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We prove that a family of methods for the numerical solution of the Korteweg-de
Vries equation is convergent. This family includes as particular cases some known
finite difference and finite element schemes. It is also found that the stability
properties of the methods vary significantly with the treatment of the non-linear term.

1. Introduction

THE NUMERICAL SOLUTION of the Korteweg-de Vries (KdV) equation has been the
subject of many papers over the last few years. Zabusky & Kruskal (1965) employed a
second order accurate leap-frog scheme. Dissipative difference methods were
considered by Vliegenthart (1971) and the Hopscotch technique by Greig & Morris
(1976). More recently Kuo Pen-Yu (1978) has studied a family of explicit difference
methods. Galerkin methods for the KdV equation were analysed by Wahlbin (1974)
and implemented by Alexander & Morris (1979). Sanz-Serna & Christie (1979) have
introduced a modified Petrov-Galerkin technique. Finite Fourier transform methods
have also been applied to the KdV equation (Canosa & Gazdag, 1977).

In this paper we obtain results concerning the convergence and stability of a family
of methods which includes as particular cases some of the schemes above. (Note that
most of the quoted papers restrict their study of stability to the linearized KdV
equation.) Our analysis is based on a perturbation technique which is also capable of
handling other non-linear partial differential equations (Kuo Pen-Yu, 1965, 1977,
1978, 1979a, b, 1980a, b, c, d).

For simplicity we consider the periodic initial-value problem

Lu(x, t) = u,+uu +u,., = flx, t),
: H w1

u(x,0) =1y, —o00<x<c0,

where u,, [ have period 1 with respect to x and satisfy adequate smoothness
requirements (cf. Sjéberg, 1970). The study of the Cauchy problem is completely
analogous and will not be considered here. The problem (1.1) will be discretized in
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space but not in time, so as to approximate it by a system of ordinary differential
equations. Qur notations are as follows. The net spacing is called i, with h = 1/N, N
integer ; Vi(t), or simply V;, denote the value V(ih, t) of a mesh function. We set

v, W)= % hV, W, (1.2)
i=1

IV[12 = (V. V), (1.3)

Vii= Vier —Vio1)/2h, (1.4)

Vei— Mg —H)/h, (1.5)

Vei= Vi—Vio1)h, (1.6)

V,i= Viea—Vi_p)/4h, =)

For each operator introduced there are two possible replacements for the term wu,,
as this can also be written in the form (u?),/2. In fact we consider a blend between
those two alternatives and introduce, for 0 < o < 1, the operators

5o

JOW W)y = aWVe ity

WV (1.8)
1—a
2

It is well known that for a =%, J®(U,U), I¥(U, U) are, respectively, the
replacements obtained for uu,, when the Galerkin method based on piecewise linear

interpolants with element size h, 2h is used.
Furthermore, if f§ is real, set

KO, W)= BIDW, W)+ (1 — BIOW, W). (1.10)

IOV, W), = aWV, ;+ WV, (1.9)

In order to accommodate the possibility of a mass matrix, we define
2
j=-2

where M; are real numbers such that their sum is unity, M; = M_;,j = 1, 2 and there
exist constants C,, C,, independent of h, with

CollVII* < (MV, V) < GIVII%,

for arbitrary V. Hypotheses of this sort are naturally fulfilled by the mass matrices
which arise in the finite element method.

With these notations we consider the following approximation to (1.1)

! ou > ’ .
(Lh U )i =M (:lti + K(z! -ﬁ)([[’ U )i o+ bx_i,i,i = ﬂ’
: (1.12)
Ui(0) = ug ;-

There is no substantial change in the subsequent analysis if the right-hand side of

(1.12) 1s replaced by Mf;.



SOLUTION OF THE KORTEWEG—DE VRIES EQUATION 217

2. Results

Consider, for the time being, i fixed, and suppose that in (1.12). f, u, are perturbed
and become f+f, ug +ily, respectively. Let U denote the resulting perturbation in the
solution U. Fix an interval (0, T) in the t-axis, where 0 < T < cc and assume that f, ii,
are such that

- ;
p = llfil1*+ f If(0)II? dx, (2.1)
J 0
is finite. Then:

THEOREM 1. There exists a constant C > 0, which depends only on U, such that for

OD<t< T :
Cie®, ifa=14,

IBQP<s  cpet
1+Cph™3(1—€“Y

(2.2)
ife#% and 1+Cph™3(1—€“) > 0.

Remarks. It should be emphasized that when « # %, the bound on the perturbation
only applies provided that p is suitably small. This phenomenon is typical of non-
linear stability analyses (Stetter, 1973) and has no counterpart in the Lax- Richtmyer
linear theory (Richtmyer & Morton, 1967). A similar remark applies to the fact of the
constant C being dependent on the solution.

Proof. C will denote a positive constant which depends only on U, but is not
necessarily the same at each occurrence.
The identity

VW)= ViWe i + Ve Wi (2)(V W, = V5 W5 ) (2.3)

X,

is required later. We drop the superscripts «, f5.
Taking into account that the operator (1.10) is bilinear, we find the equation

U i < o s
M (-(,,t—) +K(U, Uy + KU, U);+ KU, U)+ Uz ;= fi, (2.4)
ot Ji
which is satisfied by U. Now multiply (2.4) by U, and sum to get
1d h = S A % i oy ey
2dr MU, U+ (U, K(U, UN+(U, K(U, U+ (U, KU, U= (U,f), (25)

T

since the term involving U__, is easily seen to vanish.
For any value of «, the identity (2.3) can be used to yield

i s =t = 2

(T, (T, Uy)

It
R
A
=
c
i
=
-
T
+

(U, 0. (2.6)
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Periodicity enables us to prove
s = o 1—o ~ =
(U,J(U, U)) = —a((UU),, U)— *; (Ug, UU), (2.7)

and a new application of (2.3) shows that the right-hand side of (2.7) is

. i L
—a(UT,, T)— (UUU)—%—(Uxe,U)—}-O;E(DxUX,U] lz—-a-(Uj,UU). (2.8)

We take the arithmetic mean of the expressions (2.6) and (2.8) and get

i 1—3fx — 3o . h(1
@30, =2 0, 9+ " w,0,0- P wu, 0, @9
whence P N
(U, J(U, U))l < CliU|I~ (2.10)
The same procedure would be valid for the operator I and so
(T, K(U, U)) < Cll0))? (2.11)
holds for arbitrary o. Analogously
(T, KU, D))l < Clill>. (2.12)
Next N I Te
(U, K(U, 0))l < COIUIP+IUUI*+IUT %)
< CUITIP+h=21001*), (2.13)
and 5 o
(0,01 < (01 +1171%)/2. (2.14)
When o = 1, the bounds (2.11), (2.13) can be improved, as in this case the identities
(0.K(T,0)=(U,K(T,U)=0 (2.15)

are verified in a straightforward manner.
Set g(x) = 0 if & = L, e(a) = 1 if « # §. Then substitution of (2.11), (2.12), (2.13),
(2.14) [or (2.15)] in (2.5) yields

d o o = - -
= MU, U} < CUITI> +e()h IO +11111%).- (2.16)

Integration and the properties of M give
T r
N0@) < Clli|I*+ ’A Il df)-l-CJ (U@ +e()h U de, (2.17)
J 0
and a fortiori

0@ < C5+Cj (T @IP +eh =T @)I*) de
0

The theory of integral inequalities (Hartman, 1964, pp. 24 29) shows that ||U(t)||*
can be bounded by the solution of the initial value problem

© = C[r+e(x)h3v?], v(0) = Cp, (2.18)
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in the interval of existence of v. An elementary integration yields
P Cﬁ eCz
T 14e(@h3CH(1 €5’

v(t) (2.19)
which is defined provided that its denominator does not vanish. Now the proof is
complete.

As a first application of the theorem we study the propagation, as t increases, of a
perturbation in the initial data. With f=0 and T = oo, we obtain, if o = §

1T < Clill* e, ¢ >0,

while if x # 4 the bound (2.19) becomes infinite when ¢ is so large that the
denominator vanishes. This seems to agree with the results of Fornberg (1973), who
proved that when the periodic problem for the equation

u,+uu, =0 (2.20)

is solved by a method which replaces uu, by J®(U, U), « # 3, then it is possible to
introduce perturbations i, of the initial condition u, = 0, which make the numerical
solution to blow-up in finite time. [Note that the proof of Theorem 1 is valid for
Equation (2.20).]

Let us turn to the question of convergence. We introduce the order of formal
approximation p of L, to L, by

Lu—IL,u=0("), h—0, (2.21)
then:
THEOREM 2. Assume that the solution u of (1.1) is smooth and that either o = Jor o # 3
and p > 3. Then for each fixed t, 0 < t <o, U(t) converges to u(t), with

|u(t)—U@)|| = O(h"), as h— 0.
Proof. Set g, = Lyu. Then, according to (2.21), U solves the perturbed problem
LU = f= Lu = g,+0(I¥).

For each fixed h, Theorem 1 supplies a bound for the norm of the resulting
perturbation u— U, in such a way that the corresponding constant C depends only on
the restriction of u to the given mesh. Furthermore, inspection of the proof of
Theorem 1 reveals that the same value of C will do for all such restrictions, provided
that u is smooth. Thus C depends on u but is completely independent of &, and the
proof follows easily. [Note that when « # 4, the condition p > 3 ensures that for h
small 1+Cph~3(1—€) > 0, making the application of Theorem 1 possible.]

3. Concluding Remarks

When o =1, f =1, My = 1, and (1.12) is discretized in time by means of the mid-
point rule (leap-frog), the resulting scheme reduces to that introduced by Zabusky &
Kruskal (1965), with p = 2. Other choices of 8 are useful when « = 4. For instance, if
B = 2, then the replacement for uu, is fourth order accurate.
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Sanz-Serna & Christie (1979) have suggested a fourth order accurate method based
on the Petrov—Galerkin finite element procedure. Their method is recovered from
(112) when ¢ =0, §=2. M _, =M, =135 M_, =M, =13, M, = 33. It should be
emphasized that the introduction of the mass matrix, while allowing a higher order of
accuracy, results in an implicit scheme. For the KdV equation, where by stability
requirements finite difference schemes have the time stepsize k restricted to be O(h?),
implicitness is not to be particularly feared.

Numerical performances of these schemes are reported by Sanz-Serna & Christie
(1979), and show, in agreement with Theorem 2, that methods with higher order of
local accuracy lead to lower values of the global error u—U. For instance, in the
study of the propagation of a single solution, comparable errors are obtained between
the Zabusky-Kruskal method with h = 0-01, k = 0-0005 and the Sanz-Serna- Christie
scheme with h = 0033, k = 0-01. (The trapezoidal rule was employed to advance in
time the latter.) Thus the use of fourth order methods seems advantageous. On the
other hand our analysis shows that schemes with « # § could suffer from poor
stability properties, although it is fair to say that the present authors have not come
across any cases of dramatic growth of the computational errors.
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