SOME ASPECTS OF THE BOUNDARY LOCUS METHOD

J. M. SANZ-SERNA

Abstract.

The boundary locus method for determining the stability region of a linear multistep method is considered from several viewpoints. In particular we show how it is related to the order of the method. These ideas are extended to Runge-Kutta and other methods.

1. Introduction.

Consider the linear k-step method for the numerical integration of ordinary differential equations

(1.1)
$$\sum_{j=0}^{k} \alpha_{j} y_{n+j} = h \sum_{j=0}^{k} \beta_{j} f_{n+j}$$

where α_j, β_j are real, j = 0, ..., k, and $\alpha_k \neq 0$, $|\alpha_0| + |\beta_0| > 0$. Assume that its characteristic polynomials $\varrho(r), \sigma(r)$ have no common factor, and denote by $\pi(r, \bar{h}) = \varrho(r) - \bar{h}\sigma(r)$ the stability polynomial. The absolute stability set \Re of the method consists of all complex numbers \bar{h} for which all roots $r_s, s = 1, 2, ..., k$, of $\pi(r, \bar{h}) = 0$ lie in U, the open unit disk (see [8], p. 82).

A widely used method for determining \mathscr{R} is the "boundary locus method", (see e.g. [8], p. 82), which can be described as follows. If $\bar{h} \in \partial \mathscr{R}$ (the boundary of \mathscr{R}), then by continuity at least one of the roots r_s must lie on the unit circle ∂U , and so there exists a $\theta \in [-\pi, \pi]$ such that $\varrho(e^{i\theta}) - \bar{h}\sigma(e^{i\theta}) = 0$. Introduce the function q(r) $= \varrho(r)/\sigma(r)$ and plot on the complex plane the parameter curve $\gamma(\theta) = q(e^{i\theta}), \theta \in$ $[-\pi, \pi]$; then it follows that \bar{h} lies in the image set $\Gamma = \gamma([-\pi, \pi])$ and so $\partial \mathscr{R}$ is contained in Γ . Thus \mathscr{R} consists of one or more of the connected domains in which Γ divides the plane. The problem of deciding which of the various domains form \mathscr{R} is solved by studying the roots r_s at appropriate spot values \bar{h} . In some cases an expansion of the functions $r_s = r_s(\bar{h})$ is helpful.

In this paper we shall look at several aspects of the boundary locus method, from a geometrical point of view. In section 2 we develop an alternative approach and show its relevance for some theoretical purposes. In section 3 the relationship between the locus $\gamma(\theta)$ and the order of the corresponding method is studied. These ideas are extended in section 4 to cover Runge-Kutta and other methods.

Reference [7] studies the local behaviour of $\partial \mathscr{R}$ near $\bar{h}=0$, and reference [13] shows a beautiful geometrical relationship between stability and order.

Received July 17, 1979.

2. Use of the argument principle.

Assume first that no zero of σ lies on ∂U . If $\bar{h} \notin \Gamma$, the rational function $q(r) - \bar{h}$ has no zero and no pole on ∂U and a straightforward application of the argument principle (see for instance [4], 9.17.12) yields

(2.1)
$$n(\gamma - \bar{h}, 0) = N(\bar{h}) - Z$$

where $n(\gamma - \bar{h}, 0)$ is the index of the cycle $\gamma(\theta) - \bar{h}, \theta \in [-\pi, \pi]$, with respect to the origin; $N(\bar{h})$ and Z the number of zeros and poles of $q(r) - \bar{h} = 0$ in U. Now by translation $n(\gamma - \bar{h}, 0) = n(\gamma, \bar{h})$, the index of γ with respect to \bar{h} . Clearly $N(\bar{h})$ is the number of roots r_s in U and Z is the number of zeros of σ in U. Hence we have

THEOREM 2.1. Assume that no zero of σ lies on the unit circle and let $\bar{h} \notin \Gamma$. Then the number of roots of the stability polynomial $\pi(r, \bar{h})$ having modulus less than one, equals the index of γ with respect to \bar{h} plus the number of zeros of σ in the unit disk.

In particular \mathscr{R} will consist of the points $\overline{h} \notin \Gamma$ such that

$$(2.2) n(\gamma, \bar{h}) = k - Z .$$

When σ vanishes on ∂U , the curve γ passes through infinity and a result analogous to Theorem 2.1 can be proved by introducing a Möbius transformation T in such a way that $T(\gamma(\theta))$ remains finite for $\theta \in [-\pi, \pi]$.

The boundary locus method, either combined with (2.2) or not, can be of theoretical interest in several instances. As an example we provide a proof of a result of Liniger [9].

THEOREM 2.2 (Liniger). Assume

- i) All zeros of σ lie in the open unit disk,
 ii) β_k = 0,
- iii) Re $q(e^{i\theta}) \ge 0, \ \theta \in [-\pi, \pi].$

Then the method is A-stable.

PROOF. By iii) $\eta(\gamma, \bar{h}) = 0$ for Re $\bar{h} < 0$. By i) and ii) Z = k and then (2.2) shows that \mathcal{R} contains the left half plane.

In the same way we have (cf. Nørsett [10]).

THEOREM 2.3. Assume that conditions i) and ii) in theorem 2.2 hold and iii) becomes $|\text{Im } q(e^{i\theta})| + \tan(\alpha) \text{ Re } q(e^{i\theta}) \ge 0$, $\theta \in [-\pi, \pi]$. Then the method is $A(\alpha)$ -stable.

3. Boundary locus and order.

The derivatives of the mapping γ are related to the order of the method. Namely

THEOREM 3.1. Assume $\sigma(1) \neq 0$. Then

- i) All derivatives $\gamma^{(2n)}(0)$ are purely real, and all derivatives $\gamma^{(2n-1)}(0)$ are purely imaginary; n = 1, 2, ...
- ii) The method is consistent if and only if $\gamma(0) = 0$, $\gamma'(0) = i$.
- iii) If the method is consistent, it has exact order p if and only if $\gamma''(0) = 0, \dots, \gamma^{(p)}(0) = 0, \dots, \gamma^{(p)}(0) = 0, \dots, \gamma^{(p+1)}(0) \neq 0.$

PROOF. By definition $\gamma(\theta) = \varrho(e^{i\theta})/\sigma(e^{i\theta})$. Clearly for $-\pi \leq \theta \leq \pi$ Re $\gamma(\theta) =$ Re $\gamma(-\theta)$, Im $\gamma(\theta) = -$ Im $\gamma(-\theta)$ and i) follows. It is easily checked that $\gamma(0) = 0$, $\gamma'(0) = i$ are a reformulation of the consistency conditions $\varrho(1) = 0$, $\sigma(1) = \varrho'(1)$. To prove iii) consider any function $\varphi(r)$, analytic in the neighbourhood of 1, with Taylor series

(3.1)
$$\varphi(r) = \sum_{n=0}^{\infty} a_n (r-1)^n$$

Then $\hat{\varphi}(\theta) = \varphi(e^{i\theta})$ is an analytic function of θ in the neighbourhood of the origin and will have an expansion

(3.2)
$$\varphi(e^{i\theta}) = \sum_{n=0}^{\infty} c_n \theta^n$$

Substitution of the exponential series in (3.1) and comparison with (3.2) gives

$$c_1 = ia_1$$

 $c_k = i^k a_k + \Gamma_{k-1}(a_1, \dots, a_{k-1}), \quad k = 2, 3, \dots$

where Γ_{k-1} are functions of the stated arguments. These relations show recursively that the values $a_k = \varphi^{(k)}(1)/k!$ determine the coefficients $c_k = \hat{\varphi}^{(k)}(0)/k!$, j = 1, 2, ... in a one-to-one way. Therefore the functions $i\theta = \log e^{i\theta}$ and $\gamma(\theta) = q(e^{i\theta})$ will have the same first, second, ... pth derivatives at $\theta = 0$ if and only if the first p derivatives at r = 1 of the functions $\log r$, q(r) are the same, i.e. if the order is at least p ([6] p. 225). (Here log r denotes the principal branch of the logarithm.)

In particular any consistent linear multistep method whose function $\gamma(\theta)$ exhibits nonzero curvature in $\theta = 0$ is first order.

The conditions iii) of the theorem imply a *p*th order contact at the origin between $\gamma(\theta)$ and the imaginary axis, but are not to be confused with the necessary and sufficient conditions for such a contact to exist, these being independent of the particular parameterization of the curve. For instance the trapezoidal rule, for which the graph Γ of $\gamma(\theta)$ is precisely the imaginary axis, is only second order.

More generally consider a consistent method for which Γ is contained in the imaginary axis, (for example a symmetric method [8] p. 84). All derivatives

 $\gamma^{(2n)}(0)$, n = 1, 2, ... are real by i) in the theorem, and consequently must vanish. Then iii) shows that such a method has *even order*. On the other hand, according to the boundary locus method the absolute stability region must be either void or the left half plane. It is well known ([3]) that the order for an A-stable method cannot exceed 2, and therefore must be 2. We have

THEOREM 3.2. A consistent linear multistep method having the left half plane as absolute stability region has order two.

PROOF. According to the previous analysis it suffices to prove that $\gamma(\theta)$ is purely imaginary, $-\pi \leq \theta \leq \pi$. Now $\partial \mathscr{R}$ is the imaginary axis and since $\partial \mathscr{R}$ is contained in Γ , Re $\gamma(\theta) = 0$ for a continuum set of θ values. Let T be a Möbius transformation mapping the real axis onto the unit circle. Then q(T(z)) is a rational function taking purely imaginary values for a continuum set of real values of z and hence for every real value of z, other than a pole (see [1], theorem 8, page 190). Therefore Re $\gamma(\theta) = 0$ for all θ .

4. Extension to other methods.

For Runge-Kutta and other classes of one-step methods, the absolute stability region \mathscr{R} is defined to consist of those \bar{h} yielding $|r_1| < 1$, where $r_1 = Q(\bar{h})$ is a rational function associated with the method and approximating the exponential exp (\bar{h}) . We say that $Q(\bar{h})$ is an approximation of order p, if there exists a constant $C \neq 0$ such that

(4.1)
$$\exp(\bar{h}) - Q(\bar{h}) = C\bar{h}^{p+1} + O(\bar{h}^{p+2}), \text{ for } \bar{h} \to 0.$$

Furthermore we call an approximation consistent if its order is at least one. Note that p in (4.1) is not in general the order of the method; see for instance [2], where it is shown that certain implicit Runge-Kutta methods of order less than four give rise to the (2, 2) Padé approximation to exp (\bar{h}). We have

THEOREM 4.1. Consider a consistent approximation $Q(\bar{h})$ as above. Then in the neighbourhood of $\bar{h}=0$, the boundary $\partial \mathscr{R}$ can be expressed as a parametric curve $\gamma(\theta)$, where θ is the argument $-\pi < \theta < \pi$ of $Q(\bar{h})$. Furthermore $Q(\bar{h})$ is an approximation of order p if and only if $\gamma(0)=0, \gamma'(0)=i, \gamma''(0)=0, \ldots, \gamma^{(p)}(0)=0, \gamma^{(p+1)}(0) \neq 0$.

PROOF. Since Q(0)=1, $Q'(0) \neq 0$ there exist neighbourhoods V of $\bar{h}=0$, W of $r_1 = 1$ such that $Q(\bar{h})$ is a one-to-one analytic mapping of V onto W and has an analytic inverse $\bar{h}=Q^{-1}(r_1)$. It follows that $\partial \mathscr{R} \cap V$ will be mapped in a one-to-one way onto $\partial U \cap W$ and hence $\gamma(\theta)=Q^{-1}(e^{i\theta})$ will provide the necessary parameterization for θ small enough. On the other hand $Q(\bar{h})$ and exp (\bar{h}) share precisely p derivatives at the origin iff the same happens to the inverse functions

 $Q^{-1}(r_1)$, $\log r_1$ at $r_1 = 1$. The proof is concluded by considering the compositions $\gamma(\theta)$, $\log e^{i\theta} = i\theta$ as in Theorem 3.1.

The ideas leading to Theorem 3.2 can also be applied to the present situation, provided that $Q(\bar{h})$ has real coefficients, to yield

THEOREM 4.2. A consistent approximation to the exponential having the left half plane as absolute stability region has even order.

Theorems 3.1 and 4.1 explain why for a high order method we should expect the boundary $\partial \mathscr{R}$ not to differ appreciably from the imaginary axis near the origin. This phenomenon has been observed in the past and led to the introduction of numerical A-acceptability (Nørsett [1]). We refer to Siemieniuch [12] for an analytical study of it in some particular cases. Note, however, that theorem 3.1 refers to Γ rather than $\partial \mathscr{R}$.

Acknowledgement.

The author acknowledges the facilities provided by the Department of Mathematics of the University of Dundee. Special thanks are due to Professor J. D. Lambert.

REFERENCES

- 1. L. V. Ahlfors, Complex Analysis, McGraw-Hill (1953).
- J. C. Butcher, A class of implicit methods for ordinary differential equations, Proceedings of the Dundee Conference on Numerical Analysis (Lecture Notes in Mathematics 506) Springer-Verlag (1975), 28-37.
- 3. G. Dahlquist, A special stability problem for linear multistep methods, BIT 3 (1963), 27-43.
- 4. J. Dieudonné, Foundations of Modern Analysis, Academic Press (1960).
- 5. A. Goetz, Introduction to Differential Geometry, Addison-Wesley (1970).
- 6. P. K. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley (1962).
- R. Jeltsch, A necessary condition for A-stability of multistep multiderivative methods, Math. Comp. 30 (1976), 739–746.
- 8. J. D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley (1973).
- 9. W. Liniger, A criterion for A-stability of linear multistep integration formulae, Computing 3 (1968), 280-285.
- 10. S. P. Nørsett, A criterion for $A(\alpha)$ -stability of linear multistep methods, BIT 9 (1969), 259–263.
- 11. S. P. Nørsett, One-step methods of Hermite type for numerical integration of stiff systems, BIT 14 (1974), 63–77.
- 12. J. L. Siemieniuch, Properties of certain rational approximations to e^{-z} , BIT 16 (1976), 172–191.
- G. Wanner, E. Hairer and S. P. Nørsett, Order stars and stability theorems, BIT 18 (1978), 475– 489.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY DUNDEE DD1 4HN SCOTLAND Present address: DEPARTAMENTO DE ANÁLISIS MATEMÁTICO FACULTAD DE CIENCIAS PRADO DE LA MAGDALENA VALLADOLID SPAIN