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STUDIES IN NUMERICAL NONLINEAR INSTABILITY I
WHY DO LEAPFROG SCHEMES GO UNSTABLE?*

J. M. SANZ-SERNAY

Abstract. It is well known that leapfrog (explicit mid-point) discretizations of partial differential
equations may have unbounded solutions for any choice of mesh-sizes, (even for choices satisfying conditions
for linear stability). We provide a means for forecasting the qualitative behaviour of the computed leapfrog
points, thus explaining the dynamics of the nonlinear instability phenomenon.

Key words. nonlinear instability, leapfrog schemes, dynamical systems

1. Introduction. Leapfrog (explicit mid-point) schemes are often used in those
meteorological or oceanographic computations where the interest lies in monitoring
the global evolution of physical magnitudes over long periods of time. In these
circumstances, nondissipative leapfrog schemes may be more advisable than some
dissipative alternative methods [14]. However, the lack of dissipativity, while preventing
gross global losses of energy, vorticity, etc., ..., entails some disadvantages from the
stability point of view. Here the word stability must be understood to refer to the
behaviour of the numerical solution for fixed values of the mesh-sizes, as the number
of computed time-levels grows. { As distinct from the notions of Lax-Richtmyer stability
or Dahlquist stability [16], which provide conditions related to the concept of conver-
gence as the mesh-sizes tend to zero.)

In linear, constant coefficient problems with suitable boundary conditions, the
stability of leapfrog schemes is easily investigated, for in such cases the discrete
equations are solvable in closed form, via Fourier analysis. Often a relationship between
the various mesh-sizes (the so-called linear stability condition) can be derived which
ensures boundedness of the numerical solution as the number of computed levels grows.

In linear, variable coefficient or nonlinear problems describing wave phenomena,
it may happen that the leapfrog solution is unbounded for any choice of meshsizes
(even for choices which satisfy the linear stability conditions associated with all the
problems obtainable from the given one by linearizing and freezing the coefficients.)
This fact was first noted by Phillips [17] in the nonlinear case and Miyakoda [13]in
the variable coefficient case. Phillips attributed this offending behaviour (the so-called
nonlinear instability) to the presence of aliasing. However Arakawa [1] constructed a
continuous-time difference scheme for the inviscid vorticity transport equation which
suffers from aliasing and yet exactly conserves vorticity, its square and kinetic energy,
thus ensuring boundedness of the computed solution. (See Morton [14] for an excellent
survey of the role played by quadratic conserved quantities and its relation with
Galerkin’s method.) When Arakawa's scheme is discretized in time by means of the
leapfrog technique, the quadratic invariants are only approximately conserved and
nonlinear stability can arise, (cf. [19]). In practice, leap-frog schemes must be supple-
mented by filtering or artificial viscosity [12] in order to prevent the onset of nonlinear
instability. A modification of the leapfrog technique which is free from the occurrence
of blowups has been introduced and analyzed in [19], [21], [22]).

In this paper we present a technique, whereby the qualitative behaviour of leapfrog
approximations can be forecast a priori (or explained a posteriori). In particular we
provide an explanation of the nonlinear instability phenomenon.

* Received by the editors October 10, 1983, and in revised form July 11, 1984.
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Our research was inspired by a puper by Ushiki [26].

Little is known concerning the qualitative behaviour, for fixed values ot the
mesh-sizes, of discretizations of nonlinear evolutionary problems. In the ordinuan
differential equation field. interest has been centered around the issue of contrgcrivin,
{see Dekker and Verwer[4] for a thorough summary). The experience gained by Ushihj
[26] and the contents of the present paper, appear to suggest that the investigation of
stability properties may benefit from an interaction with the field of dynamical sysieni,
However our study does not rely heavily on concepts of that field and the reader onl\
needs to be familiar with the basic elementary techniques in the qualitative study or
ordinary differential svstems (sce among others [7]).

Another useful connection is that between nonlinear instability in numericul
analysis and nonlinear stability in fluid mechanics, explored by Newell [15].

An outline of the paper is as follows. Section 2 contains the main idea. The lincur
and nonlinear ordinary ditferential equation cases are described in 3§ 3 and 5, respec:
tively. Partial diferential equations are investigated in § 6. The fourth section is devared
to some technical results and the seventh contains several concluding remarks.

2. The augmented system. We consider initial value problems for the system’

(2.1} v = fiy),
where a prime denotes differentiation with respect to r and f: R - R

is a smooth ('
say) function. The svstem (2.1 is discretized by means of the mid-po

int rule

(2.2} '\,,‘::_\',,+th(y,,_ll.

where the step-length h is positive. If we fix a solution Yty of (2,17 and choose y,. v,
close to y(0), ¥t h) respectively, then each point y,. n =2, 3
be “close™ to the point vinh), n=2 3
consider u family v,y

then [10, p. 22}

- gé€nerated by (2.2) will
. In more (but rot too) precise terms, if we
of starting points. with A ranging in an interval (0, by, b, - 0,

(2.3 Hm yo= vl =yinhi
hoen

provided that

(2.4 limy, =lim Y1 =0,
h

it ho-n

However, this convergence property does not imply that for a given, fixed value
. . . .
of h.and given y,.y, tclose 1o ¥IO), ¥Uh) respectively), the sequences in R

(

(9]
N

) YooY XYoo oLy

+ Yo

o

(2.6) VIO YyChRy(2h), - -+ yinhy, - - -

exhibit the same qualitative behaviour. in fact. 1t is well known [6, p. 241] that it (2.1)
is linear '

(2.7 y = Ay

and the spectrum of A is contained in {z: Re z < 0}. so that lim, y{nh) =0, the leapfrog
points y, will, in general, be unbounded no matter how close Yo, ¥, are to y(0), yth.

In this paper a method is given for describing the qualitative behaviour of (2.5}
for fixed h. We start by introducing the sequence in R

(2'8) [.vlh .V.]]a [ylv y:\]v o v[y:nw y:n'l]! T
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It is obvious that the knowledge of (2.8) implies that of (2.5) and vice versa.
Nevertheless (2.8) is more advantageous in that each “augmented” vector [Yzu Yan+1)
is obtained from the previous vector [ya_2, ¥2.—1] by means of the one-step recursion

(2.9) [¥2ns Y2n+1]= TL¥20-2, Y2u-1),
where T:R?** >R is the mapping
(2.10) Tip, q)=[p+2hf(q), q+2hf(p+2hf(q))].

One iteration of (2.9) is equivalent to two iterations of (2.2). The main point of
this paper consists of the observation that (2.10) provides a stable, first-order consistent,
one-step method for the numerical study of the system in R,

(2.11) _ 17' d=fq), q'=fp),

which we call augmented system associated with the original system (2.1). More
precisely, if we fix a solution p(1), q(¢} of (2.11), then

(2.12) v lim T"(po, a0]=[p(a), q(a)]
2nhma
provided that pg, qg tend to p(0), q(0).
(The proof of this convergence result is trivial and will not be given here.) We
claim that the qualitative behaviour of (2.8) is governed by the qualitative behaviour of
sequences

(2.10) [p(0), (0)1, [p(h), q(h)], - - -, [p(nh), q(nh)], - - -,

where p(1), q(1), is a solution of the augmented system (2.11).

Before we justify our claim, which concerns the fixed h, n - o behaviour of the
computed solutions, let us examine the h -0, nh-fixed behaviour. We consider again
a family of step-lengths h, 0<<h < h,; fix a solution y(f) of the original system and
choose yb, y¥ satisfying (2.4). This implies, after (2.3), convergence of y! towards y(nh)
(nh constant).

On the other hand, consideration of the augmented recursion (2.9), implies after
{2.12) that
(2.13) ~ lim yl=p(a),  lim yi..=q(a)

2nh=a 2nh=a

where p(t), q(t) is the solution of the augmented system satisfying p(0) =q(0) =y(0).
Now it is obvious that this solution is given by p(1) =q(t) = y{(t), so that (2.13) is just
a restatement of (2.3). Thus, in the study of the h =0, nh-fixed case the introduction
of the augmented system does not bring any new information. It can be proved that
this conclusion is not altered if orders of convergence are taken into account. Inciden-
tally, we note that only diagonal solutions of the augmented system (i.e. solutions with
p(1)=q(1)) have appeared in our argument: clearly there is a one-to-one correspon-
dence between diagonal solutions of the augmented system and solutions of the original
problem (2.1). It will turn out that in the study of the fixed h behaviour nondiagonal
solutions of the augmented system will play an important role.

We now fix a solution y(t) of (2.1), fix a “small” value of h and choose fixed
starting vectors yo,y, “‘close” to y(0), y(h) respectively. Our aim is to describe the
qualitative behaviour of (2.5). We rely on the concept of local error, as employed in
the text by Shampine and Gordon [23, p. 22]. In these authors’ words, when y,, and
Y.+, have been computed, the best that the method (2.2) can do is to yield a point
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Yn+2 close to u(2h), where u(t) is the local solution defined by

u'="f(u), uw(0)=y,
Now, upon Taylor expanding we find that

Yn+2=(2h) =2hi(y, ) - 2hf(u(h))+E,

where E can be bounded in the form IEl|= Ch?, with ¢ independent of h. If we were
in the s -0 study, we would argue that y, ., is close to u(h) and therefore the next
computed point is close to u(2h), i.e the computed points tend to follow approximately
the local solutions. (More precisely if y, = y(0) and ¥ is obtained by means of a one-step,
first order method, then y,,, —u{h)=O(h? and Yn+2—u(2h) = O(h?).) However for
fixed h, n large, Yn+1 and u(h) can be significantly different and thus Yn+2 May not
follow the local solution.

Let us consider what happens if we describe the computed points in terms of the

augmented iteration (2.9). When ¥Y2n-1, Y2, have been computed, the method will attempt
to approximate the local solution v, w defined by

v'=f(w), w' = f(v),
V(O)=Y2n—2, W(O):an—l,

and now Taylor expansion yields

Y2 =V(2h) =E,, Yan-1 —W(2h) =E,
with [|E, [+ ||E,|| = Ch%, C constant independent of h.

points will lie near the local solution of
solutions are in general nondiagonal.

Admittedly the previous discussion has been merely heuristic and it is difficult to
see how a rigorous proof could be given when the term “‘qualitative™ behaviour has
not been mathematically defined. We recall that it is possible to define precisely what
-is meant by the statement “two differential systems have the same qualitative behaviour”

[3, p. 92]. This line of thought is not pursued in this paper. However the linear case is
rigorously treated in the next section.

In other words, the computed
the augmented recursion. Note that these local

3. The linear case. In this paragraph we consider the linear system (2.7) and
assume for simplicity that A is real and can be diagonalized by a (possibly complex)
linear change of variables. Within this section vectors will be allowed to belong to the
complex space C% We define qualitative behaviour as follows.

DEeFINITION 1. Let (a,), (b,) be sequences of complex numbers. We say that they
are linear with the same qualitative behaviour

if they are both identically zero or if
they are of the form a, = r exp (nc), b, =s exp (nd), with r, ¢, s, d complex numbers
1, $#0, sign Re ¢ =sign Re d, sign Im ¢ =sign Im 4.

Note that if (a,), (b,) are linear with the same qualitative behaviour then either
la,10, |b,[tco, or la,| = constant, [b,] = constant or [a@,|l0, 1b,110. Also as nfco, the
arguments of a,, b, are either both increasing or both constant or both decreasing.
There are nine possible qualitative behaviours for sequences other than the identically
Zero sequence.

For sequences of vectors we resort to uncoupling changes of variables as follows.
(e; denotes the ith column of the identity matrix.)

DEFINITION 2. If (a,), (b,) are sequences in C“, we say that they are linear with
the same qualitative behaviour, if regular matrices M, N can be found such that, for
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each i, 1 £=i=d the sequences of components e/ Ma,, e] Nb, are linear with the same
qualitative behaviour in the sense of the previous definition.

THEOREM 1. Let y,. y, be given vectors in €9 and fix h such that |h Im A,} <1 for
each A; in Spec (A), with A as above. Then there is a solution p(1t), q(1) of the augmented
system associated with y' = Ay, such that the sequence (2.10) and the leapfrog sequence
(2.8) are linear with the same qualitative behaviour in R*?, and furthermore p(0) =Yyo.

Remark. Note that here yo, y; can be arbitrary. In practice yo, y, approximate y(0),
y(h), with y(t) a solution of the original system, and therefore the starting augmented
vector [y, y,] will be close to the diagonal of RY xR, (i.e. vo,y, will not be widely
different).

Proof. As usual, it is enough to consider the scalar equation

y'=Ay, AeC, |hIma|<l
with augmented system
p'=kq,  q'=Ap.
After the change of variables in R” given by
ptg=P, . p-q=0,

the solutions of the augmented systems are of the form P = a exp (A1), Q = bexp (—At),
with a = p(0) + g(0), b= p(0) — q(0). Therefore, in the P, Q variables, the sequence in
(2.10) becomes

(3.1) [alexp (AR))", blexp (—Ah})"].
Now the theory of linear, constant coefficient difference equations shows that the
sequence of computed leapfrog points (2.5) is given by
yo=cr’+ d(—r H"
where ¢, d depend on 7, y,, ¥, and r is related to h and A through a function r=g{H),
H = \h given by o
g(H)=H+J1+H".
Here Jz denotes the square root of z with argument in the interval (—#/2, 7/2].

Double roots of the characteristic equation are ruled out by the condition |h Im Al <L
For the nth term in the augmented sequence (2.8), we have

Yan _ Cr:’l"’d(r_l)z" _ 1 1 C(rZ)n ]
o [.V:nﬂ:l - [6‘":" “dr—](f_l)z"] - [r —r’l] [d(r':)" )

The matrix in (3.2) is regular. (The values r=*i which render it singular are excluded
by the requirement |Im H| < 1.) Then a change of variables brings (3.2) to the “uncou-
pled” form [c(r)", d(r~*)"], which is compared with (3.1), after choosing p(0), g(0) .
such that p(0)+¢(0) =2¢, p(0)— q(0) =2d. For this choice pl0)=c+d =y,

We introduce the following subsets of C, in correspondence with the possible
nontrivial qualitative behaviours:

‘41 ={0}1
A,={bi:0<b<1},
A,={bi: =1 < b <0},

As={a:0<a<x},
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As={a: —w<a<0},
Ag={a+bi:0<a<o,0<b<1)},
A;={a+bi:0<a<oco, —1<b<0},
Ag={a+bi: ~0<a<0,0<b<1},
As={a+bi: —0o<a<0, —-1<b<0}.
The proof is concluded if we show that
g(A)={1},
g(A) ={e”: 0< 0 < /2,
g(A)={e”: ~n/2<6<0},
g(A) ={a: 1< a<w},
g(As)={a:0<a<1},
g(Ag)c{pe®: p>1,0<0<m/2},
g(A))c{pe®:p<l,~m/2<6<0)},
g(Ag)c{pe®:p<1,0<b<m/2},
glAs)={pe®: p<1,—-m/2<6<0}.

The conditions relative to A, i=1-—35 are verified straightforwardly. For A4 note
that g is univalued and analytic in the closure A, except for the branch pointat H =1
It is therefore sufficient to investigate the behaviour of the boundary of A, under the
mapping g(H ). That boundary consists of A,, A,, A, already considered, and of the
half line L={a+i,0<a<w}. A simple computation shows that if z is in L then
Imz>1, Rez>0. This accounts for A,. For A, use the reflection principle. The
remaining subsets (i.e., As, As, Ay) are easily dealt with via the symmetry g(H)=
(g(—H))™".

Remark. 1t is very important to emphasize that the solution [p(1), g(2)] given by
the theorem does not in general satisfy [p(0), g(0)]=[yo, y,]. It is easily shown that
these two 2-dimensional vectors differ by O(h) terms for fixed, arbitrary yg, ;-

Before we close this paragraph, we describe some of the properties of linear
augmented systems.

THEOREM 2. Let A be as above. (i) If A #0 is an eigenvalue of A with multiplicity
m, then A, —A are eigenvalues of the matrix of the augmented system with multiplicity m
each. If a is an eigenvector of A associated 1o A # 0, then [a, a] are eigenvectors of the
augmented matrix associated to £A. ' , _

(i) If O is an eigenvalue of A with multiplicity m then 0 is an eigenvalue of the
augmented matrix with multiplicity 2m. If a#0 is in the null space of A then [a, 0], [0,
a] are linearly independent and lie in the null space of the augmented matrix.

Proof. 1t is easy and will not be given.

It follows from this theorem that the origin is a stable equilibrium of the augmented

system if and only if the spectrum of A is purely imaginary. Theorem 1 implies then
that the mid-point rule is absolutely stable for small h and linear constant-coefficient
problems, if and only if these have purely imaginary spectra—a well-known result.

4. Some auxiliary resuits. We now turn our attention to general nonlinear aug-
mented systems (2.11). If po, go€R? we denote by p(t: po, o), (1 Po, o), the solution
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of (2.11) such that p(0; po, Qo) = Po; q(0; po, Qo) = go- Then for fixed > 0 the mapping
F,=[Po, 9ol =~ [p{7; Po, 90), (¢ ; Po, 90)] is the t-time flow of the system (2.11). It is defined
only at those vectors [po,qy] such that the corresponding solution
[p(1; Po, 90), (1 Po, Qo)) is defined at time ¢ (i.e. has not reached infinity before that
time).

THEOREM 3. (i) For each fixed time t, the t-time flow F, of any augmented system
preserves the volume in R*“. ’

(ii) The equilibria of the augmented system (2.11) are precisely the points [a, b),
with a, b equilibria of the original system. At a diagonal equilibrium [a, a] the eigenvalues
of the Jacobian matrix of the augmented system are given by A, with A an eigenvalue
of the Jacobian matrix at a of the original system (2.1).

(iii) If the original system is a gradient system i.e. f =grad V, for a scalar function
V, then the augmented system takes the Hamiltonian form

,_ oH , oH
P aq’ 4= ap
Sfor the Hamiltonian function H(p, g) = V(p)— V(q). In this case H is a first integral of
the augmented system, i.e.- H(p(t), q(t)) = constant for solutions of (2.11).

(iv) If the original system has a quadratic first integral y(t)"My(t) = constant, with
M a constant, symmetric matrix, then the augmented system has the firsi integral
p(t) TMq(t) = constant.

Proof. (ii)-(iv) are easy. For (i) note that [f(q), f(p)] is a divergence-free field in
the [p, q] space [2, p. 69]. .

For the augmented recursion we have, similarly, the next theorem.

THEOREM 4. (1) The mapping T in {(2.10) preserves the orientation and the volume.

(i1) The fixed points of T are of the form [a, b] with a, b equilibria of f.

(ii1) T is one-to-one and onto.

(iv) If the original system has a quadratic first integral y(t)"My(t) = constant, with
M a constant symmetric matrix, then the leapfrog points verify y.My,., = constant,

n=0,1,---.
p| q
S[q} _[pﬂhf(q)]’

Proof. Introduce the map
so that 7 is the composition Se S. It is clear that S is one-to-one and onto and this
implies (iii). Furthermore the Jacobian matrix of S takes the form

0 I
= [1 2th]

with Df the Jacobian of f(q) w.r.t. ¢. Then det(J)=—1 and the determinant of the
Jacobian matrix of T equals 1. This proves i), 1i) and iv) are trivial.

5. Nonlinear problems. In this section we prove, by means of examples, that the
qualitative behaviour of the augmented sequence (2.8) is governed by the behaviour
of the neighbouring solutions of the augmented system, in the sense that when [y, ¥2n+1]
has been computed [¥2,42, Y2n+3] lies near the corresponding local solution.

A. Our first example concerns the escalar equation y’' = y°, whose nonequilibrium
solutions are monotonically increasing functions of t. The origin is the only equilibrium.
If y(0) <0, then y(t) tends to 0 as ¢ tends to . If y(0)> 0, then y(¢) reaches in finite
time.
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The problem Y=y y(0)= —1, is solved by the mid-point method with k =0.1,

Yo=—1, and y, obtained by means of Euler’s rule. The computed values y, do not
exhibit the monotonic behaviour of t

he points y(nh). Some values of y, are shown in
Table 1.
TABLE 1
—_

n yn

40 —0.308

41 ~0.062

42 —0.307

43 -0.043

80 -0.220

81 0.267

82 -0.206

83 0.276

120 0.141

121 0.319
150 0.771
151 0.850

~-180 overtlow

_—

The augmented system is, according to Theor
1(P*~4¢%. In the (P, ) plane, solutions of the aug
level sets p°— g* = constant (see Fig. 1). When the

em 3, Hamiltonian with H(p,q)=
mented system are contained in the
computed points are plotted in the
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+
Y h =01 4= Yzara - -
. do rot .
shown in
05 - L
lf."
%- ! N
: 05 P= Yan
i
FIG. 2
{_( P, q) =
ed in the (p,q) space (p=Y2n, 4= ane1) 1t is clear (Fig. 2) that their behaviour mimics that of
! y2 Y.
d in the solutions of the augmented system.

Note that while the points (Y2my Y2ns+1) TEMAIN NEAT the diagonal, they roughly
move towards the origin. In this range of.values of n, the behaviour is that of the

original equation y'= y* (more precisely that of the diagonal solutions of the augmented
_system). However the computed points move quickly away from the diagonal and
- then, as discussed in § 2, the dynamics of the augmented system takes over, leading
_to a rapid increase of the magnitude of the values yn.

The fact that the blowup of leapfrog schemes is preceded by large discrepancies

between consecutive values ¥, Yo+ (i.e. nondiagonal behaviour) has been known for

a long time [11].
The following remark will be used later: Any choice of yo, Y1 ieads to a leapfrog

sequence with lim y, = . Strictly speaking there is a curve in the (p, q)-plane so that
if (yo,vy) lieson C™ then (Van, Yaa+1) li€ also on C and lim y, =0, provided that no

- round-off is perpetrated. :
P The curve C~ plays, in the difference case, the role played by the bisectrix of the

third quadrant in the augmented system (Fig. 1). Of course, in practice round-off is
always present and so computationally lim y, = for every Yo, ¥1-
The equation g = &{p) for C™ near the origin is readily obtained by assuming an
expansion -
g=d(p)=aiprap +apt

and imposing the requirement that the coordinates Ty, Tiz) of the transformed point

T(p, ${p)) satisfy Ty = ¢(T(y). Thus, we find
(5.1) q:¢(p):p+hp2+h2p3+0(p5-), p~>0".

)
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In order to numerically investigate the role of C~ the following experiment was
carried out.

For h =1, we took y,=—0.1 and successively set y, equal to —0.1, —0.095, —0.09525.
This corresponds to choosing (yo, y,) on C~ except for terms O(p ) O(pJ) o(p%)

respectively. The smallest value of n for which y, is larger than zero is given in
Table 2.

TABLE 2
Yo Y1 N
-0.1 -0.1 49
-0.1 -0.095 164
-0.1 ~0.09525 1,045

It is useful to observe that —0.095, —0.09525 are precisely the values of y, furnished
by Euler’s rule and the second order Taylor expansion method, respectively.

Returning now to the flow in Fig. 1, it should be pointed out that, due to the
divergence-free/area conserving property the behaviour of the contours pr-q¢°=
constant is similar to that of the streamlines in an incompressible flow. Thus these
contours are sparsely distributed in the neighbourhood of the equilibrium (stagnation
point) and converge near the diagonal of the first quadrant where the magnitude of
the velocity of the flow is large. Hence the diagonal p=g>0.is an attractor of the
flow of the augmented system. Analogously for the mapping T, there exists a curve

C¥ inthe region p, g > 0 such that if (y,, y,) lies on C* then for ail integers n, T"(yo, ¥1)
lies on C™ with

li_.n; T"()’Oy}"l)z(‘x), w)) ,1.1_.{2 T—"(y07 }'1)2(0, O)’

and C™ attracts the flow of the discrete recursion defined by T.

The expression g = ¢(p) near p=0 is again given by (5.1). Near p=co, g = y{p)
has an expansion in powers of p'/?

g =2hp>+(2h) 22+ O(p~V/?), .
Hence, we expect that for any choice of y,, y,, h and large n
Vansr =2hy3, + (2h)TV2pl02,

In fact, when h=0.1, y,=y,=—1, we find that for n=36, y,, = 157.43, Vons1=
4984.52 and the d1screpancy between the rlght and left-hand sides in the expression
above equals —0.937.

B. We now follow [26], [28] and consider the equation y’= y—y? This has the
equilibria y = 0 (unstable) and y =1 stable. Solutions with y(0) > 1 decrease monotoni-
cally towards 1 and solutions with 0 < y(0) < 1 increase monotonically towards 1. When
¥(0) <0 the solution reaches ~ in finite time. (Solutions in closed form are readily
available, but quantitative features are disregarded here.)

The problem y'=y—y°, »(0)=0.5 was integrated by the mid-point method with
h=0.1, yo=0.5 and y, obtained by means of Euler’s rule. Some computed points are
shown in Table 3.

Initially the values y, grow and approach the equilibrium y = 1. Then they oscillate
with increasing amplitude around that equilibrium. When the oscillations become large
enough, the computed points are “‘attracted” towards the unstable equilibrium y =0,
a surprising behaviour. Later, the y, recover the monotonic behaviour and eventually
(n=1500, 501) a situation very similar to the initial (n =0, 1) is attained.
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TABLE 3

n Yu

80 99966

81 99969
160 99988
161 1.00013
240 62801
241 1.31896
320 —.00320
321 .00262
360 —.00005
361 +.00005
440 00286
441 .00316
500 53534
501 .56013

The strange dynamics of the numerical solution is again readily explained by that
of the augmented system. Now, we have p'= q—q°, q'=p—p°, with four equilibria
0=(0,0), P=(1,1), C,=(0,1), C;=(1,0). According to Theorem 2, both O and P
are saddles, while a simple computation shows that C, and C, are centers.

The augmented system is Hamiltonian with H(p, q)= (1/2)(p*—g>)— (1/3X
p*>—¢q*). The contour H(p, g)=0 consists of the diagonal p=gq and of the ellipse
3(p+q)=2(p*+q>+pq). The latter comprises the unstable manifold of P and the
stable manifold of O. The phase portrait of the augmented system given in Fig. 3 can
now be compared with the plot of the points p=yan, § = Yan+; given in Fig. 3 (n =0,
5, 10,- - -, 450). '

We shall return to this example in § 7. ,

C. Firstintegrals. Our nextexample concerns the system Yin=—Yaa Yin = Piy-
(Bracketed subindices denote components.) The system has the first integral yi,+ Yy =
constant, implying that the origin is a stable equilibrium and that the solutions remain
bounded as f increases. The points y,, =0, y =r are equilibria, (stable for rz0,
unstable for r <0). Inthe {y,, y(2)-phase plane a nonequilibrium solution, is represen-
ted by a circular arc connecting the initial point (1,(0), ¥2(0)) to the equilibrium:

yin=0, Yooy = (¥e(0) + ¥y (0N 2.
The augmented system
P(H= 492,
Pin=qin
(5:2) ,
dn= PP
(=Pl
inherits, according to Theorem 3, the first integral

(5.3) pnvdin t Py = constant.
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However the surfaces in the (pg,,
bounded: now the first integral d
fact, consider a diagonal point p°
theorem of continuous dependenc
augmented system with initial data
equilibrium p°, PH=40,=0, Py=
of this equilibrium shows t
the regions

Pa2ys 41y, 9i2))-space whose equation is (5.3) are not
0€S not guarantee boundedness of the solutions. In
with coordinates p;, = g, 50, Pl =qly. From the
€ on initial values, we conclude that solutions to the
near p° will reach the neighbourhood of the diagonal
9= ((p0)+ (p&,) 1) 2. Study of the linearization
hat, generically, solutions in the neighbourhood of p° leave

{p1)>0, Py>0,4,,>0, qe2)> 0},

{P,>0, py>0, 9 <0, gy <0},
and enter the regions

Ry ={py,> 0,p2>0, g4, <0, G2y > 0F
and

Ry={p,, <0, P»=>0,9,,>0, 4> 0}.

Now, it is easily seen that R, R, are positively invariant for the flow of (5.1), i.e.
solutions of (5.1) cannot leave R, or R,. We conctude that solutions of (5.1) which
start near the diagonal, generically enter R, or R, and remain there. However, it is
clear from the signs of the right-hand sides in (5.1) that solutions in R, or R, have
components whose magnitude grow unboundedly. (In fact they reach co in finite time,
due to the quadratic imeraétions.) To sum up, solutions of (5.2) with initial data
arbitrarily close to the diagonal will generically reach infinity in finite time.

Once more we found that the augme
to the dynamics of the mid-point rule sol

ution to the original system. Some computed
values (h=0.1, y,,,(0) =0.2, y(0)=1.)

are shown in Table 4.
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TABLE 4
n Yizn Yi2yan Yizn+1 Yarzn+1
4 0.090 1.015 0.079 1.017
5 0.075 1.017 0.064 1.018
15 0.019 1.019 -0.002 1.020
16 0.019 1.019 ~0.006 1.021
40 3.23 3.38 —4.63 4,74
41 7.64 7.68 -16.3 16.4

The dynamics is, for small n, that of the original system: y(;» decreases towards
0 and y3), increases. In the neighbourhood of the equilibrium p° the points enter the
region R, and once there the behaviour is monotonic towards (0, 00, —00, ).

As noted before, Theorem 4 (iv) ensures the conservation property (5.3). Therefore
y take place if one of the products

YinaYn+1r OT Y2yn¥(2)n+1 is negative.

1 differential equations. We now turn our attention to the
ution of evolutionary partial differential equations
based on the leapfrog time stepping. It is supposed that the space variables are
discretized first [20] (by means of finite differences, finite elements etc.. .} so as to
approximate the original equation or system by a system of ordinary differential
equations having the time as independent variable. The resulting system is in turn
diseretized in time by means of the leapfrog technique to obtain the fully discrete set

of approximating equations. .
For simplicity we restrict ourselves te the model equation [5]: *

6. Application to partia

u,+ uu, =0, u(0, 1) =u(1, 1),

xtended among 'jc_)fthers to problems associated with

although our study can be readily e
lation of the equations of inviscid, incompressible

the vorticity/stream-function formu

flow. . ‘
ided into J intervals of equal

Let r be a real parameter'. The interval [O, l‘]"i_si div
Jand u(x;, t}is approximated

length Ax = 1/J,by means ofagridx;=j Ax,j =0, 1,00,
by the solutions U; = Uj(1) of the system [S): »

1) U+ (r/22x) U(Upri = Up_)+ (1= r)/48x)(Ujr = Ui,)=0,
' j=1,--,J-1, U=Uo.

Error estimates for Uj(?) are given in [9]. The dynamics of the solutions of (6.1)
and of their leapfrog approximations is complicated indeed. A means of achieving
some insight is to restrict the attention to J-djmensional vectors [(Us, -~ Ul
representable as a superposition of a small number of discrete Fourier modes. The
relevant set of modes must be chosen in such a way that it is closed under the quadratic
interactions in (6.1), i.e. the product of two modes in the set must belong to the set.
This simplifying approach was first taken by N. A. Phillips [17] for the vorticity transport
equation. Later references include Richtmyer (reproduced in [18]) and Fornberg (5}

Here two sets of modes are considered: ’

(i) One mode solution. Assume that J is a multiple of 3.
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Then [5] the system (6.1) has solutions

(6.2) U(1) = a(1) sin (2mj/3).

where the amplitude a(r) satisfies

(6.3) a'(t) = ca’(1), c:(gi:;)(l_g,r)_

Note that leapfrog discretization of the a
a solution to the fully discrete leapfrog partial
and leapfrog differencing commute,

Fornberg [5] observed that if r # 1/3 and a(0) and ¢ are of the same sign, then
a(t) reaches infinity at a finite O(1/Ax) time. Hence he concluded that the correspond-
ing leapfrog approximations would grow unboundedly for increasing n. The condition
on the sign of a(0) means that, for a fixed value of 1, only one among the sign patterns

0’+7_,0’+7—,0’+7_3.."0’+’~5

mplitude equation (6.3) yields, via (6.2),
difference equations, i.e. Fourier analysis

O’_’+’O’~9+’O’~’+,...’07_

in Uy(0), U,(0),- - -, U;_,(0) will lead to the bl
introducing the new variable ¥ = ca, the equatio
analysis in the previous section we conclude that the blowup in the leapfrog solution
will take place (if r 1/3) either if the signs of a(0) and ¢ agree or not. In other words
both sign patterns in Ui(0), j=0,1,---,7—1 lead to blowup.

(ii) Two modes solution. In the case r#*1/3 the instability described above is
attributable to the space discretization.

Any method employed for the integration in time inherits that offending behaviour
and this is particularly so with the mid-point rule, which, as we have seen, enlarges
the class of initial conditions leading to blowup.

The value r=1/3 is special in that it ensures the conservation law ¥ Uf(t):
constant, and therefore forces the boundedness of Ult),j=1,---,J t>0.(See Morton

(14] or Kreiss and Oliger [8] for a discussion.) Hereafter we set r=1/3, assume that
J is multiple of four and look for solutions

-+

’

ow up predicted by Fornberg. Upon
n (6.3) reads y’=y? so that from our

Ui(t) = a(t)(sin (mj/2) + cos (m7/2))+ b(1) cos 7.

The amplitudes a, b must satisfy

r_ 1 [ _lh 2
a _<3Ax> ab, b'=, <3Ax> e

a system whose leapfrog discretization entails blowup as shown in the previous section.
The material in this section is covered in detail and expanded in [27].

7. Integrability. Concluding remarks. We now return to Example B in § 5. It is
important to point out that the similarity between Figs. 3 and 4 is deceptive. In fact
the augmented system is an integrable Hamiltonian system [2], [25]. This simply means
that due to the first integral H(p(t), q(t)) = constant, the integration of the system is
achievable by quadratures. (In systems with d degrees of freedom, d involutive first
integrals are required.) For the time & flow Fy, integrability implies that all the iterates
Fr(Ppo, o) of a point lie on a curve H(p, q) = constant. These curves are closed in the
region H(p, g) <0. It may be conjectured from Fig. 4, that the mapping 7, (which
approximates F;) also defines an integrable system, i.e. a nonconstant function S(p, gq)
defined in all R? exists so that the jterates T"(py, qo) are confined to lie on a level .
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as proved that this is not the case. In

curve S(p, g) = constant. However Ushiki [26] h
a sense made precise in his paper.

fact he shows that the dynamics of T is chaotic in
This remark does not invalidate our claim that (J2n+2- Yan+3) lies near the local solution

through (¥2n, Van+1)s it only implies that the behaviour of the sequence (¥Yans Yan+1)s

n=0,1,--- may be far more complicated than that of sequences (p{(nh), q(_gh)),
n=0,1,--.1n this regard linear systems are expeptional as shown by Theorem 1.
results concerning the

We would like to recall that there are many available
behaviour of area preserving ‘mappings [24}. Some of them could be used in order to
ascertain the properties of the dynamics of T. Itis expected that such a dynamics will
be highly involved. Some of the finer details will benumerically missed due to round-off.
Of particular significance is the study of T near center equilibria, since, as noted
before, these are the only nondegenerate equilibria in whose neighboufhood the
leapfrog technique is useful. This point will be the subject of a forthcoming paper.

" Finally, we observe that theories similar to the one presented in this paper can
be constructed for any multistep method having r* —r** as first characteristic poly-
nomial. (Nystrom and generalized Milne-Simpson methods, in the terminology of

[10].) For instance the dynamics associated with Milne’s method

h
Yn+2—y:1=§(fn+2+4fn+l+fn),
would be governed by the enlarged system
p=i(pt2g),  4=32pTD
Note. Prof. M. N. Spijker has recently let us know that the idea of augmented

system had been considered by H. J. Stetter, Symmetric two-step algorithms for ordinary
differential equations, Computing, 5 (1970), pp- 167-280. However the subject of Stetter’s

paper is completely different from ours.
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