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Abstract - -  Zusammenfassung 

Convergence of Method of Lines Approximations to Partial Differential Equations, Many existing 
numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as 
method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. Our main 
purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. 
The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this 
connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic 
equation and the cubic Schr6dinger equation are used for illustrating the ideas. 
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Konvergenz you auf der Linienmethode basierenden Approximationen partieiler Differentlalgleichungen. 
Viele numerische Verfahren ffir Anfangswertprobleme ftir partietle Differentialgleichungen kann man 
als Linienmethoden interpretieren. Diese Arbeit behandelt solche Verfahren vom Einschritt-Typ. Unser 
Ziel ist die Behandlung yon Konvergenzfragen, insbesondere fiir nichtlineare Probleme. Unsere 
Hilfsmittel zum Nachweis der Stabilitfit entnehmen wir der stark entwickelten Theorie f/ir nichtlineare 
steife gew6hnliche Differentialgleichungen. Wichtig sind hierbei die logarithmische Matrixnorm und der 
C-Stabilitfitsbegriff. Eine nichtlineare parabolische Gleichung und die kubische Schr6dingergleichung 
werden verwendet, um die Ideen zu illustrieren. 

1. Introduction 

A well-known approach in the numerical solution of evolutionary problems in 
partial differential equations (PDEs) is the so-called method of lines (MOL). In this 
approach the solution process is thought of as consisting of lwo parts, ~iz.. l he space 
discretization and the time integration. In the space discrelizalion the PDE is 
approximated by a system of ordinary differential equations (ODEs) by discretizing 
the space variable by finite differences, finite elements, spectral techniques, etc. The 
time t is then the independent variable of the ODE system. In the second part, the 
time integration, this system is discretized in time to yield the final, fully discrete 
scheme. It is well known that many existing numerical schemes for time dependent 
PDEs can be viewed in this way. Concerning the time integration, we shall confine 
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our discussion to the class of one-step schemes. Concerning the discretization in 
space, we restrict our attention to finite differences. However it shouid be mentioned 
that the treatment of' finite elements or spectral methods offers no essentia! 
novelty [9]. 

This paper deals with the convergence of MOL schemes. Our purpose is to set up a 
general framework for the convergence analysis. The stability materials for this 
framework are borrowed from the field of nonlinear stiff ODEs. As a matter of fact, 
the whole analysis is centered around the semi-discrete problem. This is most 
convenient for the analysis and, in particular, allows for a general treatment. For 
example, in setting up the framework it is not necessary to distinguish between linear 
and nonlinear problems, although nonlinearities normally will make the hypotheses 
more difficult to check. 

PDE 

\ 

Fig. 1 

The diagrammatic picture of the stability analysis shows the concepts used. n the 
direct grid approach, i.e., when only the PDE and the fully discrete problem arc 
considered, one normally proves the necessary stability by using energy method 
arguments. In the MOL approach the necessary stability for the discretization in 
space can be based on the existence of a bounded logarithmic matrix norm,  a 
concept which goes back to Dahlquist [3] (see Section 3). The concept of C-stability 
is employed for deciding upon the necessary stability for the time integration. C- 
stability is an abbreviation for convergence stability (of. [1 l]t and is linked with 
stability in the Lax-Richtmyer sense and, more closely with stability in the senseof 
Kreiss [7]. In many applications C-stability can be concluded directly from known 
results from the tield of nonlinear stiff ODEs [4]. The existence of a bounded 
logarithmic matrix norm is often a prerequisite for proving C-stability. 
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In order to give insight into the feasibility and applicability of  the convergence 
theory we shall present a full convergence proof for approximations to a nonlinear 
parabolic problem (Section 5) and a nonlinear Schr/Sdinger problem (Section 6). 

This work is a sequel to the survey papers of Sanz-Serna [9] and Verwer and Dekker 
[~11]. Part  of our terminology stems from these two articles. 

2. Some Preliminaries 

We consider a real abstract Cauchy problem 

u t = ~ ( t , u ) ,  0<E_< T, u(x,O)=u~ (2.1) 

where ~,~ represents a partial differential operator which differentiates the unknown 
function u (x, t) w.r. to its space variable x in the space domain in ~, R2 or R3..~- 
should not differentiate w.r. to the time variable t. The tunction u(x, t) may be a, 
vector function. Boundary conditions are supposed to be included in the definition 
of ,~. 

To the problem (2.1) we associate a real Cauchy problem for an ODE system, 

(J=F(t,  U), 0 < t <  T, U(0)= U ~ F(t, .): ~"--+ ~" ,  (2.2) 

which is defined by a discretization of the space variable in (2.1). For the moment  it is 
not necessary to discuss in detail how the semi-discrete, continuous time approxi- 
mation (2.2) arises from (2.1). Nor is it necessary, for the time being, to be specific 
about the partial differential equation. The reason is that our convergence analysis is 
centered around the ODE system (2.2). This is most convenient for the analysis and 
allows tbr the general treatment we aim at. We merely assume that U and F 
represent the values of grid functions on a space grid covering the space domain of 
(2.1). Further, we let h refer to the grid spacing, i.e., to the grid distances which may 
vary over the grid. In what follows, p (h)-~0 means that the grid is refined arbitrary 
~ar in a suitable manner: p stands for a distance function, e.g., the maximal di:stance 
in the grid. Note that the dimension m of problem (2.2) depends on 17. 

In this paper we a\,oid queslions ~oncerning existence, uniqueness and smoothness 
of exact and numerical solutions. Hence, we suppose throughout lhat the two 
Cauchy problems at hand possess unique solulions u Ix. l) and /7 (z):, respeclix.ely. In 
addition, it is supposed that the true P D E  solution is as smooth as the numerical 
analysis requires. 

Let r h be the natural restriction operator on the space grid. We write u h (t) = r h u (x, t). 
If the discretization in space is convergent, the space discretization error 

17 (t) = g (t) - u h (t), (2.3) 

can be made arbitrarily small upon grid refinement. We shall discuss an error bound 
for q which depends merely on the smoothness of u h and on the stability of the ODE 
system (2.2) through a logarithmic matrix norm (cf. Dahlquist [3]). This error bound 
exploits fully the advantage of the notion of logarithmic matrix norm which is also 
used later on in the paper. This error bound for r/is discussed in Section 3. 
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For the time integration of the semi-discrete approximation (2.2) we shall 
concentrate on one-step schemes. Let the implicit relation 

U"+I=U"+zd~[~,U~,U"+1], z=t,,+!-t,, (n>_O) (2.4) 

represent such a scheme. Here to = 0  and U n is the approximation to O (~,}. At this 
stage we let z and p (h) be independent parameters. If lhe scheme (2.4) is a convergent 
integration formula, the time discretization error, or time integration error 

,5 ( t ,+ , )=  U " + 1 -  U(t ,+p,  (2.5) 

will vanish as r--*0 for any fixed grid spacing. It should be emphasized, however, that 
the use of a convergent ODE solver and a convergent discretization in space, not 
necessarily guarantees that the full discretization error 

g ( r n + l ) =  U n+l --Uh(tn+l)=t~(tn+l)+r[(tn+l) (2.6) 

wilt vanish for decreasing ~ and p (h). It may be necessary to impose an additional 
relation between v and p (h). A classical example is furnished by the one dimensional 
heat equation u t = u~.  If we discretize in space on an equidistant grid using second 
order finite differences and integrate in time with the forward Euler method, the 
well-known additional relation "c<�89 2 is required [8]. The explanation of this 
behaviour is related to the fact that the standard bounds for 6(t,+~) used in the 
convergence theory of O D E  solvers, involve the Lipschitz constant of the system 
(2.2) and these constants increase with decreasing h. Therefore in order to achieve 
the convergence of U" to Uh(tn) as z-~0 and p(h)~O, we must demand that the 
convergence of U" to U(t~) be uniform, in some appropriate sense, in the grid 
spacing. Here the recent results from the field of nonlinear stiff ODEs fit into the 
picture, as the Leitmotiv in those developments is the derivation of error bounds 
which hold uniformly with respect to the Lipschitz constant or the stiffness of the 
problem [4], [5]. We shall discuss these matters in Section 4. 

3. Convergence of the Discretization in Space 

Consider the two Cauchy problems (2.1), (2.2). Introduce the space truncation error 

:~ (t) = F (t, u, , (O)-  ~ (t), (3.1) 

where fih (t) = d u h (t)/d t = r h u t (x, 0, i.e., the restriction of the derivative u~ of the true 
PDE solution u to the space grid. The defect c~ is obtained by substituting the true 
solution Uh into the semi-discrete approximation. Loosely speaking, it measures how 
the partial differential operator Y is approximated by the vector function F. The 
consistency of the method for a given norm means, by definition, that II ~ (~)!l ~ 0  as 
p(h)--+O uniformly in t. 

It now trivially follows that r/, the discretization error in space, is a solution of the 
ODE system 

~=F(t ,u~,+~l)- f ( t ,u~,)+~(t) ,  0<t_< T. (3.2) 

Using the mean value theorem lbr vector functions, we can write 

ti=M(t)~7+c~(t), 0<t_< T, (3.3 a) 
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M(t)=  j" F'(t,  Uh+O~l)dO, (3.3b) 
0 

where F' (t, .) is the Jacobian matrix of F (t, .). 

This result shows that q(t) depends essentially on c~(t), which is determined 
completely by the smoothness of u and the quality of the approximation in space, 
and on the stability of the ODE system (2.2). We shall give a bound for 71 from which 
convergence of U to u h can be derived, provided that the discretization in space is 
consistent. This bound leans completely upon the fundamental concept of a 
logarithmic matrix norm and is due to Dahlquist [31. For details on the important 
role of the logarithmic matrix norm in proving stability of stiff nonlinear ODE 
systems the reader can also consult [4], Section 1.5. 

]ntroduce a norm II. [I on ~ ' .  L e t / / [ ' 1  be its corresponding logarithmic matrix 
norm. Let T h (t) = {f : f = Uh (t) + 0 r/(t), 0 _< 0 _< 1 } and let/2ma x be a constant such that 

/2 . . . .  2 max {# [ f '  (t, ~)] : f ~ T h (t)} for all t ~ [0, T].  (3.4) 

Hence {'or each t we compute the maximal logarithmic matrix norm of F' on the line 
segment T h (t) and majorize these by #m~x. Then 

t 
] q (t)][ ~ e  ~m~• i] 17(0)]]-t-j" e uma*(t-r) II ~('c)][ dr. (3.5)  

o 

Supposing that [] r/(0) II = 0, we can write 

[111 (t)I] < C (t,//re,x) max ]r ~ (z)II, 0 _< t _< T, (3.6) 
0<r_<t 

where C (t, #max) = ( eu"~"~t - l ) / / /max  depends solely on t and #max. Consequently, if a 
constant//max exists independent of the grid spacing, It r/(t)][ --,0, for p (h)--,0. Thus 
we can state 

Theorem 3.l :  Suppose that the discretization in space is consistent and that gmax 
exists independent of the grid spacing. Then the discretization in space is con- 
vergent. [] 

The practical importance of this theorem lies in the fact that in many applications in 
the field of nonlinear, time dependent PDEs a #m,x can be determined which is 
indeed independent of h (see the Sections 5, 6 and [9, 11]). Applications can also be 
found in the solution of stationary problems in PDEs by means of iterative methods. 
As it is well known many of these methods can be thought of as integrating in time a 
related time dependent PDE whose asymptotic solution uh(oo ) should give the 
desired stationary solution (see, e.g., [13]). Here it is required that ~max <0. 

The inequality (3.5) is in fact nothing else than a stability inequality for the Cauchy 
problem (2.2). To see this, let U,/~ be two solutions belonging to two different initial 
values U ~ and ~o, respectively. Let//max FlOW satisfy 

//max>max {// [ f '  (t, f)] : f = 0  U ( t ) + ( 1 - 0 )  U(t), 0<0_<1}, O_<t_< T. (3.4') 

Then (cf. [3]), 
il ~2 ( t ) -  g (t)!i -< e~mo~' II (;o -- Uo II, 0 <_ ~ <_ T.  (3.53 
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The inequality (3.5) is equivalent to this stability inequality which can be refined 
somewhat by taking tt .... time dependent. The growth factor exp(~,,,~ ~) is then 
replaced by 

exp ( i / ~ x ( z ) d ~  ) . (3.7) 

Observe that the inequality (3.5') trivially implies uniqueness of solutions for system 
(2.2) for any grid spacing. 

Remark 3.1 : For the standard 1 p norms the expression for/~ is known. Let A =(a~i) 
be a real m x m matrix. For the norms il" I11 and [1" II o~ on ~ ,  

# l E A ] = m a x ( c % t  ~ laijl), #~v[A~--max(a ,+ ~ ia;ji)- (3.8) 
J iKj i j ~ i  

For inner product norms, i} { H = ({, ~)l..'z, 

,,, I-A] = max (A ~, ~ ),. II, ii 2 (3.9) 

Hence, for the spectral norm, g2 [A] is the maximal eigenvalue of the symmetric part 
(A+ Ar)/2 of A. [] 

Remark 3.2 : It follows from (3.9) that g [A] < v if v represents a one-sided Lipschitz 
constant of A, i.e., (A {, ~)_<v I1 ~ II 2, V ~ ~ R". Loosely speaking, the logarithmic 
matrix norm might be considered as a generalization of the one-sided Lipschitz 
constant for norms other than inner product norms. When dealing with inner 
product norms it is sometimes more convenient to use the one-sided Lipschitz 
condition for F, 

( f ( t , ~ l ) -  .F( t ,~2) ,~ l  - ~ 2 ) -  < v  ii ~1 - { 2  !12 , 
(3.4") 

rather than computing F' and using (3.9). Any constant v satisfying (~.4), a one- 
sided Lipschitz constant ibr F, may be used for #m,~ in the inequalities (3.4), (3 A'). D 

Remark 3.3 : Obviously, the accuracy of U will depend largely on the magnitude of 
the truncation error ~. For finite times, i.e., T <  ~ ,  the bound (3.6) shows that 
1 l~(t)][ has the same rate of convergence as ]l c~(t)ll, provided that t~:, exists 
independent of h. If # .... < 0, this bound also applies to Cauchy problems on infinite 
time intervals. For dissipative problems it is often possible to prove the existence of a 
negative #m~- If ttm~---- 0, (3.6) allows a linear growth of the space error in time. If 
#ma~> 0, it allows an exponential growth of this error in time and will mostly be 
rather pessimistic on long time intervals. [] 

4. Convergence of the Full Discretization 

Consider the integration method (2.4) for the Cauchy problem (2.2). in this section 
we shall study the full convergence of this method as z ~ 0  and p (h)-,0. For ease of 
presentation we restrict ourselves to constant stepsizes r, i.e., in the limit process 
we take t,+l~(O, T] fixed and suppose that z--*0, n ~o o  in such a way that 
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(n + t)z  = t, + ~. The restriction to constant  stepsizes is not essential for our results 
and, as it is well known,  can be removed.  

Let us introduce the full t runcat ion error 

]~(tn+ 1)__ ~ 'n+l  __Uh(tn+l), 
(4.1) 

0 ~+1 =uh(t,)+T4)[T, Uh(t~) ' 0"+1] .  

Observe  that  fi is defined with respect to the true P D E  sotution and not for the true 
O D E  solution U. If  we had used U the t ime truncat ion error 

?(tn+~)=U"+~-U(t~+~), gJ~+l=U(t , )+~[z ,U( t , ) , (7~+~]  (4.1) 

would have been obta ined which is considered normal ly  in numerical  O D E  theory. 
In the setting of P D E s  the error (4.1) is to be preferred for the convergence analysis 
for reasons which will be discussed in Section7. Note  that,  in a sense, the full 
t runcat ion error fi contains the space t runcat ion error ~., given by (3.1), as the 
increment opera tor  ~b of the integrat ion formula depends on the O D E  opera tor  F. 

Let us express the full discretization error ~ (t~+ 1), given by (2.6), as 

~(~.+~)= U "+1 - 0 "+~ + f i ( t . + l ) ,  (4.2) 

and suppose that  for a positive ~ce R and a no rm on ~" ,  

I'~ 0 "+1 - U "+~ l[ <~c [I 0 R -  U" II, 0"=Uh(t,,)- (4.3) 

Then IIe (t, + ,) [1 < ~c l] e (t,) [I + z, where Z is an upper  bound for ft. The error e (t,. + 1), 
i.e., the error after n + 1 t ime steps, then is easily shown to satisfy 

1 --K "n+l 

1 - K  
, ~csa 1. (4.4) 

This s tandard  inequality is the start ing point  for the full convergence analysis which 
is based on the concept  of C-stability. In the definition below a second numerical  
solution 0 "+! is considered, i.e., 0 ~ + 1 =  0 " + z  ~ [ z ,  U ' ,  0"+1] .  

Definition 4.! : Let ] .  be a norm on ~m. The integrat ion method  is called C-stable 
for the Cauchy problem (2.2), with respect to this norm,  if a positive real number  
vo = ro (h) and a real constant  Co, independent  of z and h exist, such that  tor each 

~ (0, %] and each U '~, C"~  ~ "  

i i 0  " ~ x - c " + l l l - < ( l + c o r ) H O ' - U ' i l .  [ ]  (4.5) 

R e m a r k 4 . 1 :  Note  that  tbr U", (~.+1 one may  substitute uh(t.) and 0 ~+l 
(cf.(4.3)). 
C-stabili ty is an abbrevia t ion  for "convergence stabil i ty" and is linked with stability 
in the Lax-Rich tmyer  sense [8] and, more  closely with stability in the sense of Kreiss 
[7] (sometimes referred to as s trong stability [8]). If  Co _<0 and we think of U", as 
being a numerical  solution, and of ~7" as being a per turba t ion  of U ", then (4.5) shows 
that  the per turba t ion  will not increase in time. The bound (4.5) then provides the 
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definition of contractivity, also called "computing stability" [11J, a cortcept which 
plays a major role in recent developments in ODEs [41. If Co > 0, we allow an 
increase in the difference C ~ ' -  U ". In this case C-stability is mainly useful in the 
convergence analysis and not as a concept of "computing stability". Finally note 
that the essence of C-stability in the context of PDEs, is that C O is independent of the 
grid spacing. 

Let us now suppose that for a given Cauchy problem (2.2) the integration method is 
C-stable, We then may substitute •= 1 + C  0~ into the bound (4.4). An easy 
derivation yields the familiar expressions 

~-~-iZiCol -~, Co<0,  

II ~;(t.+ ~)~1 -< ~ ~-~ z t .+ , ,  Co =0 ,  (4.6) 
( z -1ZCo 1 (eC~ 1), Co>0,  

where, for convenience, ii e (to)II is taken to be zero. By the hypotheses of C-stability, 
we can conclude that this error bound is valid uniformly in the grid spacing under 
the stepsize restriction r e (0, r o (h)J. Note that for Co < 0 (strict contractivity) the 
bound is useful tbr infinite time intervals. 

Finally we suppose that the fult discretization is consistent, i.e., 

li "c-1 fl(t,+l)]] ~ 0  as "c,p(h)-~O, (4.7) 

uniformly in n. It is then evident that we can state 

Theorem 4.1: Suppose ~hat the Cull discreeization is consistent and the imegration 
method C-s~able. Then the fidt discrerization is convergent. [] 

At this place we want to emphasize that the stepsize restriction for C-stability, Le., 
~ (0, Zo (h)l, may lead to additional conditions on the refinement of' the time- and 

space grid. It is well known that for explicit integration formulas ro(h)--,0 as 
p (h)-~0. 

Remark 4.2: The C-stability theory of implicit Runge-Kutta methods for stiff 
ODEs, where the statement "independent of the grid spacing" is to be replaced by 
"independent of the stiffness", has already been developed to a considerable extent 
[4]. For example, for constant coefficient linear systems dissipative in inner product 
spaces the celebrated property of A-stability implies C-stability where C 0=o. 
Likewise, the property of B-stability [21 for nonlinear dissipative problems is a 
C-stability property where again Co =0. A general result for non-linear problems 
satisfying the one-sided Lipschitz condition (3.4") can be found in [41, 
Theorem 7.4.2. Because of the intimate relationship with semi-discrete PDEs many 
results from the field of nonlinear stiff ODEs apply to PDEs in a straightforward 
manner. For integration methods not belonging to the class of implicit Runge-Kutta 
methods the hypotheses of C-stability must be verified separately. By way of 
illustration we shall devote the Sections 5 and 6 to two examples. [] 
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5. A Nonlinear Parabolic Equation 

We consider a nonlinear, one space dimensional, scalar parabolic initial-boundary 
value problem of the type (cf. [123) 

U t ~ f  , x ,u , - - -  (t,x) ,O<t<_T,x~.Q=(O, 1) 
o x  

u(O,t)=bo(t), u(1,t)=b 1 (t), 0<t_< T, (5.1) 

u(x,O)=u~ O<x<_ 1, 

where the functions p (t, x) and f (t, x, a, b) satisfy the familiar conditions 

p(t,x)>_po>O , 0<t_< T, x e Q ,  (5.2a) 

8f(t,x,a,b)/~?b>_fo>O, 0<t_< T, x~f2, a, be~ .  (5.2b) 

Here P0 and fo are constants. In addition, we suppose that there exist real numbers 
f -  1, f l  such that 

f-1 <_~f(t,x,a,b)/Oa<J~, 0<t_< T, xe(2, a,b~ R. (5.3) 

5.1. Discretization in Space 

We space discretize the problem on a nonequidistant finite difference grid. Define 

~h={Xj:Xj=Xj-l+hj, j=l(1)m; x0=0,  xm+l = 1}. 

Apply 3-point finite differences for the discretization of(p (t, x) ux) x. Let Uj and Fj be 
the j-tb component of the grid functions U and F, respectively. Then, for j =  1 (1)m, 

Fj(t, U)=f  ,x~, U~, - (s~- Uj_ 1-(s  7 +sf)  Uj+sf  Uj+I , (5.4) 
x j  + 1 X j _  1 

where 
sf = p(t , l  (xj+ xj+_l))/[ x j--x j+_l 

and 
Uo(t)=bo(t), U~+ l(t)=b l(t). 

Let us prove convergence of U to Uh in ! ~, i.e., m the maximum norm 
IF U li ~ = maxjl Uj I, along the lines of Section 3. The logarithmic matrix norm/~o~ is 
given by 

/ ~  [A] = m a x ( a , +  ~ [ a,j]), (5.5) 

for any real m x m matrix A = (aij). Let U be a point on the line segment T h (t) which 
appears in the inequality (3.4) for the logarithmic norm. The Jacobian matrix 
F'(t, (J) of the vector function F(t,.) defined by (5.4) is of the form 

i f '  (t, U)  = O 1 -}- D 2 D 3 S, (5.6) 

where D1, D2, D 3 are rn x m diagonal matrices and S is a symmetric tridiagonal rn x rn 
matrix. The entries of D1 are the derivatives of f to the third argument. All entries are 

21 Computing 33/3-4 
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less than or equal to the constant f~. The entries of D 2 are the deriva~,ives o f f  w. r. to 
the fourth argument and, by assumption, D 2 is positive definite. Da contains all 
numbers 2/(xj+ ~ - x j_ ~.), hence is also positive definite. Finally, the entries in thej-th 
row of S are just the numbers s[ ,  - ( s [  +57),  s[ .  It follows that S is diagonally 
dominant with negative diagonal entries. 

Now we are ready to compute ~oo [F'( t ,  U)]. First, we conclude that/x~ [fi] =0.  
Then, using the positive definiteness of D2 and D 3, we find/~o IDa D3 S] = 0, too. It 
follows that 

~ IF'  (t, U)3 <Jl ,  0 _< t _< T. (5.7) 

Clearly, this inequality is valid for any U ~ T h (0, 0 <_ t <_ T (it is even vaiid for U 
arbitrary in R~). Hence we have found a bound p .... =f~ satisfying (3.4) for any h, 
and/~m,~ is independent of h. There remains to verify the consistency of the space 
discretization. As it is well known, any component ~ of the truncation error (3.1) 
satisfies 

c~j= O (p (h)) as p (h)~0, p (h)= max (hi), (5.8) 
J 

provided that max (hj)/min (hi) remains bounded. Consequently, the discretization is 
consistent of order one. We have II ~- (t) [[ oo = O (p (h)), 0 _< t _< T. The convergence in I ~ 
follows from Theorem 3.1. 

5.2. Discregization in Space and Time 

Along the lines of Section 4 we shall prove I ~176 convergence of the two fully discrete 
schemes which are obtained by applying the implicit and explicit Euler ruies 

U ~*~ = U"+~F(t~+I ,  U~'*~), (5.9) 

U "*~ = U"+~F(t~,  U"), (5.10) 

to the semi-discrete continuous time system (5.4). We first consider the implicit 
scheme. Its C-stability can be concluded directly fl'om the information available on 
the semi-discrete approximation using known results from the field of stiff ODEs. 
Let U ~, C n + 1 be a second implicit Euler solution. Using (5.7) and Theorem 2.4.1 of 
[4] we find that, if zfl < 1, then 

1 
ii 0 , + ~ - u , + ~  Ii~ < i[ C"~-  u "  [I . (5 . l~)  

- -  1 - -  "of1 :~: 

This means C-stability under the stepsize restriction rJ'1 < ! .  Note that the 
amplification factor and the restriction on ~ are both independent of the grid spacing 
and are in fact valid in the whole numerical solution space due to the introduction of 
the constant fl in (5.3). 

We next examine the full truncation error (4.1) of the implicit scheme. According to 
the definition (3.1) of the space truncation error the true PDE solution satisfies 

U~(t~+l)=[Uh(t,,+I)--~(t,~+~)--Zfih(t~+i)]+'rf(t~+t,U~,(t,,+~)), (5.12) 
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while the local implicit Euler solution 9 "+1 computed from Uh(t,) satisfies 

9.+1 =u,h(t,,)+ zF(t,,+l, ~,+1). (5.13) 

By interpreting the relation (5712) as an implicit Euler step, with the bracketed term 
playing the,role of U", application of the C-stability inequality (5.11) to the 
equations (5.12), (5.13) yields directly 

1 
I[ f i ( t n+  1)1[oo - -  < 11Uh(t,+l)--uh(t,)--Zfih(t,,+Z)--~:(t,,+l)Ho~ 

1 - -  Z f ,  (5.14) 

1 
II O (T2) "F T 0( (tn + 1) il e'J , 

- -  t _ z f  1 

for all rf l  < 1. This proves the consistency of the full discretization and according to 
Theorem4.1, convergence for z,p (h)---,0 without any further restriction on z and 
p (h). We emphasize that the second derivative with respect to t of the true PDE 
solution Uh appears in the bound. 

We now proceed with the explicit Euler scheme. The truncation error fi (t, + 1) is given 
by 

fl (t.+ , )=uh (t.) + z F (t,,,uh (t.))-- Uh (t,,+ l) 
=uh(t.)+ Zfih(t.)--Uh(t.+l)+ ZC~(t.) (5.15) 

= O ( ? ) + ~  ~(t,,), 

showing consistency. Next the C-stability. Let U", U"+ z be a second explicit Euler 
solution. Then, using the mean value theorem, 

[~n+ l  __ gn+l =(I+rM(t,,))(O"- U"), 

1 (5.16) 
M(t , )= 5 F'(t,,O Lr" + ( 1 - 0 )  U")dO. 

0 

For obtaining a C-stability result, we must compute the maximum of 
I[ 1 + r f '  (t., 0 II ~ on the line segment ~ = 0 U" + (1 - 0) U", 0 e [0, 1]. Consider the 
Jacobian matrix (5.6). Let D~j be thej-th entry of the diagonal matrix D~ for i = 1,2, 3. 
Then 

max [l I+zF'(t,,,~)[loo=max max {I l+zD1a-vD2jD3j(s]+sf) l  
~ J 

+ z D2jD3j (s? + s])} (5.17) 

= l + z m a x  maxD~a< 1 + z f l ,  
a 

if, for all ~ and all j, 

z(D2iD3j(s f +s j+ ) -Dw)~  1. (5.18) 

To appraise these inequalities, suppose first that the parabolic equation is ut= uxx 
and that Qh is equidistant (see (5.4)). Then, for all j, Dw=0,  D2j= 1, D3j=h -~ and 
s] =s + =ti -1, so that the inequality reduces to the well known stability result 

<�89 2. Consequently, in case of ut= uxx and f2 h equidistant, explicit Euler is C- 
stable in I ~176 under the stepsize restriction "c<�89 2. 

21" 
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Let us return to the general case. Inequality (5.18) yields a bound for r (the bound ro 
in Definition 4.1). However, this bound still depends on the numerical solution U" 
through the diagonal matrix entries D U and D:j. The dependence is removed by 
using the hypotheses (5.2 b), (5.3). If z satisfies 

5 ' z(J o D3j(s; + s [ ) - f _ l ) <  1, ( .19j 

we thus arrive at (for any pair of numerical solutions) 

[1 O"+x - U"+I [I ~ _<(1 +zfl)]l U-"- U'* i[~. (5.20) 

This proves C-stability in l ~ of explicit Euler for the semi-discrete system (5.4) under 
the stepsize restriction 

O<r<_(j'oD3j(s; +s / ) - f _~ )  -~ . (5.21) 

6. The Cubic Schri~dinger Equation 

From [10] we quote the following initial-boundary value problem for the cubic 
SchriSdinger equation (here u = Iv, w]r), 

v,+w~+(v2 +w2) w=O, 0 < t <  T, X~f~=(XDXR), 

Wt--lJxx--(U2 +W2)l)=O, O < t ~  T, Xef2=(XDXR), 
(6.1) 

v~(x, t)=w~(x, t)=0, x = x D x  R and 0<t_< T, 

v ( x ,  0) = v ~ (x ) ,  w ( x ,  0)  = w ~ (x ) ,  xL -< x _< x R .  

0.1. Discretization in Space 

Let us space discretize (6.1) on the equidistant grid 

Qh = {X1 ~- XL, Xj= Xj_ 1 + h (2 <_j <_N - 1), 
(6.2) 

xu = XR; h =(x R -xL ) / (N-  1)} 

for a given integer N. Suppose that standard second order finite differences are used 
for ux and ux~. Let Vj (t) and Wj (t) be the resulting approximation for v (x j, t) and 
w (x j, t), 1 <j_< N. The semi-discrete, continuous time approximation to (6. t) is then 
given by, j =  1 (1)N, 

Pj+h-Z(Wj+I-2  Ws+ Wj_,)+(V2 + W f) W~=0, 
(6.3) 

/ /Pj-h-2 (Vj+~-2 Vj+ Vj_D-(V2 + W 2) Vj=0, 
where 

V0= V2, W0=W 2 and VN+I=VN_I, WN+I=Wu_z (6.4) 

in accordance with the boundary conditions. 

Let Uj=[Vj, W~] T, U = [ U  r, ..., UrN] "r. The system can then be rewritten as 

~5"=r(c)=(s+~(c)) u, (6.5) 
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where S is the block tridiagonal matrix 

- 1  A - 2 A .  A.  

S-/r A - 2 A  "A 1 

2A - 2 A  

and B(U) is block diagonal, i.e., 

B (U) = - diag (B~(U~) ..... B N (UN)), 

(0 
Bj ( u )  = _ v :  - w~  

This form is more convenient for our convergence analysis. 

(6.6) 

(6.7) 

We shall prove convergence of U(0 to uh (t) in the norm associated to the inner 
product 

N 

(U,  U ) 2 = h  ~ "  u f  0~, U, ( Je~" ,  m = 2 N .  (6.8) 
j = l  

The double quote means that the first and last element in the sum are multiplied by 
�89 Observe that system (6.5) is conservative for this norm, i.e., II U (0 It 2 is constant in 
time [10]. For the 12 norm, the logarithmic norm #2 is 

/& [A] = max , A a real m x m matrix. (6.9) 

Let U be a point on the line segment T h (t). The Jacobian matrix F' (U) can be written 
as  

F ' ( U ) = S + d i a g ( D ) ,  Dj= 3 p 2 + W ~  2 ~ ' ~  j '  (6.10) 

Because S is skew-symmetric, (S~, ~ ) = 0 ,  V~, so that 

#2 I-F' (U)] = #2 [diag (D)] < max (P~ + I~f). (6. t 1) 
J 

It follows that (3.4) can be satisfied for a ~max independent of h if P~ + I//f remains 
bounded as h ~ 0  for V t e [0 ,  Tj. 

In order to remove this additional hypothesis on boundedness of the semi-discrete 
solution we now resort to a standard argument which was also used in [10]. 
Consider, instead of the problem (6.1), 

vt+ wxx +a(v2 + w2)w=O, 0<t_< T, x e Q = ( x D x R )  , 

wt--vxx--a(v2 + w2)v=O, 0 < t <  T, X~f/2=(XL, XR) , 
(6.12) 

V~(X,t)-----Wx(X,t)=O, X=XL, X R and t > 0 ,  

v (x,  0) = v ~ (x) = w ~ (x), xL -< x _< x ~ ,  

where a (z) : N ~ [~ is a smooth function such that (i) a (z) = z in a neighbourhood of 
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the exact solution {u (x, t), xc -< x _< xR, 0 < t _< T} of the problem (6.1) (ii) ', a' (z)i z is 
bounded. Obviously, such a function can be constructed. 

Lemma 6.1 : The initial-boundary value problem (6.12) has a unique solution which is 
just ~he solution u=[v,w] r of the problem (6.1). 

Proof: It was assumed that the problem (6.1) has a unique solution u=Ev, wi r. 
Clearly, this solution u also satisfies (6.12) because due to hypothesis (i) on the 
function a (z), a (v 2 + w 2) = v 2 + w 2 . To prove that this solution is unique, we suppose 
that a second solution exists, say ~i = [)5, 6 i t ,  satisfying the homogeneous Neumann 
conditions and the initial condition fi (x, 0) = [v ~ (x), w ~ (x)] r. Now consider the 
energy functional 

X R 

E(t )=  ~ [(v -t~)2 +(w-u9) ;] dx, O<<_t<_ T, (6.13) 
x L 

which satisfies E (0)= 0. It can be shown that E (t) satisfies a differential inequality 
E(t)<_CE(t), 0<t_< T, C being a positive constant. Consequently, E(t) = 0  for all 
t e [0, T]. Thus there is at most one solution. [] 

Let C = F~ (U) be the semi-discrete approximation to (6.12). A calculation similar 
to that for the original system (6.5) reveals that the logarithmic norm 
#2 [F" (U)] satisfies 

#2 [F'~ (/.7)] < max ] a' (z j)] z j, za = U + W~. (6~ 14) 
J 

By hypothesis (ii) on a(z), for ~)=F, (U)  a #m.~ exists independent of h. Because 
~) = F. (U) is a consistent approximation (of order two) to (6.12), its solution U thus 
converges in 12 to the solution uh of (6.12) as h-+0. This implies also convergence in 
t~~ -t/z ]l-112) SO that from Lemma6.1 and hypothesis (i) on a(z) i t  now 
follows that for h small enough the solutions of both semi-discrete systems coincide. 
This observation completes the proof of the boundedness of the term PY + WY in the 
inequality (6.11). 

Summarizing, according to Theorem 3.1 we have proved that the ODE system (6.5) 
is a second order convergent approximation in 12 to the cubic Schr6dinger problem 
(6.1) (the proof of second order consistency is trivial). 

0.2. Discretization in Space and Time 

Along the lines of Section 4 we shall prove l z convergence of the fully discreLe scheme 
defined by the implicit midpoint rule 

u o+1 = c7~ F(�89 u"+�89  ~"~+ ~). (6.15t 

This is an obvious scheme for conservative problems such as (6.5) as it is 
conservative, too, i.e., IL U" ]L2= il U(0)lly(n>0). A particular predictor corrector 
implementation of (6.15) which exploits the pseudo-linear form of the Schr6dinger 
equation was studied in [6]. 

The proof of C-stability can be stated again from known results [1,2, 4, 5, 12] from 
the field of nonlinear stiff ODEs. Let U", 0 "+1= be a second~ implicit mid-point 
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solution. Then, using (6.10), (6.11) and the inequality (4.5) from [12], it follows that 

(2+zv~ CT"-U" 
[I U "+*-U"§  112, 0_<zv<2, (6.16) 

for any one-sided Lipschitz constant v > maxj (~'} + ffV2), 0 now being a point on the 
line segment connecting �89 (Un + U" + 1) and �89 (U" + U" + 1). Consequently, the implicit 
midpoint rule is C-stable for the Schr6dinger problem (6.5) if componentwise the 
implicit midpoint solution remains bounded as h---,0. Let us assume, for the moment, 
that this is true and let us proceed with the proof of consistency. 

For this purpose it is convenient to introduce the defect (sometimes called truncation 
error, too) 

dl(t,,+l)=Uh(t,)+zF(�89189 (6.17) 

Note that dl depends solely on the true PDE solution. The full truncation error/~ is 
given by 

P (t~ 0 = ~2~ - u ~ ( t . +  1) ,  
(6.18) 

1 i 1 An+ ~ffn + l = l, lh (12n) .jr ,rj F (~ l, lh ( tn) 7_ ~ U 1). 

We write 

fi(t,,+~)=d l ( t .+l )+zF( �89 �89 (]"+l)--zF(�89189 (6.19) 

By applying the same techniques which are used for deriving the C-stability 
inequality (6.16) one can prove that 

11 fi(t,+l)H2-<(1 - �89 -1 il dl (tn+l)[]2, ZV<2, (6.20) 

where v is again an upper bound for the logarithmic norm (here computed on the line 
segment connecting C ""+ 1 and Uh (t,,+ 1))" 
Next we introduce a second defect 

d 2 ( t n + l ) - = b l h ( t n ) q - � 8 9  (6.21) 

which is associated to the trapezoidal rule (Crank-Nicholson), and establish that for 
the ODE system (6.5) the difference d(t,+l)=d~ (t,+~)-d2(t,+~) is given by 

d(t,,+,)=�89 B(�89 �89 ) 
(6"22) 

- } ~ B (.~ (t~ .h (t.) - �89 ~ B (.~ (t. +,)) "h (t~ +1). 

It follows that d is independent of the space differencing. A straightforward Taylor 
expansion shows that 

IId (t, + 1)i[ 2 < c r 3, c independent of z and h. (6.23) 

The final step in the proof of consistency is the examination of de. Using the space 
truncation error (3.1) we can write 

d2(t.+l)=Uh(t.)--Uh(t~+,)+�89189 (6.24) 
From the second order consistency of the trapezoidal rule, the second order 
consistency of the discretization in space, the inequalities (6.20) and (6.23), we thus 
arrive at the consistency result 
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li z-1 fi(t , ,~)li2-<C1 "~2 q- C2 h2, z v < 2 ,  (6.25) 

where C, and C 2 are constants  independent  of z and h. 

There remains to remove the boundedness  hypothesis  on the components  of the ~h]ly 
discrete solutions U n + 1. This can be done in exactly the same manner  as we did for 
the semi-discrete solution U. In conclusion, according to Theorem4.1  we have 
proved that  the fully discrete implicit midpoint  solution U" + 1 converges in ! 2 to the 
true P D E  solution uh(t,+l), as z,h~O, without  any further condition on ~ and h. 
Convergence of the fully discrete trapezoidal  solution (Crank-Nicholson)  can be 
proved in the same manner .  

Remark 6.1 : Substitution of ~- = C1 z 3 + C2 "c h 2 into (4.6) yields the corresponding 
bound for the discretization error ~ (t, + 1). Here  Co > 0 as the amplification l'actor K in 

(4.4) is given by t~ = (2 + r v)/(2 - z v), where v > 0 stands for an upper  bound for the 
logari thmic matr ix  norm/~2 computed  in a tube around u h (t), 0 _< t _< T. Due to the 
earlier ment ioned proper ty  of conservat ion we can deduce that  in (4.6) the 
exponential  behaviour  for increasing time cannot  be realistic. In fact, using 
conservation,  we can state the crude bound 

i[ ~G+l)II2< II g "+~ i l2+l iuh( t .+Ol lN=l luh(O) l l z+l luh( t~+l ) l l2 ,  (6.26) 

which shows that  e is bounded in time. [ ]  

7. Some Remarks on the Use of the Time Truncation Error  

To  conclude this paper  we consider briefly the possibility of a convergence analysis 
which is set up completely in accordance with the M O L  approach.  More  precisely, 
an analysis with proves the convergence of the O D E  solution to the true P D E  
solution as p(h)-~O and, separately, the (uniform in h) convergence of the fully 
discrete solution to that  of the O D E  as z ~ 0 .  The  convergence of the discretization in 
space can be proved along the lines of Section 3. The convergence proof  of the time 
integrat ion then requires the use of the time truncat ion error 7 given by (4.1') in 
combinat ion  with the proper ty  of C-stability. Let  ~ be an upper  bound for y. 
Supposing C-stabili ty and using 7 (t,,+ ~) instead of fl (En+ 1) in the derivations of 
Section 4, one thus arrives at the error bound 

II e(t,+l)iL < 11 rt(t,+l)il + L] 8(t ,+l)][ ,  (7.1) 

where, similar to (4.6), the t ime integrat ion error 6 (t~+ t) satisfies 

I T  ! t ~lCol 1, Co<0, 
II ~ (t,+i)[I <'~ z-1 ~ t ,+ l ,  C o = 0 ,  (7.2) 

( ~-1 r Co  1 (eCo,,,+, _ 1), Co > O. 

Obviously,  the task is now to prove that  z -~ ~ 0  as z~O,  uniformly in the grid 
distance. More  precisely, a constant  C 3 and an integer q should exist, bo th  
independent  of z and h, such that  

lh ~/(t.+l)[I-<C3z q, ~-*0. (7.3) 
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As po in t ed  ou t  earl ier  in  [9] this hypo thes i s  of t ime cons i s tency  u n i f o r m  in  h m a y  be 
difficult to verify. F o r  example ,  cons ider  the inequa l i ty  (5.14). U s i n g  the p resen t  

app roach ,  one  finds 

1 
]i }'(t,~+ 1) ][ ~ - l _ r f i <  21"c2maxlf3j(tn+0j~c)[,  0 < 0 j < l , _  _ v i i  < 1. (7.4) 

In  o rder  to ensure  t ime cons i s t ency  u n i fo rm  in h, it is necessary  to p rove  tha t  the 
second  der iva t ive  0 (t) of  the semi-discre te  so lu t ion  U (t) is b o u n d e d  as p (h)--,0. 
Despi te  conve rgence  of U (t) to u h (t) this p r o p e r t y  of b o u n d e d n e s s  of U (t) requires  an  
add i t i ona l  inves t iga t ion .  This  is the m a i n  reason  why  we prefer the direct  a p p r o a c h  
tbr the cons i s t ency  pa r t  in  the convergence  proof.  A n  add i t i ona l  r eason  lies in  the 
fact tha t  the  a p p r o a c h  via (7.1) is n o t  able  to a cco un t  for cance l la t ions  be tween  errors 
in the  t ime a n d  space d i sc re t iza t ion  (an example  of such a cance l l a t ion  is p rov ided  by  
the D o u g l a s  h igh  accuracy  scheme for the  hea t  equa t ion ,  [8-1, p. 190, fo rmula  G). 
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