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STUDIES IN NUMERICAL NONLINEAR INSTABILITY III:
AUGMENTED HAMILTONIAN SYSTEMS*

J. M. SANZ-SERNAt anp F. VADILLOY

Abstract. Leap-frog (explicit mid-point) discretizations of Hamiltonian systems are considered. It is
proved that the discrete evolution preserves the symplectic structure of the phase space. The Kolmogorov-
Arnold-Moser (KAM) theory is applied to guarantee the boundedness of the computed points under suitable
testrictions of the time-step. The general ideas introduced are employed to provide an extensive analysis of
the leap-frog discretization of the complex equation iz, + {z}?z = 0, which describes the nonlinear selfinterac-
tion of a Fourier mode. The paper emphasizes the relations between Numerical Analysis and Classical
Mechanics/Dynamical Systems.
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1. Introduction. The cubic Schrodinger equation
(1.1) iz, + 7z, +|z[’z=0, i*=-1, zcomplex

is well known to play a very important role in modelling a number of phys.ical
phenomena (see e.g. [23]). Its importance partly stems from the fact that it combines
the dispersive behaviour of its linearization

(1.2) iz, 4z, =0
with the simplest odd nonlinearity of
(1.3) iz, +|z)’z =0.

The ODE (1.3) not only describes the x-independent solutions of (1.1) but also,
more generally, the nonlinear self-interaction of a Fourier mode, leading to the Stokes
effect in the corresponding frequency [23, p. 529].

It was found in [17] that, when numerically integrating (1.1) with a standard
leap-frog scheme, it is possible for the numerical solution to remain bounded for a
considerable number of steps and then to explode violently. Leap-frog schemes are
notorious for this kind of unwelcome behaviour, that can be avoided by odd-even
averaging and/or artificial viscosity [15].

In [15] one of the present authors described a means for investigating the dynamics
of leap-frog discretizations which basically consists of the analysis of a differential
system larger than the one actually being integrated. One of our purposes in this article
is to apply that general technique to discretizations of (1.1) or (1.3). The treatment
relies on the theory of dynamical systems, a tool that is becoming increasingly more
popular in the analysis of numerical methods for evolutionary equations, see [21, [8],
[13], [14], [15], [18], [21], [22] and their references. Of particular significance here
are the KAM theory, which sometimes can be applied to guarantee rigorously the
boundedness of the computed points, and the use of action/ angle variables. The role
played by the latter in numerical work was perhaps first noticed by Newell [12]. General
background references are {3], [9], [11].
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The study of (1.1)-(1.3) is carried out in § 4. Some of our findings possess a wider
scope and may be useful in other contexts. We have therefore chosen to state them
separately in § 3. The second section is devoted to the introduction of the necessary
notation and also recalls from [15] a number of results crucial in the understanding
of the subsequent material. Some conclusions are presented in § 5.

It should be mentioned that other aspects of the numerical nonlinear stability of
(1.1) have been investigated by Herbst et al. [6]. In their paper and in [10], [17], [19]
the interested reader can find additional references to the numerical treatment of
nonlinear Schrédinger equations.

2. Augmented systems. We consider an s-dimensional system of differential
equations

(2.1) dp/dt=1f(p), peR’,

where the function f is smooth. In the sequel (2.1) will be referred to as the original
system. When numerically integrating (2.1), the leap-frog discretization with step-length

k
P’ P' given,
(22) n+l __ yyn—1 n .
P" =P "+ 2kf(P"), n=1,2,3---

provides a convergent approximation (51, [7], [10], [16], i.e., if 2 particular solution
p(2) of (2.1) has been chosen and a family P° = P°(k), P! = P'(k) of starting vectors is
considered such that

(2.3) lim P°=1lim P' = p(0),

k-0 k-0
then, for nk fixed, k-0
(2.4) . lim P = p(nk).

However, it is well known [7], [14], [15], [18] that, as n increases with k fixed, the
sequences

(2.5) p(0), p(k), p(2k), - - - p(nk), - - -,

(2.6) PP P, ... P ...

’

may possess widely different behaviours, even if k is small and the original system is
linear. (Note that in this paper solutions of differential equations are represented by
small-case letters, while capital letters denote the corresponding discrete approxima-
tions.)

The recursion (2.2) can be rewritten in the form

(27) P2n — PZn—2+2kf(P2n—l), P2n+l — P2n—l +2kf(P2n),

n=1,2,-- -, where we have simply displayed two consecutive steps. With the notation
P =U", P = U* p =, 1,-- -, (2.7) becomes

(2.8) UT=U"""+2kf(U*"7),  U*" =U*" +2kf(U"),

n=1,2,--- arecursion that can clearly be regarded as a consistent, one-step discretiz-
ation (with step-length 2k) of the system of 2s differential equations

(2.9)
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where u(n2k)=U" =P, u*(n2k) =U*"=P*"*". Thus the even-numbered P" com-
puted in (2.2) approximate the component u(¢) of the solutions [u(t), u*(1)] of the
so-called augmented system (2.9), while odd-numbered P" approximate the component
u*(t). More precisely, one-step discretizations of ordinary differential equations are
always O-stable [5] and this implies that, if we fix a solution [u(?), u*(¢)] of (2.9) and
introduce a family of starting vectors P°=U’=U(k), P' = U*® = U*°(k), such that

(2.10) lim P°= lim U°=u(0), lim P'= lim U*°=u*(0),

then, for nk fixed, k-0
(2.11) lim P>" =lim U" =u(2nk),  lim P*"*'=lim U*" = u*(2nk).

Of importance is that the convergence property (2.11) does not contradict the
convergence previously noted in (2.4). In fact, if (2.3) holds, then in (2.10), u(0) =
u*(0) = p(0). This clearly forces in (2.1), (2.9) that, for all values of ¢, u(t) =u*(¢) =p(1)
and then the convergence statements (2.4), (2.11) are obviously equivalent. Note that
there is a one-to-one correspondence between solutions p(¢) of the original system
(2.1) and the solutions [u(?),u*(¢)] of (2.9) that satisfy u(¢)=u*(¢). Augmented
solutions of this form are called diagonal solutions and their dynamics replicates that
of the original system.

Thus when studying the k -0 behaviour of the leap-frog points when (2.3) holds,
nothing is gained by the introduction of the augmented system because (2.3) effectively
restricts the attention to the diagonal solutions of (2.9). However, for fixed k, (2.9)
provides a very useful tool for the investigation of the behaviour of (2.6) (see [15]).
Also the leap-frog discretization possesses a number of properties which mimic proper-
ties of the augmented system (2.9) rather than properties of the original system (2.1)
[15]. An instance is provided by the conservation of volume: for any function f the
mapping (U"~', U*"™") > (U", U*") in (2.8) is a diffeomorphism (one-to-one and onto
smooth mapping) in R* XR* which conserves volume. This paraliels the fact that the
differential system (2.9) is divergence-free which entails [3] that the oriented volume
in R®xR* is preserved by the 2k-flow of (2.9), i.e., the mapping in R° xR° which
advances solutions of (2.9) by 2k units of time. It should be emphasized that the
present conservation of volume is analogous to that in steady incompressible flows,
and accordingly solutions cf (2.9) behave like streamlines in such a flow: they attract
their neighbours in regions where the flow accelerates. In [22] we have discussed some
practical implications of this attraction. Other consequences of the conservation of
volume of (2.8)-(2.9) are: (i) that the corresponding dynamics cannot possess
asymptotically stable equilibria or asymptotically stable limit cycles; (ii) the appearance
of phenomena linked to the Poincaré recurrence theorem [3]. This theorem explains
the recurrence found in [24]. '

Finally, note that in the terminology of differential forms [3], conservation of
volume is the conservation of the 2s-form (subscripts denote components):

(2.12) dul/\duz/\---Adu,/\duf/\du‘z"/\-'-/\du;".

3. Augmented Hamiltonian systems. We now examine the particular situation
where the s-dimensional original system (2.1) is Hamiltonian with g degrees of freedom
(s =2g). Namely :

dp;

_ dq; _
3.1 o D,.H(p,q), o DH(p, q),
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i= 1,21 vt 9g, Where pz[plvpb e ’pg]’ q=[‘h, ‘12, T, qg]’ H iS the'Hamiltonian

. function and D; denotes partial differentiation with respect to the jth argument
j=1,---,s The augmented system (2.9), with 2s or 4g scalar components takes the
form

(3.2a) %‘fﬁ =D, H(u*,v*),
(3.2b) Zl: D;H (u*,v¥),
(3.2¢) d;t —Dg.iH(u,v),
(3.2d) i‘;’t——DH(u v),

i=1,2,--,g Here the augmented variables v, v* play with respect t9 the origipal
variables q (positions), the role played by the augmented variables u, u* in connection
with the original variables p (momenta). .
We use the following terminology. If y'=g(y) is a differential system, its lf-ﬂow
(k a real number) is the mapping y, - y(k, yo), where y( -, y,) denotes the solution of
the system that at ¢ =0 takes the value y(0, y,) =y,. . .
ProposiTiON 1. (i) The system (3.2) is Hamiltonian, with the Hamiltonian function

(3.3} H(u,v,u* v*)= H(u,v)+ H(u*, v*).

) .. . %*
The variables u act as conjugated momenta of the positions v* and the variables u
provide the momenta conjugated to the positions v 2 o
(ii) The 2k-flow of (3.2) preserves the standard 2-form in R** =R

(3.4) w’=

u'Mm

(du; A dv¥+ du’¥ A dv;)
1

and its exterior powers w”, j=1,2,- - s.

(iii) The function ¥ in (3.3) is an invariant of the solutions of ('3.2). . -

Proof. (i)is atrivial observation and (ii)-(iii) are general properties qf Hamiltonian
systems [3]. Note that the conservation of «>° in (ii) is the gonsewatlofl of ‘volume
(2.12), which takes place even if the augmented system (2.9) is not }'lamfltoman.

It is perhaps useful to notice that augmented systems are Hamll.toman nf)t only
if the corresponding original system is Hamiltonian (i.e. in the case just considered)
but also if the original system is a gradient system (see [15, Thm. 3 (iii)] and also [20]).

For the benefit of numerical analysts we recall that the form (3.4) dzeﬁnes tzhe
so-called standard symplectic structure in R** (just as the quadratif: form (d)_c) +(dy) +
(dz)? defines the standard metric structure in R*). Changes of vanab.les which preserve
the symplectic structure (i.e., the form (3.4)) are crucial in mechanics and referred to
as canonical. In particular a canonical change of variables preserves the Hamiltonian
form of the equations of motion [3, p. 241].

Turning now to the discrete approximation, the leap-frog scheme for (3.1) is given
by

(35)  P"'=P!T'-2kD, H(P",Q"), Q!''=Qi'+2kDH(P",Q"),
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i=1,2,---,g, n=1,2,+-- or with the notation P*"=U", pri=y*", Q" =V",
Q2"+1 =V*"y n =0’ 1’29 tre

(3.6a) Ur= U™ =2kD,, H(U*"™', V"),
(3.6b) V= Vi 2kDH (UL VAT,
(3.6¢) U*" = U~ = 2kD, . H(U", V"),
(3.6d) VE" = VET L 2kDH (U, V7).

PROPOSITION 2. The mapping (U™~ V"~ U*"~! v*¥" ) (U", V", U*", V*") in
(3.6) is a canonical diffeomorphism, i.e. it preserves the standard form (3.4).

Proof. In (3.6) we transfer to the left-hand side all terms with a superscript n and
to the right-hand side all terms with a superscript n—1. Next we differentiate, take
exterior products and sum to arrive at

g
{dU, A [dV*—-2kdD:H(U, V)] +[dU¥ +2k dD,.;H(U, V)] av}®
=1

g
(3.7) = ¥, {[dU; -2k dD,..H(U* V¥)]
i=1
AdV*+dU* a[dV,+2k D.H(U*, VH)]}" 7Y
Now in the left-hand side, with an obvious simplified notation

¥ {dU;ndD,+dV,ndD,.;}
=Y D}(dU; n dUy) + D7y (dU n dV)) + D%, (dV,dU)
&

+ D%, (dV,ndV))=d T (D,dU;+ D, dV) = ddH =0.

g+ig+j

A similar cancellation takes place in the right-hand side of (3.7) and then the proof
is complete.

The general properties discussed so far possess some important implications. We
successively consider the two most simple cases:

(A) The original Hamiltonian H(p, q) takes the form

H(p,q)=T(p)+ V(q),

i.e., the kinetic energy only depends on the momenta and the potential energy only :
depends on the positions. Then (3.2a)-(3.2d) are uncoupled from (3.2b)-(3.2c) and
the augmented system is just the direct product or juxtaposition of the two systems
(3.2a)-(3.2d) and (3.2b)-(3.2c) which are replicas of the original system (3.1).
Analogously in (3.6) there is no coupling between U, V* on the one hand and U*, V
on the other. In terms of (3.5) this means that even-numbered momenta P>" and
odd-numbered positions Q°"*' approximate the motions of (3.2a)-(3.2b), and are
uncoupled from odd-numbered momenta P>"*" and even-numbered positions Q*" that
in turn approximate the motions of (3.2b)-(3.2¢c). An example of this sort of behaviour

has been discussed in detail in [18].
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(B) Theaugmented Hamiltonian system is completely integrable [3] and nondegen-
erate. We recall that for this to be the case (3.2) must in particular possess s independent
conserved quantities. In this situation s variables of action I and s variables of angle
& can be introduced to replace (u, v, u*, v¥) so that in the new variables the 2k-flow
of (3.2) is simply given by the multidimensional twist mapping [11]

(3.8) ¢ - b +2kv(l), I constant,

where v = a%/3l. Each surface I = constant in R is an s-dimensional torus, parameter-
ized by the s angles ¢&. These tori are left invariant by the flow of (3.2). Now the
mapping in (3.6) is canonical (Proposition 2) and, due to the consistency of the
discretization, differs from (3.8) by O(k’) terms. The KAM (Kolmogorov-Arnold-
Moser) theorem can then be applied to conclude that to each torus I=constant on
which the s angular frequencies v(I) are far from being resonant there corresponds,
for small values of k, a neighbouring, slightly distorted torus invariant for the leap-frog
mapping (3.6).

A full, rigorous statement of the KAM theorem is too long to be given here and
can be seen in [18] or [21] together with more details of its application to leap-frog
discretizations. We emphasize that the canonical character of the discretization proved
in Proposition 2 is essential. It should also be noted that before the theorem can be
applied to concrete examples one has to check that the augmented system is completely
integrable (i.e., possesses s independent conserved quantities in involution) and non-
degenerate (i.e., the s frequencies & are functionally independent).

Also note that a function u=u(é,, ¢,) of two periodic functions ¢, = ¢(t),
&-= ¢,(t) is not itself a periodic function of ¢ (unless the corresponding periods T,
and T, are rationally dependent mT, = nT,, m, n integers). For this reason the motions
of a completely integrable Hamiltonian system are not in general periodic, even though
they can be expressed in terms of s periodic functions. Motions of this kind are
sometimes called conditionally periodic.

In the particular case where the KAM theorem applies, g = 1 and the 4-dimensional
mapping (3.6) possesses a conserved quantity, the iterates (U”", V", U*",V*"), i.e.
(P, Q™" P*"*! Q*'*!), lie in a 3-dimensional manifold that for small k contains
2-dimensional invariant tori and accordingly the iterates must remain in the “interior”
of the tori. In particular they must remain bounded as n increases so that blow-ups
like those mentioned in the introduction cannot take place.

In more general circumstances the existence of invariant tori does not ensure the
boundedness of the leap-frog solutions, because in higher dimensions a torus does not
divide the space into an interior and an exterior part. It is possible for the points to
escape to infinity (Arnold’s diffusion) but this is a very slow process, completely
different from the typical nonlinear explosion often encountered in leap-frog discretiz-
ations.

Before we close this section some remarks should be made in connection with the
general case where complete integrability of the augmented Hamiltonian does not
hold. Generically, in the neighbourhood of an equilibrium, Hamiltonian systems can
readily be approximated by completely integrable systems, via Birkhoff’s normal forms
[3]. Unfortunately the leap-frog technique is only useful if the original equilibrium is
a centre with eigenvalues = Ai, A real [15]. These equilibria induce [15] in the corre-
sponding augmented system equilibria with double eigenvalues + Ai and the reduction
to Birkhoff’s normal form cannot be accomplished in the presence of this resonance.
The discussion becomes then rather involved [21].
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4. Schrodinger equations.

4.1. Original system. On introducing the real and imaginary parts p,gof z=p+ iq,
the complex equation (1.3) is transformed into

dp dq

4.1 —F=—(p*+q° —2=(p*+q)p,
(4.1) P e = q°)p.
a Hamiltonian system with the quartic Hamiltonian function
(4.2) H(p, q)=¥p*+q)

Any function F(H(p, q)) is then a conserved quantity of (4.1). In particular the
quadratic invariant

(4.3) r=p’+q’

shows that in the (p, q)-plane the motions of (4.1) correspond to circumferences
r = constant. On each circumference the polar angle a varies with a constant rate

da
|
and therefore the period of the movement is given by
(4.4) =—2127.
r

Of course the period of a Hamiltonian movement with one degree of freedom
can be obtained without integrating the motion, via the formula

_dA(h)
dh ’
where A(h) is the area of the (p, q)-region bounded by the curve H(p,q)=h

(4.5) T

4.2. Augmented system. This is given by
du '

(4.6a) E___ —(u*+ 0*)*,
(4.6b) %}z (u*+ 0",
(4.6¢) ‘—lg; =—(u’+ ),
(4.6d) %’t =(u*+v)uy,

and according to Proposition 1 (i) is Hamiltonian. The Hamiltonian function is given
by (see (3.3), (4.2))

4.7) 9 = [(u*+ v?)?+ (u** + v*%)?).

The conservation of (4.7) implies that the solutions of (4.6) remain bounded and

therefore exist for all values of ¢ ) )
Each quadratic original invariant gives rise to a quadratic augmented invariant

[15]. Here (4.3) generates the invariant

(4.8) e = uu*+ vv*.
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The conservation of e is obviously independent from the conservation of (4.7) and
therefore we are dealing with a completely integrable system [3].
We now discuss the features of the motions of (4.6) which are helpful in describing
the dynamics of the leap-frog discretization.
It is expedient to introduce the (noncanonical) polar coordinates
u=pcosé, v=psin 6§,
u*=p* cos 6%, v*=p*sin 0%

With these new variables (4.6) can be written

(4.9a) %=p*3 sin (0 - 6%),
(4.9b) Ea%g=p"‘3 cos (8 —0%),
(4.9¢) ddL:=—p’sin(0—0*),
(4.9d) p*d‘je*zﬁ cos (6 — 6%).

Clearly (4.9) possesses the one-parameter group of transformations 6> 6+ 8,
9* > 9* + B. In fact these transformations are easily seen to be the flow generated by
the function e(u, v, u*, v*), so that e is the conserved quantity stemming from the
group [3, Chap. 8, Cor. 9]. In polar coordinates the invariants (4.7), (4.8) become
(4.10) H=ip*+p*Y,

(4.11) e=pp*cos(0—0%).
(i) We first fix a value e # 0. The constraint (4.11) implies that p, p* do not vanish

in the motion and then the following equation for ¢ = 6 — 8* is a consequence of
(4.9b)-(4.9d) and (4.11)

d *4 4

W_ [p_;;_)_] cos ¢ =e '(p**—p*) cos’ .

dt P

Also, from (4.9) and (4.11)

(4.12)

(4.13) Ed;(p*‘-p“) =—8¢*tan ¢ cos™ .

The two equations (4.12)-(4.13) together with the constraint (4.11) provi‘de a full
set of relations for the functions p(t), p*(t), ¥(t)=6(t)—6*(¢). It is advisable to
consider the variables

w=p*-p', y=tgy,
as with them (4.12)-(4.13) adopt the Hamiltonian form

q, dy p
(4.14) e R

Here u, y play respectively the roles of momentum and Lagrangian coordinate and
the Hamiltonian is

2
(4.15) J=§—+e’(472+2y‘)=8e“3t’2~2e’.
e
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The period of the solutions can be obtained by means of the formula (4.5). After
a certain amount of manipulation in the resulting integral, we find the expression

2
(4.16) 3(-1/2]((1__‘5__),

2 4%

where K (m) denotes the complete elliptic integral of the first kind with parameter m ;
[1]. To sum up, for solutions of (4.6) with e #0, p, p*, 6 —6* vary periodically with ‘.
the period (4.16). ‘

For a given nonzero value of e, it is easily proved from (4.10)-(4.11) that  cannot }
be smaller than e?/2. When ¥ has the minimum value e’/2, we find in (4.15) that ;
J =0, so that u(t)=0, y(t)=0 or p(t)=p*(¢), 0(t)=6*(t) and therefore we are i
dealing with a diagonal solution of (4.6) with p(t) = p*(t) = r = constant and d6/dt = ?
do*/dt = da/dt=r’.

For % > €*/2 it may be concluded from (4.10)-(4.11) that the functions p(t), p*(t)
oscillate between the values

Prin = Piin = QH — (4 — ")) < QA + (43¢ — €*)V/?)/*
(4.17) .
= pmax = pmax’

and ¢ between
772 < Yomyn = —arc cos (e/vV23) <arccos (e/V2H) = Y < 7/2,

if e >0, or between
/2 < Pmin =2arc cos (e/vV2H) < w+arc cos —(e/V2H) = Ypna<37/2,

if e < 0. Here arc cos takes values in [0, 7] and it is assumed that, at ¢ = 0, the branches
of arc tg giving 8 =arctg (v/u), 8* = arctg (v*/u*) are chosen so that —7/2= ¢(0) <
3m/2. As % approaches e’/2 (near diagonal behaviour) the period of the oscillation
tends to

(4.18) HVK(0)=mw/(2%'7) =7/ (V2r).
On the other hand, as # 1o the period behaves like :
(4.19) K(3)/ 9" =1854/ %",

so that the variations of p, p* become increasingly rapid, and i
Prnin = Pomin ~ e(4%)7V*,
Prmax = Pvax ~ (436)"%,

leading to large amplitude oscillations in p, p*. Finally

lim ¢a=7/2, M @pin=-7/2 (>0, e>0)

or
Hm ¢ =3m7/2, lim¢g,=7/2 (H->00,e<0).

Thus, in the motion, the plane vectors (u, v), (u*, v*) (which are collinear in diagonal
solutions) may become nearly orthogonal.

(ii) So far the analysis has been centered in the evolution of p, p*, ¢ given by
(4.14). It is in principle possible to solve (4.14) by quadratures and in fact p(1), p*(1),
(1) can be expressed in terms of elliptic integrals. These expressions can in turn be
taken into (4.9b) and (4.9d) and then a final quadrature yields 6(t), 6*(¢). However
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it is more advantageous to compute the action/angle variables of (4.6) which in
particular allows a direct investigation of the periods similar to that in (4.5). The
corresponding algebraic details become nevertheless rather heavy and can be seen in
[21). Here we just quote that (4.6) possesses, for e # 0, periods of the form

1 é?
= —1/2 _——— = brd
(4.20) T,=%"“K (2 4%), T, T,<I><e2 ’,

where @ is a decreasing function of its argument. When %/ e” takes its minimum value
| & =22, while as ¥/e’1 0, ® tends to 2. We first note that one of these periods is
identical to (4.16) as could have been anticipated. Secondly (4.20) shows that (4.6) is
nondegenerate, i.e. possesses two independent frequencies. Next for diagonal solutions
with ¥ = ¢€%/2 and p = p* = r =constant, (¢) = 6*(t) = a(t), the formulas (4.18) prove
that the periods T, and T, in (4.20) take respectively the values

(4.21) w/(V2r?), (m/(V2r)P(G) =27/r"

In the second of these we recover the amount of time needed by 8 = * = a to describe
a full cycle (see (4.4)), while the first provides the limit as /e’ -} of the period of
the evolution of p, p*, 8- 6*. Finally as J/e’1, the behaviour of T, is given by
(4.19) whereas T,/ T, tends to 2. In particular, motions with e =0 are periodic with the
period

(4.22) T,=2T,=3.708% "

(iii) The solutions of (4.6) for which ¢ =0, excluded in (i), play an important role
inthe sequel. As e > 0, (4.17) shows that p,.,;, = pX.. tends to 0 and then polar coordinates
are not suitable for the case e =0, as they would introduce a fictitious singularity in
the problem. We rather note in (4.8) that e =0 implies that, as ¢ varies, the plane
vectors (u(t), v(t)), (u*(r), v*(t)) are constantly orthogonal. Then (4.6a)-(4.6b) show
that the vectors (du/dt, dv/dt) and (u, v) are parallel and thus the direction of (u, v)
remains constant in the motion. The same remark applies of course to (u*, v*), which
must constantly lie in a direction perpendicular to (u, v). We conclude that

u=wcosp, v=wsin B,
u*=-w*sinB, ov*=w*cosp,
B constant —7/2 < B = w/2, provides a suitable parameterization. This differs from

polar coordinates in that now w, w* may become negative. From (4.6a)-(4.6c) the
equations for w, w* are

*
dw*

dw__ «3 _

dr ’ dt ’
a system which is again Hamiltonian for the Hamiltonian function
Hw*+ w*) = [(*+ v)* + (u**+ v*) ] = &
The formula (4.5) for the period yields now
(4.24) T=43%""",

(4.23)

where # is the integral
1
= J (1-¢)"* dg=3BG, ) =927
0

(B denotes the standard Eulerian beta function [1]). Therefore solutions of (4.6) with
e =0 are periodic with the period (4.24) in agreement with our earlier findings in (4.22).
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4.3. Leap-frog points.
(i) Conditionally periodic character of the computed points. In a Numerical Analysis

context, an initial value problem given by the original system (4.1) along with initial
conditions p(0), ¢(0) is numerically integrated by means of the leap-frog scheme with
step-length k. The missing starting values P!, Q' must be provided as approximations
to p(k), g(k) and then the scheme generates points P", Q" which are meant to
approximate p(nk), q(nk). However, we noted in § 2 that the behaviour of P", Q" can
best be predicted from the augmented system, which therefore acts as a modified system
in the sense of [4].

Here solutions of the original system have r= constant, while near-diagonal
augmented solutions have p, p* periodic with the period (4.18). We integrated numeri-
cally (4.1) with k=.1, p(0) = 1, ¢(0) =0 and the missing P', Q' computed by Euler’s
rule. (Note that this yields a point (P°, Q° P', Q")=(U° V°, U*’, V*%) near the
diagonal U = U*, V = V*.) The period (4.18) is then 7/v2~2.22. In Table 1 we have
displayed against the time the modulus |[R"—R°, with (R =(U™+(V")=
(P>)?+(Q"). Itis clear that when r approximately equals a whole number of periods
then R" assumes its initial value. We conclude that the computed leap-frog points
exhibit a conditionally periodic behaviour analogous to that of solutions of the aug-
mented system. (The value of k is not crucial in the experiment: other small values of
k with starting point near the diagonal lead to the same period 2.22)

(ii) Conserved quantities, invariant tori, stability. The invariant e in (4.8) is quadratic
and therefore inherited by the leap-frog discretization [15]. Namely

(4.25) e=U"U*"+ V"V*" = p"p?"* '+ Q*"Q*""' = constant, n=0,1,---.

This conservation is not strong enough to ensure the boundedness of the computed
points, for the surfaces e = constant are unbounded in R*.

The augmented system has been proved to be completely integrable and nondegen-
erate and then, as discussed in § 3, to each torus e = constant, ¥ = constant, invariant
by the.augmented flow, on which the periods (4.20) are far from resonant, there
corresponds, for small k, a neighbouring, slightly distorted torus, invariant by the
leap-frog mapping (PZ", QZn, P2n+l’ 02n+|)_) (P2n+2, QZn+2, P2n+3, QZn+3)_ In Flg 1 we
have plotted the even points (P*", Q*"), 0= n=2,500, with k=0.4, (p(0), 4(0)) ran-
domly generated in [0, 1]x[0, 1] (uniform distribution), P°= p(0), Q°=¢(0) and P,
Q' computed from Euler’s rule. The conditionally periodic character of the leap-frog
points is noticeable and the whole picture has the appearance of a plane projection
of a conditionally periodic low on a bidimensional torus.

Figure 2 differs from Fig. 1 in that now both (p(0), q(0)) and (P', Q") were
generated randomly. While this does not make much sense from the numerical analysis
point of view (where (P', Q") must be close to (p(0), g(0))) it has the merit of showing
the behaviour of the leap-frog points away from the diagonal. As expected from § 4.2
the oscillations in polar radius are now more pronounced and the ratio T,/ T, is smaller
than it was near the diagonal.

The largest value of k for which an invariant torus of the augmented flow gives
rise to an invariant leap-frog torus depends of course on the particular torus being
considered [11], [18], [21]. In the present case the discussion is made simpler by the
fact that in (3.5) or (3.6) the partial derivatives D;H are homogeneous of degree 3,
which entails that in the new scaled variables P = Pk'/?, Q = Qk'/? the parameter k
disappears from the formulae. We conclude that division by a factor of 4 of the
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TABLE 1
n t t/T |R™ - R
0 0.0 0.00 0.0
1 0.2 0.09 40x107*
2 0.4 0.18 1.4%x107°
3 0.6 0.27 29%1073
4 0.8 0.36 42x107%
5 1.0 0.45 49%107°
6 1.2 0.54 49%x107°
7 1.4 0.63 42x107°
8 1.6 0.72 29x%1073
9 1.8 0.81 1.5%x1073
10 2.0 0.90 41x1073
11 2.2 0.99 7.4%x1077
12 2.4 1.08 39x107*
21 42 1.89 42x10™*
22 44 1.98 29x%1077
23 4.6 2.07 3.8%x107*
32 6.4 2.88 43x107*
33 6.6 2.97 6.6x1077
34 6.8 3.06 3.7x107*
54 10.8 4.86 46x107*
55 11.0 495 1.8x107°
56 11.2 5.04 3.5x107*

step-length k doubles the diameter of the region in (U, U*, V, V*)-space where
invariant tori exist. :

When k is so small that the starting values (P°, Q°, P', Q') lie within an invariant
torus, subsequent values (P?", Q*", P>"*', Q*"*'), which lieina 3-dimensional manifold
¢ = constant, cannot leave the “interior” of the torus and therefore the leap-frog points
remain bounded as n increases. However, numerical experiments, and/or a theoretical
analysis of the behaviour at infinity, show that for k large (relative to the magnitude
of the starting values) it is possible for P", Q" to approach infinity in a very quick
manner. The dynamics of this escape will be investigated next. We mention that such
blow-ups are possible because the conservation of the positive-definite, quartic quantity
(4.7) is not inherited by the leap-frog discretization.

(iii) Blow-ups. We first note that if a sequence (P", Q") of computed points blows
up then (4.25) holds with a value of e that, as n increases, becomes negligible relatively
both to the magnitude of the 4-dimensional vector (P, Q¥ P, Q") =
(U™, V", U*", V*") and to the value of . This implies that the parameter #/ e? which
measures the amount of “nondiagonality” in the solutions of (4.6) increases. Also the
magnitude of the gradient

a d
( 8 9 ——)e=(u*, v*, u, v)

ou’ av’ au* av*

grows with the magnitude of the vector (u, v, u*, v*) and therefore the hypersurfaces
e = constant become closer in R* as they approach infinity. This shows that if the
sequence (P", Q") tends to infinity then the points (P", Q™), while remaining in the
original surface (4.25), become closer to the hypersurface e =0. We conclude that the
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large n behaviour of blowing-up solutions can be approximately described by the
behaviour of leap-frog solutions with e =0. Note that this sort of solution with the
vectors (P>", Q*"), (P*""}, Q>"*') orthogonal to each other is the farthest away from

the diagonal behaviour.
Considerations similar to those in § 4.2(iii) show that when e =0 we may write

pn_U"=W"cosB, Q"=V"=Wsinp,

(4.26)
P2n+l — U*n — _W*n sin B, an+l — V*n — W*n cos B’

tl

ti



described by the
solution with the
rthest away from

0 we may write

B,

STUDIES IN NUMERICAL NONLINEAR INSTABILITY III 105

-1

FiG. 2

where B is fixed, —m/2<B=n/2 and W", w*" satisfy for n=0,1,- - -
(4.27) W= WP —2k(W*"), W = Wk (W),

Clearly (4.27) is a one-step consistent discretization of the one-degree of freedom
Hamiltonian system (4.23). It is easily checked that (4.27) preserves area and therefore
the KAM theory applies once more, so that for small values of k there will be invariant
curves surrounding the origin in (W, W*)-space and guaranteeing boundedness. Note
that now with e =0 the KAM theory is applied to (4.27) as an approximation to the
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flow of (4.23), while before it was applied to (4.6) and its leap-frog discretization. In
this respect note that the hypotheses of the KAM theorem for (4.6) were only checked
for the case of e # 0 and that for e =0 the two periods of (4.6) are rationally dependent
T,=2T,.

. In a numerical experiment we took W*° =0 and left the nondimensional quantity
W= W°(2k)/*= as a free parameter. By bisecting A intervals, we found that

=.6321 is the smallest value for which an overflow takes place before 5,000 points
(W", W*") can be computed. Figure 3 depicts a thousand points of each of the orbits
A =.4,.5, .6, .632. The values A = .4, .5 lead, as far as the graph can tell, to KAM
invariant curves. The value .6 corresponds, very approximately, to a 10-periodic point
and A =.632 generates the typical islands around this periodic point. The orbit of the
overflow value .6321 (not plotted) lies in a stochastic region. The existence of periodic
points and invariant curves can of course be more accurately investigated by studying
the corresponding rotation numbers.

Finally we scale out k in (4.27) to get

(4.28) W'H": W"_(‘x/*ﬂ)3’ W*n+l___ W*n+(Wn+|)3'

If W*" is considerably larger in magnitude than W", then

(4.29) W"HE—( W*n)l‘i’ W*n+IE(Wn+l)3’
so that
(4.30) Wt = —( W*n)‘).

Thus at the new time-step n+1 the assumption |W*|»|W/| leading from the exact
(4.28) to the approximation (4.29) certainly remains valid and in the stepnt+l>n+2
a new substantial increase like (4.30) will take place. These violently growing solutions
of (4.28) actually describe, via the scaling and (4.26), growing leap-frog solutions
(P", Q") lying on the hypersurface e =0. It was found experimentally that for any
e # 0 unbounded leap-frog sequences were attracted by the violently growing solutions
just mentioned. This agrees with our former discussion and with the material in [22].

4.4. The cubic Schrodinger equation. Experiments were conducted in order to
examine blow-ups like the one reported in [17]. The time-step k was always taken to
satisfy the stability condition for the linear equation (1.2). It turns out that the spatial
(dispersive) term z,, plays little or no role in the dynamics of the blow-up, which is
governed by the nonlinearity |z|’z and confined to a very narrow section of the x-axis.
Thus the details of the blow-up are very similar to those for (1.3) we have extensively
discussed. Further details can be seen in [21].

5. Conclusions. The concept of augmented system was introduced in [15] as a
means to describe the behaviour of leap-frog discretizations of (original) differential
systems. In the present paper we have considered the particular case of Hamiltonian
original systems. It has been shown that the corresponding augmented system is also
Hamiltonian and that the leap-frog discretization induces a canonical transformation
in the augmented phase space. These results lead to the possibility of applying the
KAM theory which in turn may rigorously guarantee that, as the time increases without
bound, the numerical approximations remain bounded.

The general results of the paper (§ 3) have been applied (§ 4) to the study of the
stability of x-independent solutions of the cubic Schrodinger equation. It has been
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shown that if the time-step k is small (relative to the magnitude of the.sta.rting. point)
then, as the time increases, the computed points remain bounded, while if k is large
the ;mmerical solution will blow up. This behaviour is quite different from that
investigated in [22]. There, the leap-frog blow-up takes place for any k, no matter how
small: a smaller value of k delays but not precludes the occurrence of the blow-up.
Although our findings restore to some extent our faith in leap-frog schemes (cf. [17])
we fear that the techniques used in this paper are not powerful'enough to show a
priori how to choose k to avoid blow-ups in a practical computation.
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The dynamics of the blow-up of x-independent solutions of the cubic Schrédinger
equation has been described in detail. Experiments suggest that the blow-up of more
general solutions strongly resembles that of the x-independent case.

The augmented system has also been successfully applied to predict a number of
features of the leap-frog points, such as the periodic behaviour of their polar radius.

Acknowledgment. The authors are thankful to the referees for their thorough study
of the manuscript. Their comments have led to a number of small changes that have
substantially improved the paper.
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