes where 
appropriate) and in time (by achieving Lagrangian time derivatives smaller than 
the corresponding Eulerian time derivatives). However, for the problem at hand, 
these two objectives cannot be simultaneously reached. Assuming a uniform grid at 
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the initial line (a choice suggested by the constant initial solution u(x, 0) = l), and 
if the first objective is to be attained, the derivatives ax/aT of a great deal of the 
trajectories should be negative in order to obtain the required refinement in the 
region of the front. However, during the formation of the front, au/ax <O and 
au/& > 0. It follows immediately that then au/aT> au/at, violating the second 
objective. Most Lagrangian type methods known to us, including ours, try to attain 
the first objective through a co-ordinate transformation based on spatial equi- 
distribution properties. Spatial equidistribution forces nodes to migrate to regions 
of high spatial activity. So, during the formation of the front in the present com- 
bustion problem, these methods offer no benefit as far as the time-stepping is con- 
cerned. Once the front is formed and starts to propagate, both smoothing objectives 
are fulfilled if the transformation attains spatial equidistribution, because then 
ax/i?T> 0 and still aujdx < 0 and au/at > 0. Any simple travelling wave form 
u(x, t) = W(X - ct) becomes, in this respect, a trivial solution, provided that the grid 
trajectories satisfy ax/aT= c. 

Interestingly, the Lagrangian approach followed by Petzold [20] meets the 
second objective. Her transformation is basically aimed at finding those trajectories 
along which the time rate of solution change is minimized, that is, au/dT< &/at. 
However, during the formation of the front in the present combustion example, 
this then must imply that in the front region, ax/aT>O, which means that points 
are moved away from the front, and thus the first objective is then violated. 
Petzold’s algorithm has a built-in regridding step which corrects this deficiency. In 
her method, like in ours, both smoothing objectives are attained once the front is 
formed and starts to propagate. 

At four selected times, adopted from Fig. 9 in Adjerid and Flaherty [2], Fig. 5.2 
depicts two typical numerical Crank-Nicolson approximations. These correspond 
to the following fixed m cases: (i) m = 20, TOLT=0.005; and (ii) m =40, 
TOLT= 0.001. For both cases the initial stepsize is lop2 and TOLN= 10p4. Using 
40 space nodes and 181 time-steps (see Table II), the Crank-Nicolson scheme yields 
a very good approximation, nearly up to plotting accuracy. The second derivative 
equidistribution is nicely shown in the location of the space nodes. Also note the 
rapid variation in the solution from t =0.26 to t =0.27, illustrating the need for 
variable time-steps. The widely different scales in the problem are also clearly 

TABLE II 

Problem II. Integration Information 

NODES 

Cases Max Min Aver STEPS BS JACS ETF NTF 

(i) 20 116 835 236 1 9 
(ii) 40 181 993 365 3 0 
(iii) 16 10 14 112 846 232 1 11 
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shown in the grid trajectories. The solution obtained with 20 nodes and 116 time- 
steps is too crude, although its qualitative behaviour is in good accordance with the 
exact one. Note that 20 points suffice to represent the steady state solution, but are 
not enough to accurately follow the flame front during the ignition and propagation 
phase (a reduction of the stepsize in time yields no real improvement with m = 20). 

Adjerid and Flaherty [2] show three approximations, two of them in their 
Fig. 9 and the third one in their Fig. 11. Our case (i) solution resembles their 
octagon solution of Fig. 9, which was also computed with 20 space nodes. None of 
their solutions is as accurate as our case (ii) solution. The differences are significant, 
especially during the ignition phase. Recall that we claim that our solid line 
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FIG. 5.2. Problem II. Grid trajectory and solutions at I =0.26, 0.27, 0.28, 0.29. Cases (i) (left) and 
(ii) (right). 
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represents the exact solution, up to plotting accuracy. This “exact” solution was 
computed with our moving grid Crank-Nicolson scheme using (constant) m = 150, 
TOLT= 10e4, TOLN= 10-6. As an extra check, we have also solved the problem 
on a conventional, uniform, nonmoving mesh containing 2000 points, using the 
BDF code DASSL of Petzold [20] (with time tolerance equal to lo-‘) to integrate 
in time. The plots of this conventional method of lines solution are in full agreement 
with our reference solution, except for a slight difference at t =0.26 in the 
neighbourhood of x = 0. Our (m = 150) moving solution yields u(O,O.26) x 1.59, 
whereas the uniform (m = 2000) solution yields u(O,O.26) z 1.61. 

For the present combustion problem we are not yet satisfied with the perfor- 
mance of the currently implemented variable m option. When the ignition takes 
place the method still integrates with the number of nodes used initially. The conse- 
quence is that for a short time early in the ignition phase, too few points are used, 
which damages the accuracy (cf. the remark at the end of Section 3.2.2). Decreasing 
TOLS would remedy this, but then the possibility exists that the method uses an 
unnecessarily large amount of nodes later in the computation. An alternative is to 
prescribe a suitable minimum for m. We found that satisfactory minima come very 
close to reasonable values in the fixed m mode. As an illustration of the previous 
remarks, we have included in Table II the results of one typical test, viz., case (iii): 
TOLT=O.OO& TOLS=O.O5 with a minimum of 10 points. Concerning accuracy, 
the computed solution very much resembles that of case (i) dealing with a fixed 
number of 20 points. We recall that decreasing TOLS does not help much to 
improve the accuracy in the initial phase, unless the allowed minimum for m is also 
increased. Incidentally, it is of interest to note that in the cases (i) and (iii) for 
which TOLT is equal, the integration performance in terms of STEPS etc., is virtually 
identical. This indicates that the variable m strategy does not interfere significantly 
with the time integration. 

Of course, it remains possible that a more subtle strategy improves the perfor- 
mance on this problem of the variable m algorithm. However, it is also possible that 
a better recipe for coping with this specific sort of difficulty is to let the monitor 
function depend on the time rate of change at the boundaries. This makes sense 
because very often the birth of layers takes place at the boundary (see also 
Problems III and IV). The need for such a modified monitor exists mainly in the 
case of Neumann boundary conditions, and much less when Dirichlet conditions 
are prescribed. In the latter case, the rapid temporal and spatial variation is enfor- 
ced in an explicit way by the data of the problem, which, for control procedures, 
is much easier to deal with. This is clearly illustrated in the next subsection, which 
also considers a combustion problem. 

5.4. Problem III: The Dwyer-Sanders Flame Propagation Model 

This model, first proposed as a test example in [ 121, simulates several basic 
features of flame propagation. It has two components, a mass density u and a 
temperature v. The PDE system is given by 
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aup t = a%jax2 - uf tu 1, O<x<l, O< t<O.006, 

au/at = a2tqax2 + uf(~), O<x<l, O<t<0.006, 

where f(u) = 3.52 * lo6 exp( -4/v). The initial functions are u(x, 0) = 1, u(x, 0) = 0.2 
(0 <x 6 1). The boundary conditions at the left boundary read 
&/8x(0, t) = &/&(O, t) = 0 and at the right au/&( 1, t) = 0 and U( 1, t) = 
0.2 + t/0.0002 (t < 0.0002) and u( 1, t) = 1.2 (t > 0.0002). 

The given function for u at the boundary x = 1 represents a heat source. When 
u reaches its maximum, a steep flame front is generated which propagates from 
right to left at a relatively high speed. For t > 0.003, the speed of propagation of the 
front is almost constant. At the final time t = 0.006, the front has come close to the 
left boundary. As in the previous scalar combustion model, the present problem 
is made difficult both by the different scales involved and by the fact that the 
co-ordinate transformation does not help with the time integration at the formation 
stage. 

In Table III, we present results of four runs, all of them with a value of lop5 for 
the first stepsize and TOLN= lo-‘: (i) TOLT= 0.05, m = 20; (ii) TOLT= 0.01, 
m = 30; (iii) TOLT= TOLS=O.O5, minimal m= 10; (iv) TOLT= TOLS= 0.01, 
minimal m = 10. Figure 5.3 depicts the evolution of the exact solution and of the 
numerical solutions (i) and (iv). Both numerical approximations agree very well 
with the exact solution, in particular that for (iv) where no visible difference exists. 
In case (i) a little overshoot can be seen at the rear end of the front and the numeri- 
cal front is a little too slow. Also observe that in this case, as in (iii), the NTF value 
is rather large, indicating that the choice of TOLT = 0.05 is on the optimistic side. 
The approximations of cases (iii) and (ii) are very similar to those of (i) and (iv), 
respectively. In the two variable number nodes runs, the average value “aver” is 
close to “max,” because very early in the ignition phase the algorithm increases the 
number of nodes, without any further adaptation. This is what should happen, 
because when the ignition phase ends, the solution has become a travelling front 
and no further spatial change takes place. 

In contrast with the experience of the previous scalar problem, here the variable 
m option fully met our expectations, in spite of the uniform start grid and the rapid 

TABLE III 

Problem III. Integration Information 

NODES 

Cases Max Min Aver STEPS BS JACS ETF NTF 

0) 20 164 1453 351 0 23 
(ii) 30 212 1418 550 2 4 
(iii) 17 10 17 162 1301 338 0 14 
(iv) 44 10 42 282 1480 513 2 5 
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development of the flame-front near the right boundary. We attribute this to 
the forcing temperature boundary function, which timely signals to the control 
mechanisms to move points sufficiently fast to the right boundary. It is evident that, 
in this connection, the value of the initial time-stepsize also plays a role. However, 
in the present context, the difference between Neumann and Dirichlet conditions 
may turn out to be essential. This will be illustrated again with Problem IV, where 
Neumann conditions are imposed and boundary layers are born, not only at the 
initial time, but also later in the evolution. 

5.5. Problem IV/: A Problem from Mathematical Biology 

We consider the FitzHugh-Nagumo type equations 

aulat=a%/aX2+ f(u)-v, f‘(u)=U(U-a)(1 -U), 

au/at = b(U - CV), o<x< 120, o<t. 

‘This system provides a conceptual model of ionic current flow across a semi-infinite 
nerve membrane; u is an electro-chemical potential and v a “recovery” variable. If 
a = 0 and u = 0, the equation for u becomes Fisher’s equation. (Note that the equa- 
tion for the variable u is an ODE.) The initial values for U, v are u = v = 0, while for 
u the following boundary conditions are imposed for t > 0: au/&(@, t) = -Z/2, 
au/ax( 120, t) = 0. Note that the Neumann condition at the left is not consistent 
with the prescribed initial function. The parameters possess the values: a = 0.139, 
b = 0.008, c = 2.54, I= 0.45. I represents a constant current applied at the left end 
of the nerve and b is the reciprocal of the time scale associated with the recovery 
of the nerve. 

We have taken this example from Bieterman and BabuSka [4]. Numerical 
studies in Mitchell and Manoranjan [19] and elsewhere indicate the sensitivity of 
the solution behaviour to changes in a, b, c, and I. Bieterman and BabuSka report 
that with the present choice of parameters, travelling waves develop at the left 
boundary. More precisely, repetitive pulses in u and u are generated with a firing 
frequency of about 0.0077 and develop into travelling waves which move with an 
approximate speed of 0.4. The time interval [0,200] is suficiently large to recover 
the travelling wave forms. 

TABLE IV 

Problem IV. Integration Information 

NODES 

Cases Max Min Aver STEPS BS JACS ETF NTF 

(i) 35 35 35 187 1256 378 1 3 
(ii) 89 35 60 404 2233 817 5 0 
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The present problem is certainly not an easy one. Because incoming waves keep 
arising, the computation naturally asks for variable m. As t becomes large, more 
points are required to accurately represent the solution. Figure 5.4 and Table IV 
show the results of two runs: (i) TOLT= TOLS=O.O5; (ii) TOLT= TOLS=O.Ol; 
in both TOLN= 10e4 and the initial time-step is 10p6. To prevent stepsize control 
problems due to the inconsistency between initial and boundary condition, the con- 
trol was switched off for the first two steps. The allowed minimal value for m was 
set to 35. We need this value (for the crude tolerances) to accurately detect the first 
incoming wave. It was determined by trial and error. In case (i) this turned out to 
be also the maximum value required by the control procedure, so that case (i) is 
in fact a constant m run. Inspection of Fig. 5.4 reveals that, while initially 35 points 
are certainly enough, this is not the case later. Specifically, between times t = 120 
and t = 160, when the second wave starts to develop, the control procedure fails to 
add more points near the boundary, with the result that, from that time on, the 
accuracy slowly degrades. This is due to the fact that there are not enough points 
near x =0 (see the grid trajectories plot) to measure the size of the new arising 
gradients with sufficient accuracy. This deficiency of the control should, of course, 
diminish with TOLS. Indeed, for TOLT= TOLS= 0.01, with the same minimum of 
35 points, the number of points is increased (twice) in the time evolution and the 
computed solution is sufficiently accurate over the entire time interval, although at 
the end phase errors are noticeable. This, presumably, is inevitable for this type of 
large-time wave calculations. Clearly, a further reduction of TOLT and TOLS will 
improve again, but of course at the expense of more work. Finally, as already 
indicated in the two previous subsections, we believe that the Neumann condition 
partly prevents the control procedures from detecting timely and accurately the 
rapid birth of the new incoming waves. It is very likely that an appropriate bound- 
ary adapted monitor would lead to a significant improvement, but no attempts in 
that direction have been undertaken so far. 

5.6. Problem V: An Opposite Travelling Waves Problem 

Our final example problem serves to illustrate the possibility of using different 
moving grids for different PDE components. We consider the two-component 
system (Madsen [ 161) 

au/at = -au/ax - ioouv, 
au/at = au/ax - ioouO, 

for t > 0 and -0.5 <x < 0.5, subjected to homogeneous Dirichlet boundary condi- 
tions and with initial conditions 

u(x, 0) = 0.5( 1 + cos( 107~~)) for x E [ -0.3, -0.11 and u(x, 0) = 0 otherwise, 

v(x, 0) = 0.5( 1 + cos( 1Orcx)) for x E [O.l, 0.33 and v(x, 0) = 0 otherwise. 
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Note that these are functions with a mere CL continuity which represent wave 
pulses located at x = -0.2 and x = 0.2, respectively. Initially the nonlinear term 
100~~ vanishes, so that for t > 0 these waves start to move, without change of shape 
and with speed 1, u to the right and u to the left. At t = 0.1 they collide at x = 0 and 
the nonlinear term becomes positive, resulting in a nonlinear interaction leading to 
changes in the shapes and the speeds of the waves. Specifically, the crests of the 
waves collide a little beyond t = 0.25 and they have separated again by t = 0.3 
approximately, so that from this time on the solution behaviour is again dictated 
by the linear terms. At the nonlinear interaction, the pulses lose their symmetry and 
experience a decrease in amplitude. 

We present results of four runs over the time interval 0 < I 60.5: 
(i) TOLT = 0.005, TOLS = 0.05, one grid; (ii) TOLT= 0.005, TOLS = 0.05, two 
grids; (iii) TOLT=O.OOl, TOLS=O.Ol, one grid; (iv) TOLT=O.OOl, TOLS=O.Ol, 
two grids. In all four experiments the initial time-step is 0.01, TOLN= 10-4, and 
the minimal value for m is 10. Figure 5.5 shows the computed approximations at 
t = 0.1, 0.25, 0.3, and 0.5 for cases (iii) and (iv), of which (iv) is the most successful. 
The two numerical waves follow satisfactorily the exact solution. Some slight 
oscillations are observed at their tails. In the single grid case (iii), these oscillations 
are slightly more pronounced (and significantly more in the runs (i) and (ii) not 
depicted in the figure). However, in all four cases the numerical waves are in the 
right position. The oscillations disappear if more nodes and time-levels are used and 
originate from two error sources, viz., excessive numerical dispersion and lack of 
damping in the Crank-Nicolson scheme. The behaviour is similar to that encoun- 
tered in standard fixed grid nondissipative Crank-Nicolson schemes. Also observe 
that if, locally, ax/aT= 1 for the u-wave and - 1 for the u-wave, then the 
Lagrangian form reduces to the stiff ODE system du/dT = - lOOuu, du/dT= 
- 100~~. It is well known that for such stiff problems the Crank-Nicolson scheme 
readily yields oscillations, if the time-step is too large and the solution not smooth. 
Further experiments have revealed that the backward Euler scheme obtained by 
setting 8 = 1 in (2.2) produces significantly less oscillations. However, for most 
problems the choice 8 = $ is more accurate than any other. 

TABLE V 

Problem V. Integration Information 

NODES 

Cases Max Min Aver STEPS BS JACS ETF NTF 

(i) 30 30 30 58 326 116 0 0 
(ii) 20 20 20 56 309 112 0 0 

20 20 20 
(iii) 62 32 47 132 686 266 1 0 
(iv) 39 39 39 131 685 264 I 0 

39 39 39 
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In Table V we have listed the number of time-steps and grid-points used in the 
single and doub!e grid runs. As expected, the number of time-steps in the two situa- 
tions are almost equal, but, when using two grids, less points in space are needed. 
In this respect, the multiple grid option performs very satisfactorily for the present 
problem. It should be remarked, however, that the overhead involved in using more 
than one grid is large, so that the final gain in CPU time is less than that suggested 
by the reduction in grid-points. For the present example we observed only a small 
decrease in CPU time (about lo%), but recall that, as observed earlier, the 
two-grid runs are slightly more accurate. 

6. CONCLUSIONS AND COMMENTS ON FUTURE WORK 

The numerical results presented in this paper are very encouraging. Obtained on 
a set of rather diverse sample problems, they clearly show that our fully adaptive 
moving grid algorithm, by using variable stepsizes in time and a variable number 
of moving space nodes, is capable of accurately tracking rapid spatial and temporal 
transitions. 

The combination of a Lagrangian scheme like (2.2) with the “intermediate” 
approach, which generates the forward grid by fitting a predicted solution, has 
turned out to be successful. We generate the new grid through a conventional 
implicit Euler step followed by a de Boor type regridding. The choice of carrying 
out an extra implicit PDE calculation almost doubles the computational costs. 
Although this is clearly a drawback, the computation of the moving grid is an 
important task and cheap predictions should not be favoured if they deliver 
unsatisfactory grids. In our experience, the benefits to be gained by using the con- 
ventional implicit Euler prediction are robustness and reliabi!ity (see also Eiseman 
and Erlebacher [ 131). Yet, for the near future, we will attempt to improve the 
efficiency of the algorithm by examining alternative predictions. A possibility con- 
sists of replacing the spatial equidistribu~ion transformation by a transformation 
similar to that in Petzold [20] and the implicit Euler integration step by the solu- 
tion of a tridiagonal system of linear algebraic equations. Details shall be reported 
elsewhere. 

Our ultimate goal is the development of a user-oriented code, which can be 
applied almost as easily as existing, conventional MOL codes. In this connection 
note that while the literature on moving grid and adaptive methods has grown 
enormously in recent years, hardly any comparisons between different techniques 
have been published. No doubt, the availability of user-oriented codes would 
facilitate such comparisons. However, we wish to emphasize that the algorithm used 
to produce the results shown above is still very much in an experimental phase. 
In the near future, we plan to implement several possible improvements, mainly 
directed to the enhancement of the reliability of the procedure. 

One such improvement would be to suggest a monitor function which signals 
effectively the rapid onset of steep layers near boundaries. As mentioned before, 
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efficiently monitoring such solution phenomena is difficult, particularly in cases of 
Neumann boundary conditions. 

A second area deserving attention is the de Boor regridding procedure. While this 
has worked satisfactorily in the test problems reported here (and note that no fine 
tuning of the grids was attempted), there is room for improvement. In fact, it is 
known [21, 221 that, when iterating the de Boor algorithm on a locally steep initial 
function to determine the starting grid, it is possible that the iterated grids do not 
converge, unless an unrealistic number of points is used. This fact not only is a clear 
drawback in itself, but also proves that it is possible to have very similar solution 
profiles that lead, via a de Boor loop, to clearly different meshes. For example, in 
the course of the experimental work, we once noticed that when approaching a 
steady state, the algorithm kept moving significantly the points in spite of the fact 
that the solution profile was changing very little. Furthermore, the gliding of the 
nodes from one time-level to the next implies corresponding changes in nodal 
values, which, on being detected by the step control mechanism, did prevent the 
time-steps from increasing. Such a gliding of the nodes may also appear in an 
application where excessively small stepsizes are being taken, because then the solu- 
tion profile is almost unchanged from one time-level to the next. In passing, we note 
that in such a situation the assumption (3.4) is violated. 

Finally, the application of a straightforward regridding algorithm like that used 
in this paper can result in grids with a fast change in grid spacing from one interval 
to the next. If the ratios become too large, both the stability and the accuracy of 
the approximation may deteriorate. The minimum and maximum ratios may be 
monitored by using so-called padded or filtered monitor functions (clearly 
explained by Furzeland [14]), or by smoothing the monitor function (see, e.g., 
formulas (4) and (5) in Dorfi and Drury [lo]). Both approaches can be easily 
implemented to our regridding algorithm, since they essentially amount to an 
appropriate redefinition of the monitor function. These techniques enhance the 
quality of the generated grids and therefore the reliability of the complete 
algorithm. A disadvantage of this type of additional grid control is that a too 
strict bound on the grid ratios automatically requires more nodes than necessary 
for solving the small scale structures. 
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