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S O M E  A S P E C T S  O F  

T H E  B O U N D A R Y  L O C U S  M E T H O D  

J. M. SANZ-SERNA 

Abstract. 
The boundary locus method for determining the stability region of a linear multistep 

method is considered from several viewpoints. In particular we show how it is related to the 
order of the method. These ideas are extended to Runge-Kutta and other methods. 

1. Introduction. 

Consider the linear k-step method for the numerical integration of ordinary 
differential equations 

k k 

(1.1) ~ ~y.+j = h ~ flsf.*J 
j=o j=o 

where ~j, flj are real, j=O,. . . ,k ,  and ~k:t=0, t~ol+lflol>0. Assume that its 
characteristic polynomials Q(r), a(r) have no common factor, and denote by n(r, fi) 
= Q ( r ) - h a  (r) the stability polynomial, The absolute stability set 9t of the method 
consists of all complex numbers h for which all roots r s, s = 1, 2 . . . . .  k, of n(r, ti)= 0 
lie in U, the open unit disk (see [8], p. 82). 

A widely used method for determining ~ is the "boundary locus method", (see 
e.g. [8], p. 82), which can be described as follows. If ~/~ ~gt (the boundary of ~), 
then by continuity at least one of the roots r, must lie on the unit circle ~ U, and so 
there exists a 0 ~ [ -  n, n] such that Q (d °) - h a  (d °) = 0. Introduce the function q (r) 
=Q(r)/a(r) and plot on the complex plane the parameter curve v(O)=q(ei°), 0 
[ -n ,n];  then it follows that h lies in the image set r=) , ([-n ,n])  and so t39t is 
contained in F. Thus ~ consists of one or more of the connected domains in 
which F divides the plane. The problem of deciding which of the various domains 
form ~t is solved by studying the roots r, at appropriate spot values h. In some 
cases an expansion of the functions r,=rs(h) is helpful. 

In this paper we shall look at several aspects of the boundary locus method, 
from a geometrical point of view. In section 2 we develop an alternative approach 
and show its relevance for some theoretical purposes. In section 3 the relationship 
between the locus V(0) and the order of the corresponding method is studied. 
These ideas are extended in section 4 to cover Runge-Kutta  and other methods. 

Reference [7] studies the local behaviour of ~9~ near h=0 ,  and reference 1-13] 
shows a beautiful geometrical relationship between stability and order. 
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2. Use of the argument principle. 

Assume first that no zero of tr lies on dU. If/~ ~ F, the rational function q ( r ) - h  
has no zero and no pole on t3U and a straightforward application of the argument 
principle (see for instance [4], 9.17.12) yields 

(2.1) n ( 7 - h , 0  ) = N ( f i ) - Z  

where n(7-/~,0) is the index of the cycle ? (0 ) -  h, 0 ~ [ -  r~,n], with respect to the 
origin; N(h) and Z the number of zeros and poles of q ( r ) - h = 0  in U. Now by 
translation n ( y - h , 0 ) =  n(~;, h), the-index of 7 with respect to h. Clearly N(/~) is the 
number of roots r s in U and Z is the number of zeros of tr in U. Hence we have 

THEOREM 2.1. Assume that no zero of  a lies on the unit circle and let Ft d~ F. Then 
the number of roots of the stability polynomial re(r, ~) having modulus less than one, 
equals the index oft, with respect to h plus the number of  zeros of  or in the unit disk. 

In particular ~ will consist of the points h d~ F such that 

(2.2) n(~,h) = k - Z .  

When o vanishes on ~U, the curve y passes through infinity and a result 
analogous to Theorem 2.1 can be proved by introducing a MSbius transformation 
T in such a way that T(y(O)) remains finite for 0 e [-rc,:~]. 

The boundary locus method, either combined with (2.2) or not, can be of 
theoretical interest in several instances. As an example we provide a proof of a 
result of Liniger [9]. 

THEOREM 2.2 (Liniger). Assume 

i) All zeros of  tr lie in the open unit disk, 

ii) flk #- O, 
iii) Re q (e i°) > O, 0 ~ [ -- re, re]. 

Then the method is A-stable. 

PROOF. By iii) r/(~, h) = 0 for Re ~ < 0. By i) and ii) Z = k and then (2.2) shows that 
contains the left half plane. It 
In the same way we have (cf. Norsett [10]). 

THEOREM 2.3. Assume that conditions i) and ii) in theorem 2.2 hold and iii) 
becomes [Imq(ei°)[+tan(cc) Req(ei°)>O, 0 ~ [ -ze ,~] .  Then the method is A(~)- 
stable. 
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3. Boundary locus and order. 

The derivatives of the mapping 7 are related to the order of the method. Namely 

THEOREM 3.1. Assume tr(1)~0. Then 

i) All derivatives 7~2")(0) are purely real, and all derivatives 7(2n-1)(0) a r e  purely 
imaginary; n = 1, 2 . . . . .  

ii) The method is consistent i f  and only ifT(0)=0, 7'(0)=i. 
iii) I f  the method is consistent, it has exact order p i f  and only if  T"(O)= 0 . . . . .  7tv)(O) 

~-0,  7(P + 1) (0) =# 0. 

PROOF. By definition 7(O)=Q(ei°)/a(ei°). Clearly for -~_<0_<~z ReT(0)= 
ReT(-0),  l m T ( 0 ) = - I m T ( - 0 )  and i) follows. It is easily checked that 7(0)=0, 
7'(0)=i are a reformulation of the consistency conditions 0(1)=0, a(1)=0'(1). 
To prove iii) consider any function tp(r), analytic in the neighbourhood of 1, with 
Taylor series 

(3.1) ~o(r) = ~ a . ( r - 1 ) " .  
n=O 

Then 0(0)= q~(e i°) is an analytic function of 0 in the neighbourhood of the origin 
and will have an expansion 

(3.2) ~o(e i°) = ~ c.O". 
n=O 

Substitution of the exponential series in (3.1) and comparison with (3.2) gives 

cl = ial 

Ck = ikak + Fk- X (al . . . . .  ak- 1), k = 2, 3 , . . .  

where Fk_ 1 are functions of the stated arguments. These relations show 

recursively that the values ak = ~0 tk)(1)/k ! determine the coefficients c k = ~k)(0)/k !, j 
= 1, 2 . . . .  in a one-to-one way. Therefore the functions iO = log e i° and 7 (0) = q (e i°) 
will have the same first, second . . . .  pth derivatives at 0 = 0 if and only if the first p 
derivatives at r = l  of the functions logr, q(r) are the same, i.e. if the order is at 
least p ([6] p. 225). (Here log r denotes the principal branch of the logarithm.) | 

In particular any consistent linear multistep method whose function 7(0) 
exhibits nonzero curvature in 0 = 0 is first order. 

The conditions iii) of the theorem imply a pth order contact at the origin 
between y(0) and the imaginary axis, but are not to be confused with the necessary 
and sufficient conditions for such a contact to exist, these being independent of the 
particular parameterization of the curve. For instance the trapezoidal rule, for 
which the graph F of 7(0) is precisely the imaginary axis, is only second order. 

More generally consider a consistent method for which F is contained in the 
imaginary axis, (for example a symmetric method [8] p. 84). All derivatives 
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7(2n)(0), n = 1 , 2  . . . .  are real by i) in the theorem, and consequently must vanish. 
Then iii) shows that such a method has even order. On the other hand, according 
to the boundary locus method the absolute stability region must be either void or 
the left half plane. It is well known ([3]) that the order for an A-stable method 
cannot exceed 2, and therefore must be 2. We have 

THEOREM 3.2. A consistent linear multistep method having the left half plane as 
absolute stability region has order two. 

PROOF. According to the previous analysis it suffices to prove that y(0) is purely 
imaginary, - ~ < 0 _< n. Now ~ is the imaginary axis and since ~ is contained in 
F, ReT(0)=0 for a continuum set of 0 values. Let T be a M6bius transformation 
mapping the real axis onto the unit circle. Then q(T(z)) is a rational function 
taking purely imaginary values for a continuum set of real values of z and hence 
for every real value of z, other than a pole (see [1], theorem 8, page 190). 
Therefore Re 7(0)=0 for all 0. | 

4. Extension to other methods. 

For Runge-Kutta and other classes of one-step methods, the absolute stability 
region ~ is defined to consist of those h yielding ]rl]< 1, where rl=Q(/~) is a 
rational function associated with the method and approximating the exponential 
exp (/~). We say that Q(/~) is an approximation of order p, if there exists a constant 
C 4= 0 such that 

(4.1) exp( / / ) -Q(h)  = ChP+~+O(hV+2), for h-- ,  0 .  

Furthermore we call an approximation consistent if its order is at least one. Note 
that p in (4.1) is not in general the order of the method; see for instance [2], where 
it is shown that certain implicit Runge-Kutta  methods of order less than four give 
rise to the (2, 2) Pad6 approximation to exp (h). We have 

THEOREM 4.1. Consider a consistent approximation Q(h) as above. Then in the 
neighbourhood of  ~=0,  the boundary ~ can be expressed as a parametric curve 
7(0), where 0 is the argument - l r < 0 < r c  of  Q(h). Furthermore Q(h) is an 
approximation of  order p if and only i f  7(0)= 0, 7'(0)= i, °/ ' (0)=0,. . . ,7tP)(0)=0, 
])(p + 1) (0) z~: O. 

PROOF. Since Q(0)= 1, Q'(0)4=0 there exist neighbourhoods V o f / /=0 ,  W of r 1 
= 1 such that Q(/~) is a one-to-one analytic mapping of V onto W and has an 
analytic inverse h = Q-  1 (rx)" It follows that d~  N V will be mapped in a one-to-one 
way onto O U N W  and hence 7(O)=Q-l(e  i°) will provide the necessary 
parameterization for 0 small enough. On the other hand Q (//) and exp (//) share 
precisely p derivatives at the origin iff the same happens to the inverse functions 
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Q-1 (rl) ' log rl at r x = 1. The proof is concluded by considering the compositions 
7(0), logei°=iO as in Theorem 3.1. • 

The ideas leading to Theorem 3.2 can also be applied to the present situation, 
provided that Q (h) has real coefficients, to yield 

THEOREM 4.2. A consistent approximation to the exponential having the left half 
plane as absolute stability region has even order. 

Theorems 3.1 and 4.1 explain why for a high order method we should expect 
the boundary d~  not to differ appreciably from the imaginary axis near the 
origin. This phenomenon has been observed in the past and led to the 
introduction of numerical A-acceptability (Norsett [1]). We refer to Siemieniuch 
[12] for an analytical study of it in some particular cases. Note, however, that 
theorem 3.1 refers to F rather than ~3:~. 
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