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The term “product approximation™ is used to refer to a finite element technique for
non-linear problems which has appeared several times in the literature under different
presentations. The aims of this paper are to give a unified approach to the product
integration technique and to provide new evidence for the fact that it can be a good
alternative to the standard Galerkin approximation in certain circumstances.

1. Introduction

THE TERM “‘product approximation” is used to refer to a finite element technique for
non-linear problems which has appeared several times in the literature under different
presentations (see end of this section). The aims of this paper are to give a unified
approach to the product integration technique and to provide new evidence for the
fact that it can be a good alternative to the standard Galerkin approximation
(S.G.A.) for non-linear problems in some circumstances. Rather than start with the
general situation let us describe the product approximation (P.A.) idea as applied to
two particular problems.
As a first example consider the non-linear two point boundary value problem

~u"+flu)y=0, 0<x<l1, (1.1)
u0)=u(1)=0 (1.2)
which is assumed to have a unique solution. We introduce a mesh
O=Xp<x;<...<x<Xp4;=1

and denote by ¢ix), i=1,2,..., k the usual basis functions for the space of
continuous piecewise linear functions satisfying the boundary conditions (1.2). The
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S.G.A. to u(x) is obtained from the equations
(Ui ¢ )+ (AT Uigl), 6) =0, 1<j<k, (13)

where U, is the value of the Galerkin approximation at x;, a dash denotes
differentiation with respect to x, and (,) denotes the [*-inner product. The P.A. is
defined by the equations

(X Uidi )+ (LS Wi ;) =0, 1<j<k, (1.4)

where u and f(u) have been approximated by independent piecewise linear functions.
Since (1.4) can be written in the form

2 Ui¢ )+ 2 fUN&i ) =0, 1<j<k, (1.5)

it is clear that in order to determine the P.A. solution we can first compute the inner
products (¢;, ¢;), (¢}, ¢;) and then solve the resulting system of non-linear equations.
On the other hand to obtain the S.G.A. solution, the computation of the inner
products and the solution of the equations are not separate processes and at each step
of the iteration, numerical quadrature must be used in order to evaluate the
contribution of the non-linear term. Thus, in general, P.A. requires much less
computational effort, which as we shall see in Section 3 may be achieved without
sacrificing accuracy.
As a second example consider the non-linear conservation law

2
u,+<32—) =0, —o<x<+00, t>0 (1.6)

together with square integrable initial data. We keep the time continuous and
discretize in space by means of piecewise linear elements based on the nodes x;,
i=0,+1,+2,.... The S.G.A. equations are

(X Ui0di, 6;) =1 (X Uie)*, ¢5) =0, j=0,£1, £2,... (1.7)

i
(a dot denotes differentiation with respect to t), and the P.A. system is

When the elements are of uniform length h, (1.7) and (1.8) reduce to

1 . .. 1
GV = 6 (U1 +4U;+ U; )+ o U1+ U;+ U )(U;4 1 —U;-1) = 0, (1.9)
and

1. .. 1
Py(U;) = ‘6‘(Uj+l+4Uj+ Uj-1)+ E(U,?H_Uf—l) =0, (1.10)

respectively where j =0, +1, +£2,....




PRODUCT APPROXIMATION FOR NON-LINEAR PROBLEMS 255

Before we compare (1.9) and (1.10) it is worth considering the linear analogue of
(1.6)

u+u, =0. (1.11)

With linear elements of uniform length h, the Galerkin method yields the system

1 . . 1
L,(U;) = 6 (Uj41+4U;+U;_ )+ h (Uj+1-U;-1) =0,
j=0,1,2,... (1.12)
which enjoys two important properties.

(1) It is fourth-order accurate, for if v(x, t) is a smooth function

1 . . . h?
¢ Ve # 474 V0) = 5y (00);+O(h), (1.13)
and
1 h? “
T Vier=Vioy) = (v0);+ 3 (Vxxx);+O(H?), (1.14)

so that for the solution u of (1.11)
h2
Ly(u;) = (u,+uy);+ 3 [+ up)er];+ O(h*) = O(h*). (1.15)

It should be emphasized that this high order local accuracy at the grid points is not
accomplished by approximating each term u,u, to fourth-order, but by
approximating u,, u, to O(h?) in such a way that second-order terms cancel each other
through application of the differential equation (cf. compact differencing).

(ii) It is conservative in the sense that

d d
J J

This conservation of a quadratic quantity follows directly from the Galerkin
equations and it is desirable not only because it reproduces a property of the equation
(1.11) but also because it ensures numerical stability. (For related material see
Morton, 1977.)

We now return to the non-linear equation (1.6) and its discretizations (1.9) and
(1.10) and ask whether properties (i) and (ii) hold. Looking first at accuracy (i.e. local
accuracy at grid points) one has, replacing v by v?/2 in (1.14),

1 2 h2 2
() K N
2 2 2
P,(u) = [u,+ <32—”+ %{[u,+ (%)xlx}j +0(h%), (1.18)

so that the P.A. retains the accuracy of the linear case. This is a consequence of the
fact that in the P.A., the term u? has been treated as a variable in its own right, so that

which implies
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the Taylor expansions of the linear case are carried over to the non-linear problem.
On the other hand for the S.G.A., one has
1 v? h? .
oh Vier 4V + Vi )V = Vi) = ) ‘+ 3 (V0,0 + 20, 0,5); + O(h*).
x_lj
(1.19)

Here the O(h?) terms do not reproduce a derivative of v2, the cancellation cannot take
place, and

Gy(u;) = O(h?). (1.20)

The estimates (1.18) and (1.20) depend strongly on the fact that local accuracy is
measured pointwise. Were it to be measured in a more global sense, using L, norms
for example, P.A. would be only O(h?) accurate whereas S.G.A. would be O(h*)
accurate. Which scheme is the more “accurate” therefore depends on the
interpretation we give to the numerical solution (the best fit at nodes or the best L, fit
by a piecewise linear function). These and related issues are discussed in some detail
by Cullen and Morton (1980). Within the context of this paper, the methods and
analysis are motivated by the pointwise properties of P.A. as it applies to the various
problems. It seems more appropriate, therefore, that accuracy be measured pointwise
and so this approach will be adopted for the remainder of the paper. On this basis, it
may be argued that P.A. schemes more closely resemble finite difference than finite
element methods.

Turning now to conservation properties, it is well known that G,(U;) preserves the
quadratic quantity in (1.16) whilst P,(U;) does not do so. This loss of conservation
properties results in non-linear instability of the scheme (1.10). In fact Fornberg
(1973) proved that if the mass is “lumped” in (1.10) initial data can be found for
which the numerical solution blows up in finite time. Recently Chin, Hedstrom &
Karlsson (1979) have extended Fornberg’s conclusions to the “unlumped” case.
However, these instabilities occur only for values of u close to zero since the
approximation of the non-linear term cannot distinguish between positive and
negative data and can be removed by the use of artificial viscosity. Overall (1.10) can
be a useful scheme as is shown by the numerical computations of Chin et al. (1979)
and Turkel (1980).

The examples above illustrate why P.A. may be more advantageous than S.G.A.
The primary reason is computational ease. However, it may occur (as for equation
1.6) that P.A. also leads to increased local accuracy. The idea behind P.A. is so simple
that it is not surprising that many authors have used it without attempting a
comparison with S.G.A. These authors include Swartz and Wendroff (1969, 1974a),
Chin et al. (1979) for first-order hyperbolic equations, Fletcher (1979) and Lucchi
(1980) for time-dependent problems in fluids and Sanz-Serna and Christie (1980) for
non-linear dispersive waves.

An outline of the rest of the paper is as follows: Section 2 contains a more general
description of the method, Section 3 deals with the elliptic problem where optimal
order of convergence in the energy norm is proved. Sections 4 and 5 are concerned
with Burgers and Korteweg de Vries equations, respectively.
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2. Description of the Method

Returning to the first example considered in the introduction, it is convenient to
reformulate Galerkin’s method in a way which does not involve the nodal values U,
or the basis functions ¢, explicitly. If we denote by S the finite dimensional space
spanned by the functions ¢;, the S.G.A.

Ux) = Y. Ui(x)
where the values U; are given by (1.3), solves the problem: find U € S such that
VoeS
(U, )+ (f(U), ¢) = 0. 2.1)
To derive a similar expression for the P.A.

U*(x) = Z Uidi(x),

where the values U; are now given by (1.4), let us note that Y f(Uy)¢; is the unique
element in S which interpolates f (Z U,~¢i) at the nodes x;, so that if we denote by Qg

the operator which maps each function onto its piecewise linear interpolant, U* is a
solution of the problem: find U* € S such thatV ¢ € §

(U¥, ")+ (Qsf(U*), ¢) = 0. (22)

We are now in a position to treat the general case. Let us consider the partial
differential equation

N G ¢ é
fix, u)+i§1 {87, Fi(x, u)— o, <ai(X)a—xi Gi(x, u))} =0 (2.3)
where x = {x{, x,,. .., x,}”, which is to hold in a region of x space with appropriate

boundary conditions. In a weak form, for some appropriate function space X, the
solution of (2.3) solves: find u € X such that V¢ € X

(/1x u>¢>+z{<x (), ¢> (,(x) Gix )2f)}=o. 24)

Now let S be a finite dimensional subspace of X. Then the S.G.A. U to u solves: find
UeSsuchthatV¢eS

(f(x, U) ¢)+Z {( o, Fix, U), d)) < {x) G{x, V), ¢>}=0, (2.5)

Furthermore, if we assume that it is possible to define an operator Qg which associates
with each function an interpolant in S, we define the P.A., U* to u, to be the solution
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of: find U* € S, such thatV ¢ € §
4 0
(st(X, U*)’ ¢)+ Z {(& QSFi(x’ U*)9 d)) +
i=1 i

<ai(x)iQsG,{x, U*), 6_¢>} =0. (2.6)
6xi axi
The extension of the method to cover semi-discrete schemes for time dependent
problems offers no additional difficulties. Expressions of the form QgF(x, U*) cause
no difficulty when S is a finite element subspace of Lagrange or Hermite type and can
be written in terms of the nodal values. The case of splines is more complicated, as the
construction of QgF involves the solution of a system of linear equations. This
difficulty was overcome, however, by the observation of Swartz and Wendroff (1974b)
that spline Galerkin methods for linear one-dimensional problems are equivalent to
collocation methods which, of course, involve only nodal values. This simplified
Galerkin technique is implemented by Chin et al. (1979).
We end this section with two remarks.

(i) It might happen for a given problem that the S.G.A. and the P.A. equations are
identical. For example, if piecewise linear elements are used for the problem

[F)lw=9(x),  u(0)=u(1)=0, 27

it is easily seen that both procedures are equivalent. In fact in the term
[dF(U)/dx, d¢/dx], the function d¢/dx is piecewise constant, and so the inner product
can be expressed in terms of F(U) evaluated at the nodes, where it equals QgF(U). A
non-linearity of the form (2.7) occurs for example in the Boussinesq equation.

(i) The operator Qg is chosen to be of interpolatory type on the grounds of
computational simplicity. However, projections onto S of a different character have
been used before. (See for example Cullen, 1974; Cullen & Morton, 1980).

3. The Elliptic Case

For simplicity of exposition we shall be concerned only with one-dimensional
problems, although our results can be proved with small changes in higher
dimensional cases.

Consider the two-point boundary value problem

Llu(x)] = f[x,u(x)], 0<x<1, (3.1)

with homogeneous boundary conditions

D*u(0) = D*u(1) =0, 0<k<n—1, DE%, (3.2)
where
Llu(x)] = .Z (=YD [pj(x)Du(x)], n>1, (3.3)

j=0

and the coefficients are real functions in C[0, 1]. Ritz-Galerkin methods for this
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problem have been analysed by Ciarlet, Schultz & Varga (1967, 1969), Perrin, Price
& Varga (1969), and Herbold, Schultz & Varga (1969).

Denote by H" the Sobolev space of real functions on (0, 1) whose first n derivatives
are square integrable, and by Hp the closure in H" of the set of all infinitely
differentiable functions with support in (0, 1). The following hypotheses on the
problem (3.1)—(3.3) are supposed to hold. First we assume that there exist two real
constants f# and K such that for all w e H},

1

0

n b1
Wl = sup w(x)l < K U [ p;(x)[Dw(x)]? +/3[W(X)]2] dx} - (4
j=0

This hypothesis is automatically fulfilled when L is strongly elliptic, i.e. when p,(x) is
positive in [0,1]. Next we introduce the finite quantity (cf. Ciarlet et al., 1967,

lemma 1) given by
f{ p,-(x)[wa(x)]z} dx
A= inf 2~=° (3.5)

n l ’
n f [w(x)]? dx
0

A is a lower bound for the eigenvalues of the associated eigenvalue problem
Llu(x)]+Au(x)=0, 0<x<1,

subject to boundary conditions (3.2). We then assume that f(x, u), 0f(x, u)/du, are real
and continuous, and that the following monotonicity requirement holds: there exists
a constant y such that

fow)=fes0)

—A. (3.6)
u—v
Finally it is easily proved that
1 n b
lwll, = U [Z Pj(X)[D’W(X)P+v[W(X)2]:| dX} (3.7)
o Lj=o0
is a norm on HY which satisfies
Iwll, < Klwll, VY we Hj. (3.8)

Now consider a finite dimensional subspace S — Hj with associated projection
operator Qg, as in Section 2, and suppose that the S.G.A.,,U e Sandthe PA.,U* e §
exist.

THEOREM 1. Under the previous hypotheses

IU—=U*|l, < KlIQs f[x, U*(x)]—fTx, U*(x)]lluo » (3.9)
where K is the constant of (3.4) and is independent of S.
Proof. U, U* satisfy

(_2:'30 p;(x)D'U(x), D"qb(x)) +(fIx, Ux)], ) =0 (3.10)
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and
Y. p(x)DU*(x), D’¢(X)) +(Qs fIx, U*(x)], ¢) = 0 (3.11)
j=0

respectively for all ¢ € S. Subtract and set ¢ = U—U* to get

¥ DU~ U*(0), DIV () - U*(x)]) +

(fTx, U= Qs fTx, U*(x)], U(x) - U*(x)) = 0. (3.12)
If we simplify the notation by setting

fIx, Ux)] =f(U) and f[x, U*(x)] = AAU*),
(3.12) becomes

1
U —U*|I3 L [U(x)— U*(x)]* dx+(f(U)= Qs f(U*), U= U*) = 0. (3.13)

Now
(fU)=Qs fIU*), U=U*) = (fIU)—fIU*), U=U*)+(f(U*)-Qs f(U*), U~ U*),
(3.14)
and the hypothesis (3.6) implies that
1
(SU)-fU*), U-U*) 2y j [U(x)—U*(x)]* dx. (3.15)
Taking (3.14) and (3.15) into account, (3.13) gives
U= U*II; < [(fAU*) = Qs f(U*), U~ U*). (3.16)

We now bound the right-hand side of (3.16) to obtain
U= U*I7 < IAU*) = Qs fIU*)l|, I1U = Ul (3.17)

and the result follows from (3.8).

Let us now discuss the implications of the theorem. Suppose L is of second order
(n=1) and that S is the Lagrange space of continuous functions in (0, 1) which
vanish at x = 0,1 and whose restrictions to the intervals (0, h), (h, 2h), ..., are
polynomials of degree <m. (Here 1/h is an integer N.) Then it is well known that in
the norm ||-||, the distance between the solution u of (3.1)-(3.3) and the S.G.A. is
llu—Ull, = O(h™) (i.e. optimal rate of convergence). Also, according to the standard
theory of interpolation we have

IAU*)=0s fIU*)Il,, = O(H™* )
provided that fis smooth and U* has bounded derivatives within each element as
h— 0. We conclude from (3.9) that ||[U—U*|, = O(h*'), which in turn implies
llu—U*||, = O(h™). Thus the optimal rate of convergence when using P.A. is retained
and the distance between U and U* is asymptotically negligible when compared with
the distance between u and U. An additional feature of the result (3.9), which we have
not exploited, is that it provides an a posteriori computable bound on the difference
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TasLE 1
|Error| at x = 05, linear elements

N PA. S.G.A.
2 217x1073 206x1073
4 519x 1074 498 %1074
6 228x107* 220x 1074
8 1-28x 1074 123x 1074
10 416x10°° 402x107°
20 203x 1073 197x10°3

between U and U*. Note that P.A. does not enjoy the “optimal approximation
property in energy norm” that normally applies to Galerkin approximations of
elliptic problems.

In order to assess the performance of the two techniques, we apply both to the
problem

D?u(x) = exp [u(x)], u(0)=u(1)=0 (3.18)
with solution
u(x)=—In2+21In {csec [c(x—3)/2]}, c~1.33. (3.19)

The bound (3.4) is valid with K = 1, B = 0. Also A = n? and y can be chosen as 0 or 1
to make ||-||, a Sobolev norm. Equation (3.18) was solved by the S.G.A. and P.A.
methods based on linear and quadratic Lagrange elements of uniform length h = 1/N.
Although the theorem covers the energy norm, we quote the behaviour of the error at
the nodes. Only the results at the node x = 0-5 are displayed as other nodes follow the
same pattern. For linear elements we see in Table 1 that both methods perform
almost identically and the nodal errors are O(h?) as expected.

The results corresponding to quadratic elements are displayed in Table 2. It is
convenient to separate the cases of x = 0-5 being (a) an integer or (b) a half-integer
node.

For integer nodes the error associated with the P.A. is four times that associated
with the S.G.A. and both appear to be O(h*). For the half integer nodes the picture is
reversed and the P.A. is more accurate. These differences may be attributed to the fact

TaBLE 2
|Error| at x = 05, quadratic elements

(a) Integer node (b) Half-integer node
N P.A. SGA N PA. S.GA.

2 252 x 1074 423x1074
4 165 x1077 478 x 1077
10 427x1078 1111 x 1078

0645 x10°¢ 3-80x 1076
0159 %1077 476x 1077
00005 x 10”7 124x 1077

~N W W
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that, for small values of N, the error alternates in sign at the nodes. Close to N = 7 the
error for P.A. changes sign at the half integer nodes explaining the low value in
Table 2(b). For larger values of N the error increases initially although it is
asymptotically O(h*) and consistently better than S.G.A.

4. Burgers Equation
In this section we shall concern ourselves with Burgers equation
u+uu,—eu,, =0, ¢ > 0. (4.1)

It is known that for small values of ¢ the solution develops steep fronts and numerical
methods are likely to produce results including large non-physical oscillations unless
the element size is unrealistically small. In finite difference methods upwinding has
been the usual technique to avoid unwanted disturbances and Christie, Griffiths,
Mitchell & Zienkiewicz (1976) have shown how upwinding can be simulated in the
finite element method by choosing test functions which are different from the trial
functions (Petrov—Galerkin). For instance in the steady linearized version of (4.1), .
Christie & Mitchell (1978) have shown that if u is approximated by

2N
U(x) = Z B;,(x)Uy), 4.2)
i=0
on a grid of elements of size h, where the trial functions B;,(x) are the usual Lagrange
quadratics, then upwinding can be introduced into the Galerkin method by adding a
cubic perturbation to the quadratic test functions to give the latter as

Tix) = B;(x)+ 0,0 (% —j) +a,0 G —j+ 1) 4.3)
at an integer node and

X .
T;_y(x) = B,_(x)— 4030 <71_ ——]) 4.4)
at a half-integer node where

—40s(s+4)s+1) —-1<s5<0
of(s) = 0

4,
elsewhere (43)

and a,, a,, a5 are the upwinding parameters. Full upwinding in the quadratic case is
given by oy = a3 =1, , = 0.

We now use the trial and test functions (4.2)—(4.5) with values of a,, a,, a for full
upwinding for the numerical solution of Burgers equation using S.G.A. and P.A.
techniques. The latter is easily extended to the case of different trial and test functions.
Two problems are chosen to illustrate the behaviour of each method for a range of
values of the parameter ¢. The first problem has initial and boundary values

u(x, 0) = sin nx, 0<x<l1
and (4.6)
u,t)=u(l,t)=0, t=0
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respectively. The theoretical solution of this problem given by Cole (1951) exhibits a
steep front near x = 1 which broadens and dies out as ¢ increases, leaving a “sine”
wave of reduced amplitude. For the second problem we proceed in reverse order: via
the Hopf transformation (Hopf, 1950) we construct a particular solution of (4.1) given
by

ulx,t) =f(¢), E=x—p—p (4.7)

fQ) = [uto+ (u—a)e* /(1 +e*) (4.8)

and a, f and p are arbitrary constants. The initial data and the boundary conditions
at x = 0, 1 are then taken from (4.7). The solution (4.7) represents a travelling wave
front, positioned initially at x = B, travelling with speed x and such that
u(x, t) > p+a as x - =+ oo for any ¢. For our experiments we chose the constants to be
o =04, f=0125 and u = 06.

Tables 3 and 4 show the results for the first problem and Table 5 those for the
second problem. In all the numerical experiments we used nine elements of uniform
length and the integration in time is carried out using the trapezoidal rule with
At = 0001 so that errors can be attributed only to the discretization in space. For
comparison we have also included the results corresponding to the compact
differencing technique of Hirsh (1975). (See also Mitchell & Griffiths, 1980.) This is
probably the most successful of the finite difference techniques for solving Burgers
equation. It may be that the compact differencing results could be improved by
introducing a degree of upwinding. The odd-number nodes in Tables 3-5 are integer
nodes and the even number nodes are half-integer nodes.

Numerical results were also obtained for the wave-front problem with & = 0-0001
and although the P.A. method was best the results were comparatively poor for all
methods. In this case the grid size, h = § is larger than the breadth of the wave front
and so no numerical method can give accurate results in the vicinity of the wave front.

where

TasLE 3
Sin initial condition (¢ = 001, t = 0-5)

Petrov—Galerkin

Compact

Node Exact S.G.A. P.A. differencing
10 0-589 0-589 0-589 0-589
11 0-649 0649 0-649 0-648
12 0-707 0707 0-707 0-709
13 0762 0762 0-762 0-760
14 0-814 0-813 0-814 0-820
15 0-861 0-860 0-861 0-852
16 0-902 0-895 0907 0917
17 0934 0911 0952 0911
18 0937 0764 0774 0964

19 0 0 0 0
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TABLE 4

Sin initial condition (¢ = 0-0001, t = 0-5)

Petrov—Galerkin

Compact

Node Exact S.G.A. PA. differencing
10 0-595 0-594 0-595 0-619
11 0-656 0-656 0-656 0621
12 0715 0715 0-715 0-764
13 0772 0772 0772 0718
14 0-826 0-826 0-826 0-887
15 0-876 0-876 0-876 0-819
16 0921 0-906 0921 0978
17 0959 0902 0-960 0908
18 0959 0-835 0-854 1-046
19 0 0 0 0

It is worth pointing out that in the first problem (see Tables 3 and 4) the Petrov-
Galerkin method, particularly the P.A. version, gives improved results as ¢ is reduced.
This is because the method employs fully upwinded quadratics which become more
appropriate as ¢ — 0. With a piecewise quadratic approximant it is also unrealistic to

TaBLE 5

Wave front (¢ = 01, t = 0'5)

Petrov—Galerkin

Compact
Node Exact S.GA. PA. differencing

1 1 1 1 1

2 1 1 1 1-030
3 1 1 1 0990
4 1 1 1 0973
5 1 0998 0-999 1-009
6 0-998 0991 0997 1-004
7 0-980 0970 0-982 0986
8 0-847 0-862 0-850 0-696
9 0-452 0-461 0-444 0-360
10 0238 0-159 0-171 0-228
11 0-207 0-300 0-286 0-203
12 02 0-194 0-197 02
13 02 0213 0211 02
14 02 0-211 0-210 02
15 02 0-188 0-190 02
16 02 0-201 0-207 02
17 02 0-191 0-193 02
18 02 0-203 0-202 02
19 02 02 02 02
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expect an accurate nodal value at the half integer node 18 if the values are accurate at
the integer nodes 17 and 19. (This can best be seen by considering the graph of the
quadratic interpolant to the exact solution through these three nodes.) This is borne
out by Table 4 for the P.A. There is little to say about Table 5 except that the Petrov—
Galerkin methods are good ahead of the wave front and compact differencing at the
rear. All methods would be improved, of course, by reducing the grid in the vicinity of
steep gradients of the solution.

5. Korteweg de Vries and Related Equations

Our final section deals with another situation where P.A. results in an increase in
the order of local accuracy of the scheme. Sanz-Serna & Christie (1979) solved the
Korteweg de Vries equation

U+ uu 4, =0 (5.1)

using piecewise linear trial functions and cubic spline test functions. They proved that
the resulting scheme, viewed as a continuous in time finite-difference replacement of
(5.1), is fourth-order accurate with P.A. and second-order with S.G.A. Numerical
experiments by these authors confirmed the improvement given by P.A.

According to Swartz & Wendroff (1974a) and as noted by Chin et al. (1979) for the
linearized version of (5.1), the choice linear/cubic spline leads to the same system of
ordinary differential equations as those obtained with quadratic spline/quadratic
spline. Thus the fourth-order local accuracy was to be expected for the linearized
equations in view of Thomee’s superconvergence results (1973) for splines. As in the
example considered in the introduction the high order of accuracy applies to the non-
linear case if P.A. is used but not if we employ S.G.A. (Note that the term u,, cannot
be approximated to fourth-order by a five-point difference scheme, so that again high
accuracy is obtained through cancellations.)

Kuo Pen-Yu & Sanz-Serna (1981) have proved convergence of P.A. for the K.d.V.
equation. Their analysis shows that here also it is possible to have numerical
instability leading to blow-up in finite time. However, extensive numerical
experimentation indicates that the scheme is remarkably stable so that we are led to
believe that the blow-up, predicted by theory, takes place at a value of time so large as
to be considered infinite for practical purposes.

Recently we have applied similar techniques to the equation

U+ uaux t Ul = 0

(see Jeffrey & Kakutani, 1972) so as to study the interaction of solitary waves, and
once more we have found P.A. to perform satisfactorily.
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