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Departamento de Matemáticas, Universidad Carlos III de Madrid

Avenida de la Universidad 30, E-28911 Leganés (Madrid), Spain

Abstract. We present an analysis based on word combinatorics of splitting

integrators for Ito or Stratonovich systems of stochastic differential equations.
In particular we present a technique to write down systematically the expansion

of the local error; this makes it possible to easily formulate the conditions

that guarantee that a given integrator achieves a prescribed strong or weak
order. This approach bypasses the need to use the Baker-Campbell-Hausdorff

(BCH) formula and shows the existence of an order barrier of two for the

attainable weak order. The paper also provides a succinct introduction to the
combinatorics of words.

1. Introduction. This paper shows how word combinatorics is a useful tool in
the analysis of splitting integrators for Ito or Stratonovich systems of stochastic
differential equations. In particular we present a technique to write down systemat-
ically the expansion of the local error; this makes it possible to easily formulate the
conditions that guarantee that a given integrator achieves a prescribed strong or
weak order. This approach bypasses the need to use the Baker-Campbell-Hausdorff
(BCH) formula and shows the existence of an order barrier of two for the attainable
weak order. In the case of Stratonovich systems the technique has already appeared
in [1]; the corresponding Ito results appear here for the first time. In addition, while
the succinct presentation in [1] focuses on the “recipe” to write down the order con-
ditions, the present paper includes background on the combinatorics of words. In
this way we also provide what we hope is a reader-friendly introduction to that area,
which has applications outside numerical mathematics in many mathematical tasks,
including averaging of periodically or quasiperiodically forced systems of differential
equations, reduction of continuous or discrete dynamical systems to normal form,
rough path theory, etc. (references are given below).

The importance of splitting integrators [6, 28] has increased continuously in the
recent past due to their flexibility to adapt to the structure of the problem being
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solved, be it in the context of multiphysics systems or in the domain of geomet-
ric integration (i.e. integration performed under the requirement that the numer-
ical solution has some of the geometric properties possessed by the true solution)
[42, 21, 4]. As it is the case with any other one-step integrator, the analysis of
a splitting algorithm starts with the study of the local error [9, 22], i.e. the error
under the assumption that the computation at time level tn+1 starts from infor-
mation at time tn that is free of errors. Unfortunately, even in the case where the
system being integrated consists of (deterministic) ordinary differential equations,
the investigation of the local error may be a daunting task if undertaken in a naive
way. Formal series and combinatorial algebra have been very useful tools as we
discuss presently; see [44] for a recent survey.

For Runge-Kutta methods, whose history goes back to 1895, the structure of the
local error was only understood after Butcher’s work in the 1960’s [8]; this work
made it possible to construct formulas that improve enormously on those known
until then. In Butcher’s theory, the true and numerical solutions are expanded
in series; each term of the series is the product of a power of the step size, a
numerical coefficient (elementary weight) and a vector-valued function (elementary
differential). There is term in the series associated with each rooted tree. The
elementary differentials change with the system being integrated but are common
to all Runge-Kutta formulas and to the true solution. The weights change with
the integrator but are independent of the system being integrated. B-series [23],
formal series indexed by rooted trees, were introduced by Hairer and Wanner as a
means to systematize Butcher’s approach and to extend it to more general classes of
algorithms. B-series are indexed by rooted trees and are combinations of elementary
differentials. A key result in the theory of B-series is the rule to compose two B-
series to obtain a third. B-series possess many applications in numerical analysis,
especially in relation to geometric integration (starting with [11]) and modified
equations [10]. (Loosely speaking the modified equation of a numerical integration
is the differential equation exactly satisfied by the numerical solution.) Recently
B-series have also been used outside numerical mathematics, e.g. to perform high-
order averaging of periodic or quasiperiodic systems [12, 13].

For splitting integrations of deterministic systems, the best-known method to
investigate the local error [42] uses the BCH formula [43, 21]. This may be con-
sidered in indirect approach, in that it does not compare the numerical and true
solutions but rather the modified system of the integrator and the true system be-
ing solved. The large combinatorial complexity of the BCH formula is certainly a
limitation of this technique. An alternative methodology, patterned after Butcher’s
treatment of the Runge-Kutta case was introduced in [32] (a summary may be
seen in [21, section III.3]). A third possibility is the use of word series expansions
[31, 14, 15, 33, 34, 35, 36, 37]. Word series are patterned after B-series; rather
than combining elementary differentials they combine word basis functions. They
are indexed by words on an alphabet rather than by rooted trees. Their scope is
narrower than that of B-series; all problems that may be treated by word series are
amenable to analysis via B-series, but the converse is not true. On the other hand,
word series, when applicable, are more compact and simpler to use than B-series;
in particular the composition rule for word series is much simpler than the corre-
sponding rule for B-series. Word series may be used outside numerical mathematics
in tasks such as high-order averaging [14, 15, 34, 36, 37], reduction of dynamical
systems to normal form [33], etc. They are very well suited to investigate the local
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error of splitting algorithms [35] (see also the closely related technique in [5, Section
2.4]).

Turning now our attention to splitting algorithms for stochastic differential equa-
tions, the most popular technique is again based in the BCH formula, see e.g. [26,
27]. In [1] we suggested a word-series approach in the case where the equations
are interpreted in the sense of Stratonovich. This approach bypasses the use of the
BCH formula and it is not difficult to implement in practice. Here we extend the
material in [1] in several directions that we now discuss briefly.

This paper contains nine sections. Section 2 recalls the Taylor expansion of the
solution of Stratonovich and Ito equations and introduces much of the notation to
be used throughout the paper. In Section 3 we present splitting integrators and
their local errors. We also discuss briefly the pullback operator associated with
a mapping; this is a key notion in what follows, as the local error is investigated
here with the help of pullback operators. Section 4 describes the main tool: formal
series indexed by words. We employ two kinds of such series: series of differential
operators and series of mappings. The central results, i.e. the structure of the
strong and weak local error and the strong and weak order conditions, are given
in Section 5. In the Stratonovich case the structure has already been presented in
[1]; the Ito case is new, as is the detailed discussion of the necessity of the order
conditions (Lemma 5.3). As an illustration we show how the structure of the local
error made explicit by our methodology may be used advantageously to decide
between different splitting algorithms for the Langevin dynamics suggested in the
literature. Section 6 deals with the shuffle and quasishuffle products; these play a
key role in the combinatorics of words. In our context they are necessary to identify
sets of independent order conditions, a point not discussed in [1], and to prove
the composition rule for word series (Proposition 14). The discussion of the order
conditions finishes in Section 7 with the help of the infinitesimal generator. There
we show an order barrier of 2 for the weak order attainable by splitting integrators in
both the Stratonovich and Ito cases. Of course it is possible to prove the existence
of such order barriers only because in the preceding sections we have developed
a general theory, capable of investigating the class of all splitting methods; those
barriers cannot be established when one works for each individual problem in an ad
hoc way. Sections 8 and 9 present some complements; they respectively discuss how
the relation between the Ito and Stratonovich interpretations may be understood in
terms of word combinatorics and the links between the material in this paper and
the theory of Hopf algebras.

We close the introduction with some important points.

• The word “formal” is often used in some disciplines, such as theoretical
physics, as somehow synonymous to imprecise or lacking in rigour. In this pa-
per formal series are well defined objects that, after truncation, yield meaning-
ful approximations; they are manipulated rigorously because all the necessary
computations involve finite sums.

• Our interest is in the combinatorial aspects of the theory. Therefore we shall
not concern ourselves with the derivation of error bounds or other analytic
considerations. The interested reader is referred to the appendix of [1] (see
also [14]).

• In order not to clatter the exposition, all functions that appear are assumed
to be smooth in the whole of the Euclidean space. At some places only a finite
number of the terms in some series make sense if the given vector fields have
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limited smoothness. In those circumstances one has to replace the series by a
finite sum.

2. Stochastic Taylor expansions. We are concerned with Stratonovich,

dx = f(x) dt+

n∑
i=1

gi(x) ◦ dBi, (1)

or Ito,

dx = f(x) dt+

n∑
i=1

gi(x) dBi, (2)

systems of differential equations (see e.g. [30]), where f , gi, i = 1, . . . , n, are smooth
vector fields in Rd and Bi, i = 1, . . . , n, are independent scalar Wiener processes.
When applying splitting integrators, f is often written a sum

∑m
j=1 fj ; it is then

convenient to work hereafter with the formats

dx =
∑

a∈Adet

fa(x) dt+
∑

A∈Asto

fA(x) ◦ dBA (3)

or

dx =
∑

a∈Adet

fa(x) dt+
∑

A∈Asto

fA(x) dBA. (4)

The finite set of indices Adet is called the deterministic alphabet ; its elements are
called deterministic letters. The finite set Asto is the stochastic alphabet and its
elements are the stochastic letters. The set A = Adet ∪ Asto is called the alphabet
and is assumed to be nonempty. On the other hand, we include the cases where
Adet or Asto are empty; if Asto = ∅ then (3)–(4) is a system of ordinary differential
equations. We use lower case a, b, . . . for deterministic letters and upper case A,
B, . . . for stochastic letters. The symbols k, `, m, . . . are used to refer to elements
of A, i.e. to letters, when it is not necessary to specify if they are deterministic or
stochastic.

In this section we recall the expressions of the Taylor expansions of the solutions
of (3) or (4) presented in e.g. [25, Chapter 5]. Our treatment is somewhat different,
because we deal with the format (3)–(4) rather than with the standard (1)–(2).
Specifically, as distinct from [25], we work here with deterministic alphabets Adet

that may have several letters and, in the Ito case, introduce introduce a letter Ā
for each A ∈ Asto. In the presentation of the Taylor expansion we shall encounter
words, and their differential operators and iterated integrals; these are essential
later in the paper.

2.1. The Stratonovich-Taylor expansion. With each letter ` ∈ A we associate
a first-order differential operator D`. By definition, D` is the Lie operator that
maps each smooth function χ : Rd → R into the function D`χ that at the point
x ∈ Rd takes the value

D`χ(x) =

d∑
i=1

f i`(x)
∂

∂xi
χ(x) = χ′(x)f`(x) (5)

(superscritps denote components of vectors). In (5), the symbol χ′ denotes the
first (Fréchet) derivative of χ; its value at x ∈ Rd is a linear map defined on Rd
and χ′(x)f`(x) is the image by this linear map of the vector f`(x) ∈ Rd. Smooth
functions χ : Rd → R will often be referred to as observables. Since the Stratonovich
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calculus follows the rules of ordinary calculus, if x(t) is a solution of (3) and t0 ≥ 0,
h ≥ 0,

χ(x(t0 + h)) = χ(x(t0)) +

∫ t0+h

s1=t0

χ′(x(s1)) dx(s1)

= χ(x(t0)) +

∫ t0+h

s1=t0

∑
a∈Adet

Daχ(x(s1)) ds1

+

∫ t0+h

s1=t0

∑
A∈Asto

DAχ(x(s1)) ◦ dBA(s1)

= χ(x(t0)) +

∫ t0+h

s1=t0

∑
`1∈A

D`1χ(x(s1)) ◦ dB`1(s1), (6)

where for deterministic `1 the notation ◦dB`1(s1) means ds1. In (6), as h ↓ 0, the
term χ(x(t0)) provides the Taylor approximation of order 0 to χ(x(t0 + h)) and
the integral gives the corresponding remainder. To obtain additional terms of the
Taylor expansion of χ(x(t0 +h)), we first write formula (6) with D`1χ(x(s1)) in lieu
of χ(x(t0 + h)),

D`1χ(x(s1)) = D`1χ(x(t0)) +

∫ s1

s2=t0

∑
`2∈A

D`2D`1χ(x(s2)) ◦ dB`2(s2),

and then substitute in (6) to get

χ(x(t)) = χ(x(t0)) +
∑
`1∈A

(∫ t0+h

s1=t0

◦dB`1(s1)

)
D`1χ(x(t0))

+
∑

`1,`2∈A

∫ t0+h

s1=t0

◦dB`1(s1)

∫ s1

s2=t0

D`2D`1χ(x(s2)) ◦ dB`2(s2).

By iterating this procedure, we find the series

χ(x(t0)) +

∞∑
n=1

∑
`1,...,`n∈A

J`n...`1(t0 + h; t0)D`n · · ·D`1χ(x(t0)), (7)

where J`n...`1(t0 + h; t0) denotes the iterated stochastic integral

J`n...`1(t0 + h; t0) =

∫ t0+h

s1=t0

◦dB`1(s1) · · ·
∫ sn−1

sn=t0

◦dB`n(sn). (8)

Iterated integrals obey the following recursion, n ≥ 2,

J`n...`1(t0 + h; t0) =

∫ t0+h

t0

J`n...`2(s; t0) ◦ dB`1(s). (9)

Remark 1. In the right-hand side of (7) the iterated integrals are constructed
from the Brownian processes BA, A ∈ Asto, in (3) and do not change if the fields f`,
` ∈ A, (or even their dimension d) change. On the other hand the operators D` are
constructed from the vector fields and do not change with the Brownian processes.

In the deterministic case, iterated integrals were introduced and investigated
extensively by Kuo Tsai Chen [16] in the context of his work on topology.

The notation may be simplified by introducing the set W consisting of all words
`n`n−1 . . . `1 constructed with the letters of the alphabet A; W includes an empty



6 A. ALAMO AND J. M. SANZ-SERNA

word ∅ with n = 0 letters. Elements ` ∈ A are seen as words with a single letter and
accordingly A becomes a subset of W. With each word w = `n . . . `1 with n ≥ 1
letters, we associate the n-th order (linear) differential operator Dw = D`n · · ·D`1 .
For the empty word, we define D∅ to be the identity operator Id with Idχ = χ for
each observable and set J∅ = 1. (Then (9) also holds for n = 1). With this notation
the series in (7) simply reads∑

w∈W
Jw(t0 + h; t0)Dwχ(x(t0)). (10)

We note that for a deterministic letter,

Ja(t0 + h; t0) =

∫ t0+h

t0

ds1 = h,

while in the stochastic case

JA(t0 + h; t0) =

∫ t0+h

t0

◦dBA(s1) = BA(t0 + h)− BA(t0)

is a Gaussian random variable with standard deviation h1/2. For this reason, we
attach to each deterministic letter a ∈ Adet the weight ‖a‖ = 1 and each stochastic
letter A ∈ Asto the weight ‖A‖ = 1/2. We then define the weight ‖w‖ of each
word by adding the weights of its letters. The weight of the empty word is 0. The
following proposition, whose proof may be seen in [1], lists some properties of the
iterated integrals. It shows in particular that, as h ↓ 0, Jw(t0 + h; t0) may be
conceived as having size O(h‖w‖).

Proposition 1. The iterated Stratonovich integrals Jw(t0+h; t0) have the following
properties:

• The joint distribution of any finite subfamily of the family of random variables
{h−‖w‖Jw(t0 + h; t0)}w∈W is independent of t0 ≥ 0 and h > 0.

• E | Jw(t0 + h; t0) |p<∞, for each w ∈ W, t0 ≥ 0, h ≥ 0 and p ∈ [0,∞).
• For each w ∈ W and any finite p ≥ 1, the (t0-independent) Lp norm of the

random variable Jw(t0 + h; t0) is O(h‖w‖), as h ↓ 0.
• E Jw(t0 + h; t0) = 0 whenever ‖w‖ is not an integer.

In view of the proposition we rewrite (10) as:∑
ν∈N/2

∑
w∈W, ‖w‖=ν

Jw(t0 + h; t0)Dwχ(x(t0)), (11)

where N/2 = {0, 1/2, 1, 3/2, . . . }. (For each ν, the inner sum only contains a finite
number of terms.) In this way, by discarding the terms with ν > ν0 in (11), one
obtains the Taylor approximation of order ν0 for χ(x(t)). Of course the series in (11)
in general does not converge to χ(x(t0 +h)); it is a formal series, whose truncations
provide the required Taylor approximations.

So far it has been assumed that χ is scalar-valued. For a vector-valued χ, the
Taylor expansion is also given by (11), with the differential operators Dw defined
to act componentwise. The particular choice where χ : Rd → Rd is taken to be the
identity function x 7→ x, yields the expansion of the solution x(t0 + h) itself given
by ∑

ν∈N/2

∑
w∈W, ‖w‖=ν

Jw(t0 + h; t0)fw(x(t0)), (12)
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where, fw(x(t0)) denotes the result of applying Dw to the identity function and
then evaluating at x(t0). Note that the functions fw may be constructed from the
fields f` in (3) with the help of the recursion

f`n...`1(x) = f ′`n−1...`1(x)f`n(x), n ≥ 1, (13)

where f ′`n−1...`1
(x) stands for the value at x of the Jacobian matrix of f`n−1...`1 .

2.2. The Ito-Taylor expansion. The Taylor expansion of the solution of Ito sto-
chastic differential system was first derived by Platen and Wagner [39]. For (4),
formula (6) has to be replaced by

χ(x(t0 + h)) = χ(x(t0)) +

∫ t0+h

s1=t0

∑
a∈Adet

Daχ(x(s1)) ds1

+

∫ t0+h

s1=t0

∑
A∈Asto

DAχ(x(s1))dBA(s1) +

∫ t0+h

s1=t0

∑
A∈Asto

DĀχ(x(s1)) ds1; (14)

the last term in the right-hand side is the Ito correction, where, for each stochastic
letter A, DĀ represents the second-order, linear differential operator

DĀχ(x) =
1

2

d∑
i,j=1

f iA(x)f jA(x)
∂2

∂xi∂xj
χ(x) =

1

2
χ′′(x)[fA(x), fA(x)]. (15)

The symbol χ′′ represents the second (Fréchet) derivative of χ; its value χ′′(x) at
a point x ∈ Rs is a bilinear map defined on Rd ×Rd and χ′′(x)[fA(x), fA(x)] is the
image by this map of the pair of vectors [fA(x), fA(x)].

In order to write (14) more compactly, we introduce the extended alphabet Ā =
Ādet ∪ Āsto. The extended set Āsto of stochastic letters coincides with the old
Asto, i.e. with the set of indices in the second sum in (4); the extended set Ādet

comprises the indices a in the first sum in (4) and, in addition, a letter Ā for each
A ∈ Āsto = Asto. With these notations, (14) becomes

χ(x(t0 + h)) = χ(x(t0)) +

∫ t0+h

s1=t0

∑
`1∈Ā

D`1χ(x(s1)) dB`1(s1)

(dB`1(s1) = ds1 for `1 ∈ Ādet); this is the Ito counterpart of the right-most expres-
sion in (6). By iterating as in the Stratonovich case, we obtain the series

χ(x(t0)) +

∞∑
n=1

∑
`1,...,`n∈Ā

I`n...`1(t0 + h; t0)D`n · · ·D`1χ(x(t0)) (16)

where I`n...`1(t0 + h; t0) denotes the Ito iterated stochastic integral

I`n...`1(t0 + h; t0) =

∫ t0+h

s1=t0

dB`1(s1) · · ·
∫ sn−1

sn=t0

dB`n(sn).

These iterated integrals satisfy the obvious analogue of the recursion (9). Again the
iterated integrals do not change if the vector fields are changed and the operators
D` do not change if the Brownian processes are changed.

We now consider the set of wordsW constructed with the letters of the extended
alphabet Ā, and write Dw = D`n · · ·D`1 for w = `n . . . `1 ∈ W, n > 0, (recall that
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D` is a second order operator if ` is of the form Ā, A ∈ Asto), D∅ = Id, I∅ = 1.
Then (16) has the compact expression∑

w∈W

Iw(t0 + h; t0)Dwχ(x(t0)). (17)

If letters in Ādet are again declared to have weight 1 and letters in Āsto to
have weight 1/2, we have the following result, whose proof is similar to that of
Proposition 1:

Proposition 2. The Ito iterated integrals Iw(t0 + h; t0) possess the properties of
the Stratonovich iterated integrals listed in Proposition 1

The series (17) is rewritten as∑
ν∈N/2

∑
w∈W, ‖w‖=ν

Iw(t0 + h; t0)Dwχ(x(t0)), (18)

and for the solution itself we have the Taylor series∑
ν∈N/2,ν

∑
w∈W, ‖w‖=ν

Iw(t0 + h; t0)fw(x(t0)),

where fw(x(t0)), w = `n . . . `1 denotes the result of successively applying D`1 , . . . ,
D`n to the identity function and then evaluating at x(t0). The fw satisfy (13) if
`n ∈ Adet ∪ Asto and

f`n...`1(x) =
1

2

(
f ′′`n−1...`1(x)

)
[fA(x), fA(x)], n ≥ 1, (19)

for `n = Ā with A ∈ Asto. Since the second derivatives of the identity function
vanish we have the following result.

Proposition 3. If the last (i.e. right-most) letter of w ∈ W is of the form Ā with
A ∈ Asto, then fw vanish identically.

Therefore, after suppressing the fw that vanish identically, the Taylor expansion
may be written: ∑

ν∈N/2,ν

∑
w∈W0, ‖w‖=ν

Iw(t0 + h; t0)fw(x(t0)), (20)

where W0 is the subset of W consisting of words whose last letter is not one of the
Ā, A ∈ Asto.

3. Analyzing splitting integrators: preliminaries.

3.1. Splitting integrators. In order to avoid notational complications, let us mo-
mentarily consider only the simple instance of (3) given by

dx = fa(x) dt+ fA(x) ◦ dBA. (21)

Splitting integrators may be applied to integrate this system if one may solve in
closed form the split systems

dx = fa(x) dt (22)

and
dx = fA(x) ◦ dBA. (23)

In the simplest splitting integrator, the Lie-Trotter algorithm, the numerical solu-
tion is advanced from its value xn at a time level tn to the value xn+1 at the next
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time level tn+1 by first integrating (22) in the interval [tn, tn+1] with initial condi-
tion xn to get a value x̃n and then using x̃n as initial condition to integrate (23) in
the interval [tn, tn+1] to obtain xn+1. In this way, the simultaneous contributions
of fa and fA in (21) are replaced by successive contributions. The procedure is best

described by introducing, for 0 ≤ s ≤ t, the solution maps ϕ
(a)
t,s , ϕ

(A)
t,s of (22) and

(23); by definition, ϕ
(a)
t,s (respectively ϕ

(A)
t,s ) maps x ∈ Rd into the value at time t of

the solution of (22) (respectively (23)) with initial value x at time s. Note that, for

the autonomous deterministic system (22), ϕ
(a)
t,s depends on t and s only through

the combination (elapsed time) t− s, but that is not the case for ϕ
(A)
t,s . In addition

ϕ
(a)
t,s makes sense for t < s, but ϕ

(A)
t,s does not, because stochastic differential equa-

tions cannot be evolved backward in time. With this notation in place, one step of
the Lie-Trotter algorithm described above is given by xn+1 = ψtn+1,tn(xn), where

ψtn+1,tn = ϕ
(A)
tn+1,tn ◦ ϕ

(a)
tn+1,tn . (24)

Of course one may also consider the alternative algorithms given by ϕ
(a)
tn+1,tn◦ϕ

(A)
tn+1,tn

or the well-known symmetric compositions

ϕ
(a)
tn+1,tn+1/2

◦ ϕ(A)
tn+1,tn ◦ ϕ

(a)
tn+1/2,tn

or

ϕ
(A)
tn+1,tn+1/2

◦ ϕ(a)
tn+1,tn ◦ ϕ

(A)
tn+1/2,tn

associated with Strang’s name (tn+1/2 is the midpoint of [tn, tn+1]). More involved
splitting algorithms are obtained by composing four or more solution maps of the
split systems.

Leaving now the particular instance (21), for a problem of the general form (3)
the splitting-integrator mapping xn+1 = ψtn+1,tn(xn) is a composition of solution
operators

ϕ
(i)
tn+di(tn+1−tn),tn+ci(tn+1−tn), i = 1, . . . ,m. (25)

Here ci and di are constants and the superindex i refers to a system of differential
equations obtained by taking into account a subset Si, i = 1, . . . ,m of the fields f`
in (3); it has to be supposed that these systems are solvable in closed form. For
our purposes here, there is complete freedom when choosing the different Si; it is
possible to have Si = Sj for i 6= j (as in Strang’s method where S1 = S3) or to let
given vector field f` appear in Si and Sj with Si 6= Sj . It is important to note that
it is necessary to assume throughout that

ci < di

except in the case where Si is a deterministic system; stochastic differential equa-
tions cannot be evolved backward in time.

The Ito case can be dealt with in the same way; the only difference is that the
solution operators of the systems Si have to be based on the Ito interpretation.

3.2. The local error. An essential part of the analysis of any one-step integrator
xn+1 = ψtn+1,tn(xn) is the study of the corresponding local error (or truncation
error). By definition, if ϕt,s denotes the solution operator of the system (3) or (4)
being integrated, the local error is the difference

ψtn+1,tn(xn)− ϕtn+1,tn(xn). (26)
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In what follows we just consider the case ψt1,t0(x0)−ϕt1,t0(x0); the case with general
n differs from this only in notation. Furthermore we write t1 = t0 + h, where h > 0
is the step-length. Our aim is to understand the behaviour of (26) as h ↓ 0 and this
is achieved by Taylor expansion. In the particular case of the Lie-Trotter integrator
(24) for the simple system (21), we have therefore to Taylor expand

x1 = ϕ
(A)
t1,t0

(
ϕ

(a)
t1,t0(x0)

)
(27)

and compare the result with the expansion of ϕt1,t0(x0) found in the preceding
section. Note that if we write

x̃0 = ϕ
(a)
t1,t0(x0), (28)

so that

x1 = ϕ
(A)
t1,t0(x̃0) (29)

the expansions
∑
i ciFi(x0) of (28) at x0 and

∑
j djGj(x̃0) of (29) at x̃0 are both

known; they are particular instances of (12) corresponding to alphabets with the
single letter a or A respectively. Then expansion for (27) may be obtained by
substituting to get ∑

j

djGj
(∑

i

ciFi(x0)
)
,

Taylor expanding each Gj
(∑

i ciFi(x0)
)

and gathering terms of equal weight. For
more complicated splitting integrators there are m mappings being composed and
implementing the naive substitution we have described may be a daunting task. We
are thus led to the following:

Problem P: Find efficiently the expansion of a composition of mappings ϕ(m) ◦
· · · ◦ϕ(1), when ϕ(i), i = 1, . . . ,m, have known expansions of the form (12) (or (20)
for the Ito case).

The solution to this problem presented in the next section is based on expanding
pullback operators (see e.g. [37]) rather than mappings.

3.3. Pullbacks. Associated with any mapping ϕ : Rd → Rd, there is a pullback
operator Φ. By definition, Φ maps each observable χ into the observable Φχ whose
value at x ∈ Rd is (Φχ)(x) = χ(y) with y = ϕ(x) (ϕ pushes the point x forward
to y, while Φ takes values of the observable “back” from y to x). The pullback
operator corresponding to a composition ϕ(2) ◦ϕ(1) is the composition of operators
Φ(1)Φ(2) (note the reversed order) because(

Φ(1)(Φ(2)χ)
)

(x) = (Φ(2)χ)(ϕ(1)(x)) = χ
(
ϕ(2)(ϕ(1)(x))

)
.

A map and its pullback operator contain the same information: when the op-
erator Φ is known, one may retrieve the underlying map ϕ by applying Φ to the
identity x 7→ x in Rs. Recovering Φ from ϕ is similar to what was done for formal
series rather than for maps to obtain (12) from (11) (or (20) from (18) in the Ito
case). Taking this point further, from (11) we may consider that the series∑

ν∈N/2

∑
w∈W, ‖w‖=ν

Jw(t0 + h; t0)Dw, (30)
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provides the Taylor expansion of the pullback operator of the solution operator
ϕt0+h,t0 of (3). For the Ito case (30) is replaced by∑

ν∈N/2

∑
w∈W, ‖w‖=ν

Iw(t0 + h; t0)Dw. (31)

In this way the problem posed above may be reformulated as:

Problem P’: Find efficiently the expansion of a composition Φ(1) · · ·Φ(m) of pull-
back operators, when the operators Φ(i), i = 1, . . . ,m, have known expansions of the
form (30) (or (31) for the Ito case).

The idea of using pullback (differential) operators to analyze local errors is old.
Merson [29] used it in 1957 to study Runge-Kutta formulas; however the subsequent
treatment in Butcher [8] did away with differential operators and worked only with
elementary differentials (mappings). In the stochastic case it is convenient to work
both with differential operators and mappings, as it will become clear below.

4. Series. We now solve the problem P’ (and by implication P) with the help of
some simple algebraic/combinatorial tools.

4.1. Series for Stratonovich problems.

4.1.1. Series. Words in W are multiplied by concatenation, i.e. if v = k1 . . . km,
w = `1 . . . `n are words with m and n letters respectively, their product is the word
with m + n letters vw = k1 . . . km`1 . . . `n. In particular ∅∅ = ∅, ∅w = w∅ = w.
Concatenation is associative but it is not commutative.

The vector space R〈A〉 consists, by definition, of all linear combinations of words∑
w∈W cww (only a finite number of coefficients cw ∈ R are nonzero). The multi-

plication of words by concatenation is extended in an obvious way to elements of
R〈A〉, ∑

v∈W
cvv

∑
w∈W

dww =
∑

v,w∈W
cvdwuw, (32)

and then R〈A〉 becomes a noncommutative, associative algebra.
In addition, we need to consider the larger noncommutative algebra R〈〈A〉〉 of

formal series. These are formal expressions
∑
w∈W cww where it is not any longer

assumed that only finitely many coefficients cw are 6= 0. If S ∈ R〈〈A〉〉, we de-
note the corresponding coefficients by Sw, i.e. S =

∑
w∈W Sww. Formal series are

combined linearly in an obvious way and are multiplied as in (32), where we note
that the right-hand side is well defined, even if infinitely many cv and dw do not
vanish, because the number of ways in which a given u ∈ W may be written as a
concatenation u = vw is finite. More precisely, if we denote by RW the set of all
sequences of coefficients {cw}w∈W indexed by words, then the product in (32) is the
series

∑
u∈W euu ∈ R〈〈A〉〉 with coefficients {eu}u∈W such that e∅ = c∅d∅ and , for

each nonempty word u = `1 . . . `n,

e`1...`n = c∅d`1...`n +

n−1∑
m=1

c`1...`md`m+1...`n + c`1...`nd∅. (33)

The right-hand side of this formula contains all the ways of writing u = `1 . . . `n as a
concatenation of two (possibly empty) words. Thus (33) defines a (noncommutative,
associative) product in the set RW of sequences of coefficients, the so-called convo-
lution product, in such a way that the product of series S ∈ R〈〈A〉〉 corresponds to
the convolution product of the sequences of coefficients {Sw}w∈W ∈ RW .
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A general well-known reference to the combinatorics of words is [41].

4.1.2. Series of differential operators. Given the vector fields f` in (3), the con-
catenation product of words obviously corresponds to the composition of the as-
sociated differential operators: Dvw = DvDw for any v, w ∈ W (by definition,
(DvDw)χ = Dv(Dwχ) for each observable χ).

With the series S ∈ R〈〈A〉〉 we associate the formal series of differential operators
DS =

∑
w∈W SwDw. It follows that S, S′ ∈ R〈〈A〉〉, the product (composition)

DSDS′ is the series DSS′ associated with SS′, whose coefficients, as we know, are
given by the convolution product of the coefficients of S and S′. Series of differential
operators are a common tool in control theory, see e.g. [19].

With the terminology we have introduced, for each fixed t, t0 and for each event
in the underlying probability space, the expansion in (30) coincides with DS when
the coefficients are Sw = Jw(t0 + h; t0), w ∈ W. Since we have just described how
to multiply series DS , we have solved the problem P’ posed in the previous section.

We illustrate the technique by means of a simple example. We integrate the
system

dx = fa(x)dt+ fb(x)dt+ fA(x) ◦ dBA,
with the help of the split systems

(1) dx = fa(x)dt+ fA(x) ◦ dBA, (2) dx = fb(x)dt.

We use the Lie-Trotter formula ϕ(2) ◦ ϕ(1). According to (30) (when the alphabet
is chosen to be {a,A}), the expansion of Φ(1) is

Id+ JADA + JaDa + JAADAA + JaADaA + JAaDAa + JAAADAAA +O(2),

where O(2) denotes the terms in the series with weight ≥ 2, and JA, Ja, . . . stand
for JA(t0 + h; t0), Ja(t0 + h; t0), . . . Similarly, the expansion of Φ(2) is

Id+ JbDb +O(2).

Multiplying out, we obtain the expansion for the product Φ(1)Φ(2):

Id+ JADA + JaDa + JbDb + JAADAA

+JaADaA + JAaDAa + JAJbDAb + JAAADAAA +O(2).

For the solution of the system being integrated, (30) (when the alphabet is {a, b, A})
yields

Id+ JADA + JaDa + JbDb + JAADAA

+JaADaA + JbADbA + JAaDAa + JAbDAb + JAAADAAA +O(2),

and subtracting we find that the pullback operator associated with the local error
has the expansion:

(JAJb − JAb)DAb − JbADbA +O(2). (34)

4.1.3. Word series. Given the vector fields f` in (3), with each series S ∈ R〈〈A〉〉
we associate the corresponding word series WS(x0); this is obtained by applying
DS to the identity map x ∈ Rd 7→ x:

WS(x0) =
∑
w∈W

Swfw(x0).

The functions fw : Rd → Rd, w ∈ W, we already encountered in (12), are called
word basis functions. Recall that they may be found recursively via (13) from the
f` that appear in the system (3). Word series, introduced and studied in [31, 13,
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14, 1, 35, 36, 37], may be seen as equivalent to series of differential operators; the
theory of words series is patterned after the theory of B-series [23] familiar to many
numerical analysts.

With the terminology above, for fixed t0 and h and each event in the underlying
probability space, the expansion (12) is simply the word series with coefficients
given by the iterated integrals Jw. In what follows we shall denote by J the series
J =

∑
w Jw(t0 +h; t0)w ∈ R〈〈A〉〉, so that DJ and WJ are the corresponding series

of operators and word series. Formal series of words whose coefficients are iterated
integrals are often called Chen series; they play a role in several mathematical
developments, including the theory of rough paths (see e.g. [2]).

In the example we are discussisng, from (34) we obtain that the local error has
the expansion

(JAJb − JAb)fAb − JbAfbA +O(2), (35)

with fAb = f ′bfA, fbA = f ′Afb.

4.2. Series for Ito problems. The preceding material is easily adapted to the Ito
system (4). The required changes are few. One considers formal series S ∈ R〈〈Ā〉〉
(words are now based on the extended alphabet) and to each S =

∑
w∈W Sww

associates a series of differential operators DS =
∑
w∈W SwDw. The expansion

(31) of the pullback of the solution operator is DS when the coefficients of the
series are chosen to be the Ito iterated integrals. We write this series as DI and set
I =

∑
w∈W Iw(t0 + h; t0)w ∈ R〈〈Ā〉〉 for the corresponding Chen series.

Here is an example. For the Ito system corresponding to the alphabet {a, b, A},
split as (1) {a,A}, (2) {b}, the expansion of of Φ(1)

Id+ IADA + IaDa + IĀDĀ + IAADAA

+IaADaA + IĀADĀA + IAaDAa + IAĀDAĀ + IAAADAAA +O(2),

the expansion of Φ(2) is

Id+ IbDb +O(2),

and, multiplying out, the expansion Φ(1)Φ(2) is found to be

Id+ IADA + IaDa + IbDb + IĀDĀ + IAADAA

+IaADaA + IĀADĀA + IAaDAa + IAIbDAb + IAĀDAĀ + IAAADAAA +O(2).

For the solution of the system being integrated we have

Id+ IADA + IaDa + IbDb + IĀDĀ + IAADAA

+IaADaA + IbADbA + IĀADĀA + IAaDAa + IAbDAb + IAĀDAĀ

+IAAADAAA +O(2),

and, for the pullback of the truncation error,

(IAIb − IAb)DAb − IbADbA +O(2), (36)

while for the truncation error itself we have the word series expansion:

(IAIb − IAb)fAb − IbAfbA +O(2), (37)

with fAb = f ′bfA, fbA = f ′Afb.

5. The expansion of the local error. Error equations. In this section we
present the Taylor expansion of the local error along with the conditions that have
to be imposed to achieve a target strong or weak order of consistency.
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5.1. Expanding the local error. By applying the technique in the previous sec-
tion, the Taylor expansion of the mapping ψt0+h;t0 that describes a splitting inte-
grator for the Stratonovich system (3) is found as a word series

WJ̃(x0) =
∑
w∈W

J̃w(t0 + h; t0)fw(x0).

Here J̃w(t0; t0 + h) is either zero or a product of Stratonovich iterated integrals
corresponding to words whose concatenation is w (see (35) for an example). Thus,
in each product, the iterated integrals being multiplied correspond to words whose

weights add up to ‖w‖. In particular J̃∅(t0; t0 + h) = 1. For the corresponding
pullback we have the expansion

DJ̃ =
∑
w∈W

J̃w(t0 + h; t0)Dw

(see (34)).
Similarly, in the Ito case, ψt0+h;t0 has a word series expansion

WĨ(x0) =
∑
w∈W0

Ĩw(t0 + h; t0)fw(x0)

(see (37)) and for the associated pullback the expansion is

DĨ =
∑
w∈W

Ĩw(t0 + h; t0)Dw

(see (36)).
The proof of the following technical result may be found in [1] for the Stratonovich

case; the Ito case is proved similarly.

Proposition 4. The coefficients J̃w(t0 + h; t0), w ∈ W, possess the properties of

the exact coefficients Jw(t0 + h; t0) listed in Proposition 1. The coefficients Ĩw(t0 +
h; t0), w ∈ W, possess the properties of the exact coefficients Iw(t0 + h; t0) listed in
Proposition 2.

By subtracting the expansions of the integrator and the true solution, we imme-
diately obtain the next result. The bound for ‖δw(t0;h)‖p follows from the third

item in Proposition 1 and the corresponding result for J̃w(t0 + h; t0) in Proposi-
tion 4. Note that the halfinteger values of ν drop from (39) in view of the last item

in Proposition 1 and the corresponding result for J̃w(t0 + h; t0).

Theorem 5.1. For a splitting integrator for the Stratonovich system (3), the local
error ψt0+h;t0(x0) has a word series expansion

Wδ(t0;h)(x0) =
∑

ν∈N/2,ν 6=0

∑
w∈W,‖w‖=ν

δw(t0;h)fw(x0) (38)

with coefficients

δw(t0;h) = J̃w(t0 + h; t0)− Jw(t0 + h; t0), w ∈ W.

For each nonempty w ∈ W and any Lp norm 1 ≤ p <∞, uniformly in t0,

‖δw(t0;h)‖p = O(h‖w‖), h ↓ 0.

In addition, for each observable χ, conditional on x0, the error in expectation

E
(
ψt0+h;t0(x0)

)
− E

(
ϕt0+h;t0(x0)

)
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has the expansion ∑
ν∈N,ν 6=0

∑
w∈W,‖w‖=ν

E
(
δw(t0;h)

)
Dwχ(x0). (39)

Of course to obtain good strong approximations, integrators with small error
coefficients δw(t0;h) are to be preferred, all other things being equal, to integrators
with large error coefficients. A similar comment applies to weak approximations.
We shall illustrate this point in the important case of the Langevin equations

dq = M−1p dt,

dp = F (q) dt− γp dt+ σM1/2 ◦ dB(t)

that play a very important role in statistical physics and molecular dynamics. Here
M is a diagonal mass matrix with diagonal entries mi > 0, i = 1, . . . , D, γ > 0
is the (constant) friction coefficient, the constant σ governs the fluctuation due to
noise, B is a D-dimensional Wiener process, and the force F is conservative, i.e.
F = −∇V for a suitable scalar-valued potential function V . If we set x = (p, q),
d = 2D, the Langevin system is a particular case of (3) with

fa(q, p) = (M−1p, 0), fb(q, p) = (0, F (q)), fc(q, p) = (0,−γp),

and, for i = 1, . . . , D,

fAi(q, p) = (0, σ
√
miei),

where ei is the i-th unit vector in RD. The deterministic letters a, b and c are
respectively associated with inertia, potential forces and friction. If the Langevin
system is split into three parts corresponding to {fa}, {fb} and {fc, fA1

, . . . ,
fAd
}, then each split system may be integrated in closed form (see [1] for details).

Leimkuhler and Matthews [26], [27] use the letters A, B and O to refer to these split
systems and the acronyms ABOBA and BAOAB for the Strang-like algorithms

ϕAt0+h;t0+h/2 ◦ ϕ
B
t0+h;t0+h/2 ◦ ϕ

O
t0+h;t0 ◦ ϕ

B
t0+h/2;t0

◦ ϕAt0+h/2;t0

and

ϕBt0+h;t0+h/2 ◦ ϕ
A
t0+h;t0+h/2 ◦ ϕ

O
t0+h;t0 ◦ ϕ

A
t0+h/2;t0

◦ ϕBt0+h/2;t0

respectively. In spite of the similarity between both algorithms, in practice the
performance of BAOAB is significantly better than that of ABOBA. It is a very
simple matter to compute the expansions (38)–(39) (many word basis vanish due
to the structure of the Langevin systems). It turns out that ABOBA yields very
large errors for words like Aiba, cba, Aicba, etc. thus explaining the superiority of
BAOAB. A full discussion is presented in [1]. Note that the word-series approach
makes it possible to study terms of arbitrarily high weight; one is not limited to
analysing the leading error terms.

In the Ito case we have the following result:

Theorem 5.2. For a splitting integrator for the Ito system of differential equations
(4), the coefficients

ηw(t0;h) = Ĩw(t0 + h; t0)− Iw(t0 + h; t0),

satisfy, for each nonempty w ∈ W and any Lp norm 1 ≤ p <∞, uniformly in t0,

‖ηw(t0;h)‖p = O(h‖w‖), h ↓ 0.
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The local error ψt0+h;t0(x0) has a word series expansion

Wη(t0;h)(x0) =
∑

ν∈N/2,ν 6=0

∑
w∈W0,‖w‖=ν

ηw(t0;h)fw(x0) (40)

In addition, for each observable χ, conditional on x0, the error in expectation

E
(
ψt0+h;t0(x0)

)
− E

(
ϕt0+h;t0(x0)

)
has the expansion ∑

ν∈N,ν 6=0

∑
w∈W,‖w‖=ν

E
(
ηw(t0;h)

)
Dwχ(x0). (41)

Remark 2. For the Langevin system considered above, the Stratonovich and Ito
interpretation coincide, due to the additivity of the noise. Since the Ito extended
alphabet has more letters than the Stratonovich alphabet, it is more convenient
to work with (38)–(39) than with (40)–(41). However it is possible to show the
superiority of ABOBA over ABOBA by comparing (40)–(41) for both algorithms.
Details will not be given. The relation between Stratonovich and Ito solution is
taken up in Section 8 below.

5.2. Stratonovich order conditions. If µ ∈ N/2, µ > 0, we shall say that the
integrator has strong order ≥ µ if the series (38) only comprises terms of weight
≥ µ + 1/2, i.e. of size O(hµ+1/2). From Theorem 5.1 it is clear that for µ ∈ N/2,
µ > 0, the strong order conditions,

J̃w(t0 + h; t0) = Jw(t0 + h; t0), w ∈ W, ‖w‖ = 1/2, 1, 3/2, . . . , µ, (42)

are sufficient to guarantee strong order ≥ µ. Under suitable assumptions on (3),
it may be proved that when the order conditions hold the local error actually pos-
sesses a O(hµ+1/2) bound in the Lp norms, p < ∞. Here our interest lies in the
combinatorial aspects of the theory and will not be concerned with the derivation
of such bounds; the interested reader is referred to [1].

Are the strong order conditions (42) necessary as well as sufficient to achieve
strong order ≥ µ? This question may be discussed in two different scenarios:

• Specific system. In this case we are only interested in (3) for a fixed, specific
choice of dimension d and vector fields f` in Rd.

• General system. Here A and the coefficients J̃w are fixed and one demands
that the series (42) only comprises terms of weight ≥ µ+ 1/2 for each choice
of d and each choice of vector fields f`, ` ∈ A, in (3).

While the general system scenario is not without mathematical interest, in prac-
tice it is the specific system case that matters. This point, that would be true
for any numerical integrator, is especially so for splitting algorithms: one of the
main advantages of the splitting idea is its versatility to be tailored to the specific
problem at hand.

In the specific system scenario is possible that for some words w the word basis
functions fw vanish at each x0. If that is the case, it is not necessary to impose the
order conditions δw = 0 associated with such words. This is illustrated in [1] in the
case of the Langevin dynamics, whose structure implies that many fw vanish.

In the general system scenario the conditions (42) are necessary for strong order
≥ µ, in view of the second item of the lemma below that show that the word basis
functions are independent.
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Lemma 5.3. Fix the alphabet A and choose w ∈ W, w 6= ∅. There exist a value
of the dimension d, vector fields f`, ` ∈ A, in Rd, and a scalar observable χ, which
depend on A and w, such that,

• Dwχ(0) = 1 and Duχ(0) = 0 for each nonempty u ∈ W, u 6= w.
• The first component f1

u(0) of the vector fu(0) ∈ Rd vanishes for each nonempty
u ∈ W, u 6= w, while f1

w(0) = 1.

Proof. The first item follows from the second by choosing χ to be the first coordinate
mapping x 7→ x1.

For the second item, the idea of the proof is best understood by means of an
example. Suppose that w = ``m`m with ` 6= m. Then set d = 5,

f`(x) = [0, x3, 0, x5, 1]T , fm(x) = [x2, 0, x4, 0, 0]T .

(recall that superscripts denote components) and fk(x) = 0 any remaining letters.
Thus ∑

k∈A

fk(x) = [x2, x3, x4, x5, 1]T .

Because second and higher derivatives of the fields vanish, the recurrence (13) shows
that for any word u = kn . . . k1

fu(0) = f ′k1 · · · f
′
kn−1

fkn(0).

Assume that f1
u(0) 6= 0. The Jacobian matrix f ′k1 must have a nonzero element in

its first row and this implies that k1 = m. Then, by definition of fm, the first row
is [0, 1, 0, . . . , 0], so that the second component of

f ′k2 · · · f
′
kn−1

fkn(0)

must be nonzero. This implies that k2 = `. By repeating this argument, we conclude
that u = w and f1

w(0) = 1.
For a general word w, things are as follows. The dimension d is taken equal to

the number of letters in w. The field∑
k∈A

fk(x) = [x2, x3, . . . , xd, 1]T

is split in such a way that its d − j + 1, j = 1, . . . , d component is assigned to the
field fk if k is the letter that occupies the j-th position in w. (In this way there as
many nonzero vector fields fk as distinct letters in w.)

For σ ∈ N, σ > 0, the weak order conditions

E
(
J̃w(t0 + h; t0)

)
= E

(
Jw(t0 + h; t0)

)
, w ∈ W, ‖w‖ = 1, 2, . . . , σ, (43)

are sufficient to ensure that the series in (39) only comprises terms of weight ≥ σ+1,
or, as we shall say, the integrator has weak order ≥ σ. In a general system scenario
the weak order conditions are also necessary in view of the first item in the preceding
lemma.

5.3. Ito order conditions. For the Ito case the strong and week order conditions
are

Ĩw(t0 + h; t0) = Iw(t0 + h; t0), w ∈ W0, ‖w‖ = 1/2, 1, 3/2, . . . , µ, (44)

and

E
(
Ĩw(t0 + h; t0)

)
= E

(
Iw(t0 + h; t0)

)
, w ∈ W, ‖w‖ = 1, 2, . . . , σ, (45)
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respectively. They guarantee that the series in (40) (respectively (41)) only consists
of terms of weight ≥ µ (respectively ≥ σ), or, as we shall say, the integrator has
strong order ≥ µ (respectively weak order ≥ σ).

It is possible to show (but the very long proof will not be reproduced here)
that, in the general system scenario and if µ = 1/2, 1, 3/2, the conditions (44) are
necessary to achieve strong order ≥ µ. Similarly it may be proved that (45) are
necessary to have weak order ≥ σ for general systems if σ = 1, 2, 3. These particular
values of µ and σ are sufficient for establish the order barrier in Theorem 7.2 below.
We believe the strong are weak order conditions are necessary for arbitrary µ or σ
but a proof is not yet available.

5.4. Extensions. In (3) or (4) is assumed that all vector fields fa and fA are
equally important. In several applications this may not be the case. For instance,
consider the system

dx = fa(x) dt+ εfb(x) dt+ fA(x) ◦ dBA, 0 < ε� 1,

or its Ito counterpart, where the split systems {a,A}, {b} may be solved in closed
form. Thus we are dealing with small perturbation of an integrable system and it
makes sense, when expanding the local error, to track not only powers of h but also
powers of ε, as in done in e.g. [5] in the deterministic scenario. That task is easily
accomplished with the tools presented so far. Details will not be given.

6. The shuffle and quasishuffle products. The conditions in (42) are not inde-
pendent ; for instance the order condition corresponding to the two-letter word `` is
fulfilled whenever the order condition for ` is fulfilled. (Note that the dependence
between order conditions and the necessity of the order conditions discussed above
are completely different issues.) Similarly there are dependencies within each of the
set of conditions (43), (44) and (45). The study of this issue requires the help of
the shuffle and quasishuffle products. More generally, these products play a key role
when working in many developments involving elements of R〈〈A〉〉 or R〈〈Ā〉〉 [41].
In the deterministic case the shuffle relations between iterated integrated were first
noted by Ree [40]. The stochastic scenario was addressed by Gaines [20]. On the
other hand there is much literature relating the shuffle and quasishuffle products to
stochastic integration, see e.g. [18].

We begin with the Stratonovich/shuffle case. The more complicated Ito/quasi-
shuffle case is presented later.

6.1. The shuffle product. To motivate the introduction of the shuffle product,
we begin by noting that if ϕ : Rd → Rd is any mapping and Φ the associated
pullback operator, then, for any pair of scalar-valued observables χ1, χ2,

Φ(χ1 · χ2) = (Φχ1) · (Φχ2),

where · denotes the standard (pointwise) product of observables, i.e. (χ1 · χ2)(x) =
χ1(x)χ2(x) for x ∈ Rd. In other words Φ is multiplicative. The series of differential
operators DJ and DJ̃ that expand the pullback operators associated with ϕt0+h;t0

and ψt0+h;t0 are similarly multiplicative. Now, it is easily checked that if S ∈
R〈〈A〉〉, then, in general

DS(χ1 · χ2) 6= (DSχ1) · (DSχ2)

(for instance, if S = ` ∈ A, then DS(χ1 ·χ2) = (DSχ1) ·χ2 +χ1 ·(DSχ2)). Therefore
the coefficients Jw and Jw̃ of the series DJ and DJ̃ must have some special property
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that tells them apart form “general” coefficients; as we shall see, that property
explains the dependence between the order conditions.

In order to identify when a series DS is multiplicative, we first investigate the
action of a differential operator Dw, w ∈ W, on a product χ1 ·χ2. For instance, for
k, `,m ∈ A, a trivial computation leads to

Dk`m(χ1 · χ2) = (Dk`mχ1) · (D∅χ2) + (Dk`χ1) · (Dmχ2)

+(Dkmχ1) · (D`χ2) + (D`mχ1) · (Dkχ2)

+(Dkχ1) · (D`mχ2) + (D`χ1) · (Dkmχ2)

+(Dmχ1) · (Dk`χ2) + (D∅χ1) · (Dk`mχ1).

The right-hand side contains eight pairs of words (k`m, ∅), (k`,m), . . . What do
these pairs have in common? They are precisely the pairs such that when shuffled
give rise to the word k`m in the left-hand side. By definition, the shuffle product
u� v of two words with m and n letters is the sum of the (m + n)!/(m!n!) words
that may be formed by interleaving the letters of u with those of v while keeping
the letters in the same order as they appear in u and v. For instance k` � m =
k`m + km` + `km, `� ` = ` + ` = 2`, etc. More formally, the shuffle product of
words may defined recursively by the relations [41, Section 1.4]

∅� ∅ = ∅, ∅� ` = `� ∅ = `, ` ∈ A,
and

u`� vm = (u`� v)m+ (u� vm)`, u, v ∈ W, `,m ∈ A. (46)

The last equality corresponds to the fact that the words arising from shuffling u`
and vm necessarily end with either the last letter of u` or the last letter of vm.
Note that for words u, v ∈ W, the shuffle u � v is in general not a word but an
element of the space R〈A〉 of linear combination of words. By linearity, the shuffle
product may be trivially extended to a commutative, associative product in R〈A〉;
for instance (3k + `)� (`−m) = 3k`+ 3`k − 3km− 3mk + 2``− `m−m`.

At this stage we introduce some additional notation that will be used frequently
below. If S ∈ R〈〈A〉〉 is a series and p =

∑
w pww ∈ R〈A〉, we set

(S, p) =
∑
w

Swpw; (47)

the sum is well defined because only a finite number of coefficients pw are 6= 0.
In the case where p coincides with a word w, (S,w) is just the coefficient Sw; for
general p, (S,w) is a linear combination of coefficients Sw. Obviously (·, ·) is a
real-valued bilinear map. With this notation, we may present the following result
(that generalizes the formula for Dk`m(χ1 · χ2) above).

Proposition 5. For any S ∈ R〈〈A〉〉 and any pair of observables

DS(χ1 · χ2) =
∑

u,v∈W
(S, u� v)Duχ1 ·Dvχ2.

Proof. It is sufficient to prove the case where S coincides with a word. The proof is
by induction on the length (number of letters) of the word (not to be confused with
its weight). When S is the empty word the result is trivial because, necessarily, in
the right-hand side (S, u� v) vanishes except if u = v = ∅ when (S, u� v) = 1. We
assume that the result is true for the word w and prove it for the longer word w`.
Since D` is a first-order differential operator we may write

Dw`(χ1 · χ2) = DwD`(χ1 · χ2) = Dw(D`χ1 · χ2 + χ1 ·D`χ2),
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so that, by the induction hypothesis,

Dw`(χ1 · χ2) =
∑

u,v∈W
(w, u� v)

(
Du`χ1 ·Dvχ2 +Duχ1 ·Dv`χ2

)
.

Now from the definition of shuffle (w, u � v) = (w`, u` � v) = (w`, u � v`) and
therefore

Dw`(χ1 · χ2) =
∑

u,v∈W
(w`, u`� v)Du`χ1 ·Dvχ2 +

∑
u,v∈W

(w`, u� v`)Duχ1 ·Dv`χ2.

The proof concludes by observing that, when (w`, u′�v′) is 6= 0, i.e. when w` is one
of the words arising when shuffling u′ and v′, the last letter in w` must be either
the last letter of u′ or the last letter of v′, so that either u′ = u` or v′ = v`.

Since, clearly

(DSχ1) · (DSχ2) =
∑

u,v∈W
(S, u)(S, v)Duχ1 ·Dvχ2,

we may write

Dw`(χ1 ·χ2)−(DSχ1)·(DSχ2) =
∑

u,v∈W

(
(S, u�v)−(S, u)(S, v)

)
Duχ1 ·Dvχ2. (48)

This leads trivially to next result:

Proposition 6. Consider a series S ∈ R〈〈A〉〉, S 6= 0. The series of operators DS

is multiplicative if S∅ = 1 and for each pair of words u, v ∈ W, the so-called shuffle
relation

(S, u� v) = (S, u)(S, v)

holds.

Thus the shuffle relations are equations that link the different coefficients Sw,
w ∈ W. For instance, from the shuffle ` � ` = 2``, ` ∈ A, we have the shuffle
relation S2

` = 2S`` and, from the shuffle k� ` = k`+ `k, SkS` = Sk` + S`k.
Proposition 6 in tandem with the following result give a new proof of the multi-

plicativity of DJ that we pointed out above.

Proposition 7. The Stratonovich iterated integrals Jw(t0 +h; t0) satisfy the shuffle
relations.

Proof. For the shuffling of two letters `,m ∈ A, the integration by parts formula(
B`(t0 + h)− B`(t0)

)(
Bm(t0 + h)− Bm(t0)

)
=

∫ t0+h

t0

(
B`(t0+s)−B`(t0)

)
◦ dBm(s)+

∫ t0+h

t0

(
Bm(t0+s)−Bm(t0)

)
◦ dB`(s), (49)

is a statement of the shuffle relation J`Jm = Jm` + J`m (recall that if ` or m are
not stochastic, then B`(t) = t or Bm(t) = t respectively). General shuffles are dealt
with by induction based on the recursive definition of the shuffle product in (46)
and the recursion (9) for the iterated integrals.

To present a similar result for the integrator we need a lemma:

Lemma 6.1. Let S, T ∈ R〈〈A〉〉, with S∅ = T∅ = 1, satisfy the shuffle relations.
Then the product ST has (ST )∅ = 1 and satisfies the shuffle relations.
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Proof. Recall that the coefficients of ST are given by the convolution product as
in (33), which is based on deconcatenation. The result is a consequence of the
following observation: the deconcatenation of the words in a shuffle u� v may be
found by shuffling the deconcatenations of u and v. An example of this observation
follows. Deconcatenation of the shuffle k`�m = k`m + km` + mk` gives the 12
pairs

(k`m, ∅) + (k`,m) + (k, `m) + (∅, k`m) + (km`, ∅) + · · ·+ (∅,mk`).
On the other hand by deconcatenating k` we obtain (k`, ∅) + (k, `) + (∅, k`), and by
deconcatenating m obtain (m, ∅) + (∅,m). Shuffling now as in

(k`, ∅)� (m, ∅) = (k`�m, ∅� ∅)
(k`, ∅)� (∅,m) = (k`� ∅, ∅�m),

etc. yields the same 12 pairs (the first line of the display gives (k`m+km`+mk`, ∅),
the second (k`,m), etc). To prove the observation in the general case, one may use
the recurrence (46).

By using the observation, (ST, u� v) may be written as a sum of products∑
ij

(S, ui � vj)(T, u
′
i � v′j),

(uiu
′
i = u and vjv

′
j = v) or, since S and T satisy the shuffle relations,∑

ij

(S, ui)(S, vj)(T, u
′
i)(T, v

′
j)

=
∑
i

(S, ui)(T, u
′
i)
∑
j

(S, vj)(T, v
′
j) = (ST, u)(ST, v).

Proposition 8. For a splitting integrator for the Stratonovich system (3) the coef-

ficients J̃w(t0 + h; t0) satisfy the shuffle relations.

Proof. The proof is a trivial consequence of the lemma, because DJ̃ is a composition
of solution operators DJi associated with the split systems and therefore, by the
preceding proposition, a composition of operators that satisfy the shuffle conditions.

After the last two propositions, it is easy to see that the Stratonovich strong
order conditions are not independent. For instance from the shuffle relations J`(t0 +

h; t0)2 = 2J``(t0 + h; t0) and J̃`(t0 + h; t0)2 = 2J̃``(t0 + h; t0), we conclude that the

strong order condition J̃``(t0 + h; t0) = J``(t0 + h; t0) corresponding to the word

`` is fulfilled if the strong order condition J̃`(t0 + h; t0) = J`(t0 + h; t0) holds.
Analogously, if k 6= ` the order condition for k` is implied by those of `k, k and
`, etc. It is possible to obtain independent order conditions by keeping only the
conditions corresponding to the so-called Lyndon words [20] that we describe next.
We order the alphabet A and then order words lexicographically; a Lyndon word
is a word that is strictly smaller than all the words obtained by rotating its letters.
If the alphabet is A = {a,A} and a < A, then aA is a Lyndon word because it
precedes the rotated Aa. Similarly aaA is a Lyndon word while aAa and Aaa are
not. For this simple alphabet, the Lyndon words with three or fewer letters are a,
A, aA, aaA, aAA; their order conditions are independent and imply, via the shuffle
relations, the order conditions for aa, AA, aaa, aAa, Aaa, AaA, AAa and AAA.
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For reasons of brevity, the independence of the Stratonovich weak order condi-
tions will not be discussed in this paper.

Remark 3. From (48) and Lemma 5.3 the shuffle conditions are necessary for DS

to be multiplicative for each choice of d and vector fields f`, ` ∈ A. Hence the
last two propositions may be proved in an alternative way: one first notices the
multiplicativity of DJ and DJ̃ as expansions of pullbacks associated with the true
and numerical solution respectively and then concludes that the shuffle conditions
are satisfied because the multiplicativity holds for all choices of vector fields. Recall
from Remark 1 that changing the vector fields does not alter the iterated integrals.

6.2. The quasishuffle product. As we noted above, the shuffle property of the
Stratonovich iterated integrals stems from the formula of integration by parts in
(49). For the Ito calculus, formula (49) has to be replaced by(

B`(t0 + h)− B`(t0)
)(
Bm(t0 + h)− Bm(t0)

)
=

∫ t0+h

t0

(
B`(t0 + s)− B`(t0)

)
dBm(s) +

∫ t0+h

t0

(
Bm(t0 + s)− Bm(t0)

)
dB`(s)

+
[(
B`(t0 + h)− B`(t0)

)
,
(
Bm(t0 + h)− Bm(t0)

)]
, (50)

where the last term represents the quadratic covariation (see e.g. [2, Chapter 5]). If
` = m ∈ Asto, then the quadratic covariation in (50) is h; for all other combinations
of letters the quadratic covariation vanishes.

The quasishuffle product ./ to be defined presently is such that for any two letters
`,m ∈ Ā, the computation of ` ./ m mimics the integration by parts relation (50).
In combinatorial algebra, the definition of a quasishuffle product depends on the
choice of a so-called bracket [·, ·]; different brackets lead to different quasishuffle
products as defined by Hoffman [24]. Throughout this paper we only work with
one fixed choice of bracket defined as follows. For letters `,m ∈ Ā, [`,m] takes the
value Ā ∈ R〈Ā〉 if ` = m = A ∈ Asto; [`,m] = 0 ∈ R〈Ā〉 in all other cases. Then
the quasishuffle product of words u ./ v ∈ R〈Ā〉 is defined recursively by

∅ ./ ∅ = ∅, ∅ ./ ` = ` ./ ∅ = `, ` ∈ Ā,

and

u` ./ vm = (u` ./ v)m+ (u ./ vm)`+ (u ./ v)[x, y], u, v ∈ W, `,m ∈ Ā.

In the particular case u = v = ∅, the last relation yields ` ./ m = `m+m`+ [`,m],
a transcription of (50).

The next four results are counterparts of Propositions 5–8. The bilinear form
(·, ·) in (47), which we defined in R〈〈A〉〉×R〈A〉, is now extended to R〈〈Ā〉〉×R〈Ā〉.

Proposition 9. For any S ∈ R〈〈Ā〉〉 and any pair of observables

DS(χ1 · χ2) =
∑

u,v∈W

(S, u ./ v)Duχ1 ·Dvχ2.

Proof. One may use the same technique as in Proposition 5. Here the proof is
lengthier because it has to contemplate the possibility ` = Ā, A ∈ Asto in which
case D` is a second order operator.

This yields immediately:
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Proposition 10. Consider a series S ∈ R〈〈Ā〉〉, S 6= 0. Then the series of op-
erators DS is multiplicative if S∅ = 1 and for each pair of words u, v ∈ W, the
quasishuffle relation

(S, u ./ v) = (S, u)(S, v)

holds.

The proofs of the following propositions are similar to those of Propositions 7
and 8 respectively.

Proposition 11. The the Ito iterated integrals Iw(t0 +h; t0) satisfy the quasishuffle
relations.

Proposition 12. For a splitting integrator for the Ito system (4), the coefficients

Ĩw(t0 + h; t0) satisfy the quasishuffle relations.

The last two propositions show immediately that the Ito strong order conditions
are not independent. The dependence between the Ito weak order conditions will
be discussed after Proposition 17.

6.3. Concatenating Chen series. The shuffle (quasishuffle) relations constrain
the values of Stratonovich (Ito) iterated integrals corresponding to different words
but based on a common interval (t0, t0 + h). Iterated integrals corresponding to
adjacent intervals are also interrelated, as we now discuss.

Solution operators of Stratonovich or Ito systems satisfy

ϕt2,t1 ◦ ϕt1,t0 = ϕt2,t0 , t2 ≥ t1 ≥ t0.

From here we get the following relations between series of operators

DJ(t1;t0)DJ(t2;t1) = DJ(t2;t0), DI(t1;t0)DI(t2;t1) = DI(t2;t0), t2 ≥ t1 ≥ t0;

the corresponding relations between elements of R〈〈A〉〉 or R〈〈Ā〉〉 (Chen series) are

J(t1; t0)J(t2; t1) = J(t2; t0); I(t1; t0)I(t2; t1) = I(t2; t0), t2 ≥ t1 ≥ t0. (51)

The equalities in (51) are, in view of (33), a family of relations between iterated
integrals first noted by Chen [16] in the case where there are no stochastic letter.
For instance, for words with two letters:

J`m(t2; t0)2 = J`m(t1; t0) + J`(t1; t0)Jm(t2; t1) + J`m(t2; t1),

etc. These relations may alternatively be proved by manipulating the integrals,
without going through the series of differential operators as above.

6.4. Composing word series. We conclude our study of the shuffle and quasishuf-
fle products by showing that, in some circumstances, the composition WT (WS(x))
of two word series is another word series.

Let us begin with the Stratonovich case. If χ is an observable and w ∈ W, then
Dwχ is a sum of terms each of which is a derivative χ(s)(x) acting on combinations
of derivatives of the functions fk, k ∈ A. A simple example is:

D`mχ(x) = χ′′(x)[f`(x), fm(x)] + χ′(x)f ′m(x)f`(x).

Here, the word `m may have weight 1, 3/2 or 2 depending of whether ` and m are
stochastic of deterministic; the thing to observe is that in each term of the right-
hand side of the last equality the fk k ∈ A, that appear have a combined weight
that matches the weight of `m.
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If S ∈ R〈〈A〉〉 and DS is the corresponding series of differential operators we
may arrange DSχ by grouping the terms where the combined weight of the fk
that appear is successively 0, 1/2, 1, 3/2, etc. On the other hand if WS(x) is the
associated word series and S∅ = 1 so that WS(x) − x = O(1/2), we may Taylor
expand as follows

χ(WS(x)) = χ(x+ [WS(x)− x]) = χ(x) + χ′(x)[WS(x)− x]

+
1

2
χ′′(x)[WS(x)− x,WS(x)− x] + · · ·

Here the right-hand side may be arranged, as we did in the case of DSχ, by grouping
the terms where the combined weight of the fk that appear is successively 0, 1/2, 1,
3/2, etc. This arrangement may be carried out because [WS(x)−x]r only contributes
terms of combined weight ≥ r/2 and therefore for each weight there is only a finite
number of terms to be grouped. It turns out that if S is multiplicative the expansions
of DSχ(x) and χ(WS(x)) coincide.

Proposition 13. Suppose that S ∈ R〈〈A〉〉 has S∅ = 1 and satisfies the shuffle
relations. Then for any observable χ, the expansion of χ(WS(x)) coincides with
DSχ(x).

Proof. If χ is one of the coordinate mappings x 7→ xi, then the result is true
because, by definiton, the i-th component of the word-basis function fw is obtained
by applying Dw to the i-th coordinate mapping. If χ is a product of coordinate
mappings, the result holds because DS acts multiplicatively. By linearity the result
is true if χ is a polynomial. Then the result hold for smooth χ because it holds for
the Taylor polynomials of any degree of χ around any base point x.

As a direct consequence we may state:

Proposition 14. Suppose that S ∈ R〈〈A〉〉 has S∅ = 1 and satisfies the shuffle
relations. Then for any T ∈ R〈〈A〉〉, WT (WS(x)) coincides with the words series
WST (x).

Proof. It is enough to note that, for each word basis function fw(x) = Dwid(x),
according to the preceding proposition, fw(WS(x)) has the expansion DSfw(x) =
DSDwid(x).

The Ito case is completely parallel; the only change is that S ∈ R〈〈Ā〉〉 has to be
demanded to satisfy the quasishuffle relations rather than the shuffle relations.

In fact the computations leading to (34) or (36) are instances of the composition
just described.

7. Infinitesimal generators. It is well known that the infinitesimal generators of
(3) or (4) play an important role in the study of these systems, see e.g. [38, Section
2.5]. In this section those generators are described in the language of words. The
material has an important implications for the weak order conditions. We begin
with Ito systems.

7.1. The Ito generator. For system (4), we consider the linear combination of
deterministic letters

G =
∑

`∈Ādet

` =
∑

a∈Adet

a+
∑

A∈Asto

Ā
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and define the exponential exp(hG) ∈ R〈〈Ā〉〉, h ∈ R, as the series

∅+ hG +
h2

2
G2 + · · · ,

where the powers are based on concatenation, e.g.

GG =
∑

a,b∈Adet

ab+
∑

a∈Adet,B∈Asto

aB̄ +
∑

A∈Asto,b∈Adet

Āb+
∑

A,B∈Asto

ĀB̄

(note that the right-hand side is simply the sum all the words consisting of two
deterministic letters from Ā). The operator DG is the infinitesimal generator of
(4), a linear combination of first and second order differential operators.

Proposition 15. The expectations of the Ito iterated integrals are given by EIw(t0+
h; t0) = 0 if w ∈ W has at least one stochastic letter and EIw(t0 + h; t0) = hn/n! if
w ∈ W consists of n deterministic letters.

The following relation holds:

EI(t0 + h; t0) = exp(hG).

For any observable and h > 0,

Eχ(x(t0 + h)) = exp(hDG)χ(x0),

where x(t) solves (4) with x(t0) = x0 and the expectation is conditional on x0.

Proof. For the first claim we recall that the expectation of Ito integrals vanishes.
In addition it is trivially computed that, when all the letters in a word are deter-
ministic, Iw(t0 + h; t0) = hn/n!, where n represents the number of letters.

By expanding exp(hG as a series, one sees that the second claim is just a
reformulation of the first. An alternative proof of this second claim is as fol-
lows. As noted before (Proposition 2), the distribution of the random variable
I(t0 +h; t0) is independent of t0 and therefore we may write EI(t0 +h; t0) = EI(h).
The functions exp(hG) and EI(h) coincide at h = 0, where they take the com-
mon value ∅. By taking expectations in (51), we find the semigroup relation
E(h1 + h2) = EI(h1)EI(h2) for h1, h2 ≥ 0. Differentiating with respect to h1

and then setting h1 = 0, h2 = h yields the linear, constant coefficient differential
equation (d/dt)E(h) = [(d/dh)EI(0)]EI(h).1 On the other hand, a straightforward
computation leads to (d/dh) exp(hG) = G exp(hG), and the proof of the second
statement concludes by noting that (d/dh)EI(0) = G since EIw(h) = o(h) as h ↓ 0
if w has length > 1 and all its letters are deterministic.

For the last claim, just take expectations in (17).

Remark 4. The preceding proposition and the quasishuffle relations among the Iw
(Proposition 11) make it possible to compute all the moments of the Ito iterated
integrals, as first suggested by Gaines [20]. The easiest example is given by the
relation A ./ A = 2AA + Ā that leads to I2

A = 2IAA + IĀ; according to the
proposition the expectation of the right-hand side equals 0+h and therefore EI2

A =

h, a well known property of the Brownian increment IA. The values of EIi`, E(Ii`I
j
`m),

`,m ∈ Ā, i, j ∈ N, etc. may be computed similarly after writing the appropriate
quasishuffles.

1This differential equation in R〈〈Ā〉〉 is of course just a system of differential equations for the

coefficients EIw(h), w ∈ W, that presents no technical difficulty.
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Proposition 16. The expectations EIw(t0 + h; t0), w ∈ W of the Ito iterated inte-
grals satisfy the shuffle relations.

Proof. This result is an easy consequence of the Proposition 15. With the abbre-
viation S = exp(hG), (S, u)(S, v) and (S, u � v) are both 0 if either u or v have
a stochastic letter. In other case, if u has m letters and v has n, (S, u) = hm/m!,
(S, v) = hn/n! while (S, u� v) is a sum of (m+ n)!/(m!n!) coefficients Sw each of
them with value hm+n/((m+ n)!.

7.2. Weak order conditions in the Ito case. We now turn to the series of
expectations associated with a splitting integrator specified by the pullback series

Ĩ(t0 + h; t0) = I(1)(t0 + d1h; t0 + c1h) · · · I(m)(t0 + dmh; t0 + cmh).

In general, the equality

EĨ(t0 + h; t0) = EI(1)(t0 + d1h; t0 + c1h) · · ·EI(m)(t0 + dmh; t0 + cmh) (52)

will not hold because the I(i)(t0 + dih; t0 + cih) are not independent. However, as
it will shortly become clear, (52) will typically be satisfied. We first present some
examples that will help to understand the situation.

Assume that the alphabet A consists of two letters a and A. Choose a partition
of the interval [0, 1]

0 = c′1 < d′1 = c′2 < d′2 = c′3 < · · · < d′ν−1 = c′ν < d′ν = 1

and let fA act in the intervals [t0 + c′ih, t0 + d′ih], while the deterministic fa may
act on any set of intervals. In this case (52) holds because the Brownian motion BA
acts on nonoverlapping intervals. This example may be easily extended to the case
where there are additional deterministic fields fb, fc, . . . ; in the split systems some
of them could be grouped with fa and some of them grouped with fA.

As a second example, assume that A = {A,B} and use Strang’s splitting with
fA acting first. Here I(1) and I(3) are independent because their intervals do not
overlap, while the pairs I(1), I(2) and I(2), I(3) are independent because they use
independent Brownian motions. Again this example may be easily generalized by
adding additional deterministic and/or stochastic letters.

We have the following general result:

Lemma 7.1. Assume that Asto 6= ∅ so that (4) does not degenerate into a deter-
ministic differential equations. If a splitting integrator for (4) has strong order > 0
(i.e. ≥ 1/2, then (52) holds.

Proof. As noted at the end of Section 5, the Ito strong order conditions with µ = 1/2
must be satisfied. Now for each A ∈ Asto the strong order condition corresponding
to A, shows that

∑
j IA(t0 + dijh; t0 + cij ) = IA(t0 + h; t0), where the sum is

extended to all partial systems that include fA. This implies that, for each fixed
A, the corresponding intervals [cij , dij ] cover the interval [0, 1] and therefore cannot
overlap.

Schemes that satisfy (52) have the special properties that we study next. To
begin with, Lemma 6.1 clearly implies:

Proposition 17. For splitting integrators for (4) that satisfy (52), the expectations

coefficients EĨw(t0 + h; t0) satisfy the shuffle conditions.
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In turn this result and Proposition 16 show that the weak order conditions are not
independent when (52) holds. For instance the weak order condition for `` is implied
by the weak order condition for ` ∈W , since, as noted repeatedly, `� ` = 2``.

In the next proposition we need the deterministic system:

dx =
∑

a∈Adet

fa(x) dt+
∑

A∈Asto

fA(x) dt, (53)

obtained by replacing the differentials dBA in the Ito system (4) by dt. It is clear
that each splitting algorithm for (4) defines a splitting algorithm for (53) and vice
versa.

Proposition 18. For splitting integrators for (4) that satisfy (52) and in the gen-
eral vector field scenario, the following properties are equivalent:

• The weak order conditions (45) hold for a positive integer σ.
• When applied to the deterministic system (53), the integrator has local error
O(hσ+1).

Proof. From (52) and Proposition 15

EĨ(t0 + h; t0) = exp
(
h(d1 − c1)G(1)

)
· · · exp

(
h(dm − cm)G(m)

)
,

where the G(i) are the generators of the partial systems and therefore sums of
deterministic letters. Condition (45), requires that, in the series in the last display,
the terms corresponding to words with ≤ σ letters coincide with those of

EI(t0 + h; t0) = exp(hG).

To study the order for (53) we may also use words seeing a deterministic system
as the particular case of Ito system where there is no stochastic letter. If we denote
by Ā the (deterministic) letter associated with the field fA, we then have

Ĩ(t0 + h; t0) = exp
(
h(d1 − c1)G(1)

)
· · · exp

(
h(dm − cm)G(m)

)
,

and

I(t0 + h; t0) = exp(hG),

and order σ requires that the terms involving words with σ or fewer letters in the
series in the last two displays coincide.

The following counterexample shows that, in the last two propositions, hypothesis
(52) cannot be dispensed with. For the alphabet A = {a,A}, we consider the
integrator

ϕ
(A)
t0+h/2,t0

◦ ϕ(a)
t0+h,t0

◦ ϕ(A)
t0+h/2,t0

.

While this is admittedly a contrived example, using the interval [t0, t0 + h/2] to
finish the step (rather than the more natural [t0 + h/2, t0 + h]) may have some
appeal. On the one hand the distribution of the iterated integrals in [t0, t0 + h/2]
is the same as that in [t0 +h/2, t0 +h]) and, on the other hand, working twice with
[t0, t0 +h/2] may make it possible to reuse Brownian increments. For this integrator
the hypothesis (52) does not hold. A simple computation, similar to that preceding
(36), yields

Ĩ(t0 + h; t0) = 1∅+ 2IAA+ Iaa+ [I2
A + 2IAA]AA+ IĀĀ+O(3/2)
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(the iterated integrals in the right-hand side are over [t0, t0 +h/2]). We note in rela-
tion with Lemma 7.1 that here the order condition for A is obviously not satisfied.
Taking expectations in the last display,

EĨ(t0 + h; t0) = 1∅+ 0A+ ha+
h

2
AA+ hĀ+O(2).

Since 02 6= 2 × h/2, for the expectations, the shuffle relation corresponding to
A�A = 2AA does not hold. On the other hand, from Proposition 15,

EI(t0 + h; t0) = 1∅+ 0A+ ha+ 0AA+ hĀ+O(2)

so that weak order conditions for σ = 1 are not satisfied. In the deterministic case
the algorithm coincides with Strang’s splitting with local errors O(h3) (i.e. σ = 2).
Thus the weak order does not coincide with the deterministic order.

It turns out that, in the general system scenario, under (52), there is an order
barrier: the weak order cannot be better than σ = 2.

Theorem 7.2. Assume that (52) holds. There is no splitting integrator for (4)
with weak order σ ≥ 3.

Proof. By contradiction. As noted at the end of Section 5, the Ito weak conditions
with σ = 3 holds. From Proposition 18 the algorithm is of order ≥ 3 for deter-
ministic problems, which is known to be contradictory with the condition cij < dij
[3].

Remark 5. In the deterministic case this order barrier may be overcome by using
complex coefficients; a full discussion of the relevant literature may be seen in [4,
Section 6.3.3]. To our best knowledge complex coefficients have not yet been tested
in the stochastic scenario.

7.3. The Stratonovich generator. We briefly outline how the preceding material
has to be modified in the Stratonovich case. The expression for the generator is

G =
∑

a∈Adet

a+
1

2

∑
A∈Asto

AA ∈ R〈A〉,

and, in analogy with Proposition 15, we have

EJ(t0 + h; t0) = exp(hG), (54)

a formula that may be proved by showing, as in the Ito case, that the left- and right-
hand sides satisfy the same initial value problem. As a consequence, one obtains
the following formula for the expectation of observables:

Eχ(x(t0 + h)) = exp(hDG)χ(x0).

Taking the coefficient of the word w ∈ W in (54) gives the value of the expecta-
tions of the iterated integrals. Clearly EJw(t0+h; t0) = 0 if w is not a concatenation
of deterministic letters a ∈ Adet and pairs AA, A ∈ Asto (examples include AAA
or ABAB if A 6= B). When w is such a concatenation, it is easily shown that

EJw(t0 + h; t0) =
1

2π(w)

h‖w‖

‖w‖!
where π(w) is the number of pairs that enter in the concatenation (for instance for
AAaBBAA, π = 3 and for AAAA, π = 2). Once the expectations EJw(t0 + h; t0)
are known, the shuffle relations in Proposition 6 may be used to compute higher
moments of the iterated integrals, similarly to what was explained in Remark 4.
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As distinct from the EIw, w ∈ W, studied in Proposition 16, the EJw, w ∈ W,
do not satisfy the shuffle relations (except of course in the degenerate case where
Asto = ∅).

For integrators that satisfy the obvious analogue of (52), Proposition 18 also
holds in the Stratonovich case and therefore the order barrier in Theorem 7.2 also
applies to the Stratonovich interpretation.

8. Relating the Stratonovich and Ito interpretations. In this paper, the
Stratonovich and Ito theories have been developed in parallel. It is well known that
it is actually possible to map one into the other and we now present how to do so
by means of words.

8.1. Relating the Stratonovich and Ito iterated integrals. Along with the
extended alphabet Ā that we used to carry out the Ito-Taylor expansion, let us now
consider a new alphabet A? that consists of all the deterministic letters a ∈ Adet, all
the stochastic letters A ∈ Asto and, in addition, a deterministic letter A? associated
with each A ∈ Asto. After setting ◦dB`(s) = ds for all deterministic letters, we
may define, via (9), Stratonovich iterated integrals Jw for each w ∈ W?, where W?

denotes the set of words for the alphabet A?. Note that this set of iterated integrals
is different from that used to write the Stratonovich-Taylor expansion in (10)–(12)
because W? is a larger set than W. With the Jw, w ∈ W?, we construct the Chen
series

J? =
∑
w∈W?

Jw(t0 + h; t0)w.

The results in this section require the use of two mappings θ and ρ that we
introduce now. We define θ : R〈〈A?〉〉 → R〈〈Ā〉〉 as follows. For letters, we set
θ(a) = a for a ∈ Adet, θ(A) = A for A ∈ Asto and θ(A?) = Ā − (1/2)AA for
A ∈ Asto. For words, we set θ(∅) = ∅ and θ(`1 . . . `n) = θ`1 · · · θ`n. We note that,
for each w ∈ W?, θ(w) is a linear combination of words of weight ‖w‖. Finally,
we set θ(

∑
w Sww) =

∑
w Swθw. Clearly θ is linear and in addition is an algebra

morphism, i.e. maps the concatenation S1S2 into the concatenation θ(S1)θ(S2).
We next define a bilinear mapping R〈〈A?〉〉 × R〈Ā〉 → R as in (47) and define

ρ : R〈Ā〉 → R〈A?〉 by demanding(
θ(S), p

)
=
(
S, ρ(p)

)
for each S ∈ R〈〈A?〉〉 and each p ∈ R〈Ā〉; thus ρ is the linear map obtained from θ
by transposition with respect to (·, ·). As an example of the computation of ρ, let
us find ρ(AA). By definition, θ(A?) = Ā− (1/2)AA and θ(AA) = θ(A)θ(A) = AA;
for words w other than A? and AA, (θ(w), AA) = 0 and therefore ρ(AA) = AA −
(1/2)A?. In general

ρ(w) = w +
∑
u

(
−1

2

)r
u,

where the sum is extended to all words that may obtained by replacing pairs of
consecutive stochastic letters AA by the corresponding Ā and r ≥ 1 is the number
of pairs replaced. For instance, ρ(aAAA) = aAAA − (1/2)aĀA − (1/2)aAĀ and
ρ(AAAA) = AAAA− (1/2)ĀAA− (1/2)AĀA− (1/2)AAĀ+(1/4)ĀĀ and ρ(AB) =
AB if A 6= B.

The maps θ and ρ have been defined so that they encapsulate the relation between
Ito and Stratonovich integrals, as shown in the next result, where the first formula
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expresses each Ito iterated integral as a linear combination of Stratonovich iterated
integrals (cf. formula (8) in [20]).

Proposition 19. For each w ∈W ,

Iw(t0 + h; t0) =
(
J?(t0 + h; t0), ρ(w)

)
, (55)

and, therefore, for each p ∈ R〈Ā〉,(
I(t0 + h; t0), p

)
=
(
J?(t0 + h; t0), ρ(p)

)
.

As a consequence, θ maps the (Stratonovich) Chen series J? into the (Ito) Chen
series

I =
∑
w∈W

Iw(t0 + h; t0)w.

Proof. The equality in (55) clearly holds if w is empty or consists of a single sto-
chastic letter. Suppose that it holds for all words with weight ≤ N , N ≥ 1/2, and
consider a word of of weight N +1/2, which we write in the form wk`. Assume first
that k = ` = A for some A ∈ Asto. By the recurrence relation between iterated
integrals, we have

IwAA =

∫ t0+h

t0

IwA(s) dBA(s),

and then, by the relation between Ito and Stratonovich stochastic integrals (see
e.g.[38, Section 3.2], the induction hypothesis and (9), we may write

IwAA =

∫ t0+h

t0

IwA(s) ◦ dBa(s)− 1

2

∫ t0+h

t0

Iw(s) dt

=

∫ t0+h

t0

(
J?(s; t0), ρ(wA)

)
◦ dBA(s)− 1

2

∫ t0+h

t0

(
J?(s; t0), ρ(w)

)
ds

=
(
J?, ρ(wA)A

)
− 1

2

(
J?, ρ(w)Ā

)
=

(
J?, ρ(wAA)

)
.

For other combinations of k and ` one proceeds similarly, starting from

Iwk` =

∫ t0+h

t0

Iwk(s) dB`(s) =

∫ t0+h

t0

Iwk(s) ◦ dB`(s).

As a simple instance of (55) we note that, from the relation ρ(AA) = AA −
(1/2)A? found above, we get IAA = JAA − (1/2)JA? , i.e. the well-known relation∫ t0+h

t0

BA(s)dBA(s) =

∫ t0+h

t0

BA(s) ◦ dBA(s)− 1

2
h =

1

2

(
BA(t0+h)2−BA(t0)2−h

)
.

8.2. The equivalence Ito–Stratonovich. Proposition 19 links the Chen series J?

and I. We investigate next the link between the corresponding series of differential
operators. Recall that, associated with each a ∈ Adet or each A ∈ Asto, there
is a first order (Lie) differential operator (5). On the other hand, letters Ā ∈ Ā
corresponding to A ∈ Asto give rise to second order differential operators (15). We
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now associate with each letter A?, A ∈ Asto, the first-order differential operator
defined by

DA?χ(x) = χ′(x)
(
− 1

2
f ′A(x)fA(x)

)
.

Thus DA? is the Lie operator of the vector field −(1/2)f ′A(x)fA(x). With this
definition, a simple computation yields

DA? = DĀ −
1

2
DAA

i.e. DA? = Dθ(A?). Furthermore, for a ∈ Adet, θ(a) = a and, for A ∈ Asto, θ(A) = A
and therefore D` = Dθ(`) for each ` ∈ A?. It follows that DS = Dθ(S) for each series
S ∈ R〈〈A?〉〉. In particular, from the last equality in Proposition 19, we conclude
DJ? = DI , or, in other words, the pullback operator DI for the Ito equation (4)
coincides with the pullback operator DJ? of the Stratonovich equation

dx =
∑

a∈Adet

fa(x) dt− 1

2

∑
A∈Asto

f ′A(x)fA(x) dt+
∑

A∈Asto

fA(x) ◦ dBA. (56)

In fact, as is well known, this Stratonovich equation and (4) have the same solutions.
This is easily proved: (14) coincides with the result of writing formula (6) for the
system (56). Of course, if all the fA, A ∈ Asto are constant (additive noise), (56) is
the same as (3), i.e. (4) and (3) share the same solutions, see e.g. [25, Section 4.9].

9. Additional algebraic results. In this section we briefly relate the preceding
material to standard results on combinatorial (Hopf) algebras and provide addi-
tional algebraic results. Hopf algebras are important tools in the study of numer-
ical integrators and in other fields including e.g. renormalization theories; a very
readable introduction that requires little algebraic background is presented in [7].
For instance many developments of Butcher’s theory of Runge-Kutta methods may
be phrased in the language of the Hopf algebra of trees and in fact Butcher antic-
ipated many results on that algebra later rediscovered in different settings. Useful
references are [31, 17].

The (associative, commutative) shuffle algebra Hsh(A) of the alphabet A is de-
fined as follows. As a vector space Hsh(A) coincides with R〈A〉. However the
product in Hsh(A) is given by shuffling words rather than by concatenating them.
The algebra Hsh(A) is graded by the weight ‖ · ‖. In addition we may consider in
Hsh(A) a coproduct by decomposing (deconcatenating) each word w = `1 . . . `n ∈ W
as

∅ ⊗ `1 . . . `n + `1 ⊗ `2 . . . `n + `1 . . . `n ⊗ ∅.
This coproduct is compatible with the shuffle product because, as explained in
the proof of Lemma 6.1, the operations of shuffling and deconcatenation commute.
Therefore Hsh(A) is a Hopf algebra graded by the weight.

The dual vector space ofHsh(A) may be identified with the vector space of formal
series R〈〈A〉〉 via the bilinear form (47). In other words, the linear form on Hsh(A)
that as w ranges in W associates with w the real number Sw is identified with∑
Sww. With this identification, the concatenation product of series S ∈ R〈〈A〉〉,

or equivalently the product (33) for the coefficents, coincides with the convolution
product in the dual of the Hopf algebra. Series S with S∅ = 1 that satisfy the shuffle
relations are then the linear forms onHsh(A) that are multiplication morphisms (i.e.
preserve multiplication). The set of those linear forms forms is well known to be a
group for the convolution product; this group is called the shuffle group and denoted
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Gsh(A). Therefore Lemma 6.1 is just the statement that the convolution product
of two elements in Gsh(A) lies in Gsh(A).

The quasishuffle Hopf algebra Hqsh(Ā) is constructed similarly. One endows the
vector space R〈Ā〉 with the quasishuffle product and the deconcatenation coproduct.
The series S ∈ R〈〈Ā〉〉 with S∅ = 1 that satisfy the quasishuffle relations may then
be viewed as forming the quasishuffle group Gqsh of linear forms on Hqsh(Ā) that
are multiplication morphisms.

Theorem 2.5 in [24] shows that the mapping ρ is an isomorphism of Hqsh(Ā) onto
Hsh(A?). In particular it maps the quasishuffle product into the shuffle product:

ρ(u ./ v) = ρ(u)� ρ(v), ∀u, v ∈W.

This observation and the material in Section 8 make clear that the quasishuffle/Ito
results in Propositions 9–12 may be derived from the corresponding shuffle/Strat-
onovich results by transforming � into ./ with the help of the inverse isomorphism
ρ−1.
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