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We propose and analyse a heterogeneous multiscale method for the efficient integration of constant-delay
differential equations subject to fast periodic forcing. The stroboscopic averaging method suggested here
may provide approximations with O

(
H2 + 1/Ω2)

errors with a computational effort that grows like H−1

(the inverse of the step size), uniformly in the forcing frequency Ω .
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1. Introduction

We propose and analyse a heterogeneous multiscale method (HMM) (E, 2003; E & Engquist, 2003)
for the efficient integration of constant-delay differential equations subject to fast periodic forcing. The
stroboscopic averaging method (SAM) suggested here may provide approximations with O

(
H2+1/Ω2

)

errors with a computational effort that grows like H−1 (the inverse of the step size), uniformly in the
forcing frequency Ω .

Delay differential equations with fast periodic forcing appear in a number of recent contributions
to the nonlinear Physics literature. As shown by Daza et al. (2017), under fast periodic forcing, the
delayed-action oscillator (Boutle et al., 2007) that describes El Niño phenomenon may generate basins
of attraction with the Wada property, i.e. each point on the boundary of one of the basins is actually on
the boundary of all basins. The system

ẋ1(t) = α

1 + xβ
2 (t)

− x1(t − τ) + A sin(ωt) + B sin(Ωt), (1.1)

ẋ2(t) = α

1 + xβ
1 (t)

− x2(t − τ),

(τ , α, β, ω, A, B are constants) describes, for A = 0, B = 0 a time-delayed genetic toggle switch,
a synthetic gene-regulatory network (Gardner et al., 2000). Studied by Daza et al. (2013a) is the
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A STROBOSCOPIC AVERAGING ALGORITHM FOR HIGHLY OSCILLATORY DELAY PROBLEMS 1111

phenomenon of vibrational resonance (Landa & McClintock, 2000), i.e. the way in which the presence
of the high-frequency forcing B sin(Ωt) enhances the response of the system to the low-frequency
forcing A sin(Ωt). Jeevarathinam et al. (2011) and Daza et al. (2013b) investigate in a similar way
the forced, delayed Duffing oscillator. A new kind of nonlinear resonance of periodically forced delay
systems has recently been described by Coccolo et al. (2018).

The numerical integration of highly oscillatory differential equations with or without delay may be a
very demanding task, as standard methods typically have to employ time steps smaller than the periods
present in the solution. For systems without delay, the literature contains many suggestions of numerical
schemes specially designed to operate in the highly oscillatory scenario; many of them are reviewed in
Hairer et al. (2002). Perhaps counterintuitively, some of those methodologies take advantage of the
large frequency and their efficiency actually increases with Ω (Iserles & Nørsett, 2005). On the other
hand, schemes for highly oscillatory problems may suffer from unexpected instabilities and inaccuracies
(Calvo & Sanz-Serna, 2009).

The algorithm suggested here is based on ideas presented, for systems without delay, by Calvo et al.
(2011a) and Calvo et al. (2011b). In these references, given an oscillatory problem, a stroboscopically
averaged problem is introduced such that, at the stroboscopic times t(k) = kT , T = 2π/Ω , k = 0, 1, . . . ,
its solution X(t) (approximately) coincides with the true oscillatory solution x. The stroboscopically
averaged problem does not include rapidly varying forcing terms and therefore, if available in closed
form, may be integrated numerically without much ado. The algorithms in Calvo et al. (2011a) and
Calvo et al. (2011b) compute numerically values of X, without demanding that the user finds analytically
the expression of the averaged system. More precisely, the algorithms only require evaluations of the
right-hand side of the originally given oscillatory problem. The solution X is advanced with a standard
integrator (the macro-integrator) with a step size H that, for a target accuracy, may be chosen to be
independent of Ω . When the macro-integrator requires a value F of the slope Ẋ, F is found by numerical
differentiation of a micro-solution u, i.e. a solution of the originally given oscillatory problem. While the
micro-integrations to find u are performed with step sizes h that are submultiples of the (small) period
T , the corresponding computational cost does not increase as Ω → ∞, because u is only required in
windows of width mT , m a small integer.

The extension of the material in the studies by Calvo et al. (2011a) and Calvo et al. (2011b) to
systems with delay is far from trivial. A first difficulty stems from the well-known fact that, in the delay
scenario, regardless of the smoothness of the equation, solutions may be nonsmooth at points t that are
integer multiples of the (constant) delay. Therefore, the algorithm presented here has to make special
provision for that lack of smoothness. In addition, the analysis of the algorithm (but, as emphasized
above, not the algorithm itself) is built on the knowledge of the stroboscopically averaged systems.
While the construction of a stroboscopically averaged system with errors x

(
t(k)

) − X
(
t(k)

) = O(1/Ω)

is not difficult, here we aim at errors x
(
t(k)

) − X
(
t(k)

) = O
(
1/Ω2

)
and this requires much additional

analysis. The classical reference by Lehman & Weibel (1999) only considers zero-mean, O(1/Ω)

averaging.
In Section 2 we present the main ideas of the paper and a detailed description of the algorithm.

Due to the difficulties imposed by the lack of smoothness in the solution, the algorithm uses low-order
methods: the second-order Adams–Bashforth formula as a macro-integrator and Euler’s rule as a micro-
integrator. Section 3 contains the construction of the stroboscopically averaged system with O

(
1/Ω2

)

accuracy. Sections 4 and 5 are devoted to the analysis of the SAM algorithm. In the first of these, we
assume that the micro-integrations carried out in the algorithm are performed exactly. Under suitable
hypotheses, the errors in SAM are O

(
H2 + 1/Ω2

)
. The effect of the errors in the micro-integration is

studied in Section 5: it is shown that, with a computational cost that grows like 1/H, SAM may yield
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1112 J. M. SANZ-SERNA AND B. ZHU

errors of size O
(
H2 + 1/Ω2

)
. The H2 (second order) behaviour of the error may come as a surprise,

because micro-integrations are performed by Euler’s rule; of key importance here is a superconvergence
result (see the bound in (5.2)) for the Euler solution of oscillatory problems when the integration is
carried out over a whole number of periods. The last two sections report numerical experiments that, on
the one hand, confirm the theoretical expectations and, on the other, show the advantage of SAM when
compared with a direct numerical integration of the oscillatory problem. Speed-ups larger than three
order of magnitude are reported at the end of Section 7.

2. The stroboscopic averaging method (SAM)

This section motivates and describes the SAM algorithm.

2.1 Motivation

We consider highly oscillatory delay differential systems of the form

ẋ(t) = f (x(t), y(t), t, Ωt; Ω), t � 0, (2.1)

y(t) = x(t − τ), t � 0,

where the solution x is defined for t � −τ and takes values in R
D, the function f (x, y, t, θ ; Ω) : RD ×

R
D × R × R × R → R

D depends 2π -periodically on its fourth argument θ , τ > 0 is the (constant)
delay and the frequency Ω is seen as a parameter Ω � 1. Note that f depends explicitly on t through
its third and fourth arguments; the fourth is the rapidly rotating phase θ = Ωt and the third corresponds
to a slow (i.e. Ω-independent) dependence on t (see the toggle switch equations above). The values of x
on the interval [−τ , 0] are prescribed through an Ω-independent1 function ϕ:

x(t) = ϕ(t), −τ � t � 0. (2.2)

It is well known that, regardless of the smoothness of f and ϕ, the function x(t) will typically not be
differentiable at t = 0 and that in (2.1) ẋ(0) has to be understood as a right derivative. Furthermore, the
discontinuity of ẋ(t) at t = 0 will lead to the discontinuity of ẍ(t) at t = τ , etc.

We assume that, at the stroboscopic times t(k) = kT , where T = 2π/Ω is the period and k = 0, 1, . . . ,
the solution x(t) of the oscillatory delay problems (2.1)–(2.2) may be approximated (in a sense to be
made precise later) by the solution X(t) of an averaged problem

Ẋ(t) = F, t � 0, (2.3)

X(t) = ϕ(t), −τ � t � 0,

where the value of the function F may depend on X(t), on the history X(s), −τ � s < t, on the slow
time t and on Ω , but is independent of the fastly varying phase θ = Ωt.

We illustrate the situation in the particular case of the toggle switch problem (1.1). Figure 1 displays,
in a short time interval, a solution of the given oscillatory system and the corresponding averaged

1 Assuming that ϕ does not depend on Ω implies no loss of generality, as the general case may be reduced to the Ω-independent
case by introducing a new dependent variable x(t) − Φ(t), where Φ(t) coincides with ϕ(t) for −τ � t � 0.
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A STROBOSCOPIC AVERAGING ALGORITHM FOR HIGHLY OSCILLATORY DELAY PROBLEMS 1113

Fig. 1. x1 component of the toggle switch problem. The constants τ , α, β, A, ω, B, and the function ϕ are chosen as in Section 6
and Ω = 60. The true solution x and the averaged solution X are very close at the stroboscopic times t(k) = k(2π/Ω) = kT ,
k = 0, 1, . . . SAM is used to generate approximations to X at the step points tn = nH, H = 0.125, n = 0, 1, . . . The value of H is
chosen so that the point t = τ , where the slope of the solution is discontinuous, is a step point. On the other hand, with the value
of Ω considered, the step points (abscissae of the stars) are not stroboscopic times.

solution found by solving the stroboscopically averaged system

Ẋ1(t) = α

1 + Xβ
2 (t)

− Y1(t) − B

Ω
1{t�τ }(t) + A sin(ωt), (2.4)

Ẋ2(t) = α

1 + Xβ
1 (t)

− Y2(t) − B

Ω

αβXβ−1
1 (t)

(
1 + Xβ

1 (t)
)2 ,

where Yi(t) = Xi(t − τ) and 1{t�τ }(t) is the (indicator) function that takes the value 1 for t � τ and
vanishes for t < τ (see the next section for the derivation of this averaged system). Note that the slow
time-dependent forcing A sin(ωt) has not been averaged out and that, due to the presence of 1{t�τ }(t),
the right-hand side of the averaged system is discontinuous at t = τ (this discontinuity manifests itself
in Figure 1 through a discontinuity in the slope of X, not to be confused with the discontinuity at t = 0
typically present, as mentioned above, in solutions of delay problems). The notion of stroboscopic
averaging studied in detail in the study by Chartier et al. (2012) is far from new. However, standard
treatments of the theory of averaging favour alternative techniques, specially the zero-mean approach
where the functions necessary to express the required change of variables are chosen so as to have zero-
mean over one period of the oscillation. In stroboscopic averaging the freedom available in the choice
of change of variables is used to impose that the old and new variables coincide at stroboscopic times.
This is advantageous for the numerical methods studied here. The zero-mean approach may be better for
analytic purposes as it usually leads to simpler high-order averaged systems. If zero-mean averaging had
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1114 J. M. SANZ-SERNA AND B. ZHU

been used in Figure 1, the averaged solution would have been located halfway between the maxima and
the minima of the oscillatory solution.

The study of the vibrational resonance of (1.1) requires to simulate over long time intervals (the
interval 0 � t � 300 is used in the study by Daza et al., 2013a) for many choices of the values
of the constants α, β, ω, A, B, τ and the parameter Ω; the presence of the fast-frequency oscillations
makes such a task costly. It is then of interest to simulate, if possible, averaged systems like (2.3) rather
than highly oscillatory models like (2.1). However, obtaining F analytically may be difficult or even
impossible, and we wish to have a numerical method that approximates X by using only f . SAM is such
a technique.

The idea behind SAM is as follows. Let x and X be the oscillatory and averaged solutions,
respectively, corresponding to the same ϕ. At fixed t, ẋ and Ẋ may differ substantially. However,
difference quotients such as (x(t + T) − x(t))/T or (x(t + T) − x(t − T))/(2T) may provide a good
approximation to the slope Ẋ(t) (see Fig. 1). As other heterogeneous multiscale methods (see e.g. E,
2003; E & Engquist, 2003; Engquist & Tsai, 2005; E et al., 2007; Li et al., 2007; Ariel et al., 2009;
Sanz-Serna, 2009; Calvo & Sanz-Serna, 2010), the algorithm includes macro-integrations and micro-
integrations. Macro-integrations are used to advance X over macro-steps of length H larger than the
period T . The necessary slopes Ẋ are obtained by forming difference quotients of auxiliary oscillatory
solutions found by micro-integrations with small steps h.

2.2 The algorithm

Let us now describe the algorithm.

2.2.1 Macro-integration. Choose a positive integer N and define the macro-step size H = τ/N. If
the solution is sought in an interval 0 � t � tmax, SAM generates approximations Xn to X(tn), tn = nH,
n = 0, 1, . . . , �tmax/H� by using the second-order Adams–Bashforth formula (macro-integrator)

Xn+1 = Xn + 3

2
HFn − 1

2
HFn−1, (2.5)

starting from X0 = x(0) = X(0) = ϕ(0); here Fn is an approximation to Ẋ(tn) obtained by numerical
differentiation of the micro-solution. The formula is not used if n = 0 and n = N, where it would be
inconsistent in view of the jump discontinuities of Ẋ at t = 0 and t = τ noted above. For n = 0 and n = N
we use Euler’s rule, i.e. we set

X1 = X0 + HF0, XN+1 = XN + HFN . (2.6)

2.2.2 Micro-integration. If νmax is a positive integer, the micro-step size h is chosen to be T/νmax
(recall that T = 2π/Ω denotes the period). We use Euler’s rule, starting from un,0 = Xn, first to
integrate forward the oscillatory problem (2.1) over one period

un,ν+1 = un,ν + hf (un,ν , vn,ν , tn + νh, Ωνh; Ω), ν = 0, 1, . . . , νmax − 1, (2.7)

and then to integrate backward over one period

un,−ν−1 = un,−ν − hf (un,−ν , vn,−ν , tn − νh, −Ωνh; Ω), ν = 0, 1, . . . , νmax − 1. (2.8)
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A STROBOSCOPIC AVERAGING ALGORITHM FOR HIGHLY OSCILLATORY DELAY PROBLEMS 1115

Fig. 2. Schematic description of SAM. Once Xn is available, it is passed to the micro-integrator to find un,ν for varying ν.
Numerical differentiation of the micro-solution yields Fn, which is used in the macro-stepping to compute Xn+1.

Here v denotes the past values for u given by vn,ν = un−N,ν if n > N and vn,ν = ϕ(−τ + nH + νh) for
n < N (if n = N vN,ν = u0,ν for ν � 0 and vN,ν = ϕ(νh) for ν < 0).

It is crucial to observe the values Ωνh and −Ωνh used for the fast argument θ in (2.7) and (2.8),
respectively; each micro-integration starts from θ = 0 rather than from the value θ = Ωtn, which may
perhaps have been expected. The reason for this is that in stroboscopic averaging, the resulting averaged
system changes with the initial value of the phase θ ; to work with one and the same averaged system
micro-integrations have to start from the value θ = 0 that the phase takes at the initial point of the
interval [0, tmax] (see Calvo et al., 2011a and Calvo et al., 2011b for a detailed discussion).

The slopes Fn to be used in (2.5) or (2.6) are given by the central difference formula,

Fn = un,νmax
− un,−νmax

2T
(2.9)

if n �= 0 and n �= N, while for n = 0 and n = N, we use the forward difference formula

F0 = u0,νmax
− u0,0

T
, FN = uN,νmax

− uN,0

T
, (2.10)

due to the discontinuity of Ẋ(t) at t = 0 and t = τ . A detailed description of the algorithm is provided
in Table 1.

Figure 2 may help to better understand the procedure. The upper time axis corresponds to the macro-
integration; all the information needed to obtain Xn+1 are Xn, Fn and Fn−1 (Fn−1 is actually not required
for n = 0, N). The value of Fn is derived by numerical differentiation of the micro-solution and passed
to the macro-integrator to compute Xn+1. For fixed n, the computation of the Euler micro-solution un,ν
uses the past values vn,ν and the initial datum un,0 = Xn (note that Xn is the most recent vector found in
the macro-integration).

SAM only operates with macro-step sizes H that are submultiples of the delay τ ; this restriction is
imposed to enforce that t = τ be a step point to better deal with the discontinuity in slope at t = τ (see
Figure 1). In general, the quotient τ/T will not be a whole number and then the step points tn will not
be stroboscopic times; this is the case in the simulation in Figure 1.

We emphasize that, given N and νmax, the complexity of the algorithm is independent of Ω . When
Ω increases, the micro-step size h decreases to cater for the more rapid variation of the oscillations, but
the window of width 2T (or T) for each micro-integration becomes correspondingly narrower.
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1116 J. M. SANZ-SERNA AND B. ZHU

Table 1 SAM Algorithm

Compute X1
Micro-integration

u0,0 = ϕ(0) % initial value
For ν = 0 : νmax, v0,ν = ϕ(−τ + νh), end % history
For ν = 0 : νmax − 1, u0,ν+1 = u0,ν + hf (u0,ν , v0,ν , t0 + νh, Ωνh; Ω), end % Euler
F0 = (u0,νmax

− u0,0)/T % slope for macro-step
Macro-integration

t0 = 0, X0 = ϕ(0), t1 = t0 + H, X1 = X0 + HF0 % Euler macro at n=0
Compute X2, . . . , XN
For n = 1 : N − 1
Micro-integration

un,0 = Xn % initial value
For ν = −νmax : νmax, vn,ν = ϕ(−τ + nH + νh), end % history
For ν = 0 : νmax − 1, un,ν+1 = un,ν + hf (un,ν , vn,ν , tn + νh, Ωνh; Ω)

un,−ν−1 = un,−ν − hf (un,−ν , vn,−ν , tn − νh, −Ωνh; Ω), end % Euler
Fn = (un,νmax

− un,−νmax
)/(2T) % slope for macro-step

Macro-integration
tn+1 = tn + H, Xn+1 = Xn + (3H/2)Fn − (H/2)Fn−1 % Adams–Bashforth2 macro

end
Compute XN+1
Micro-integration

uN,0 = XN % initial value
For ν = 1 : νmax, u0,−ν = ϕ(−νh), end % values taken from history
For ν = −νmax : νmax, vN,ν = u0,ν , end % save for later history
For ν = 0 : νmax − 1, uN,ν+1 = uN,ν + hf (uN,ν , vN,ν , tN + νh, Ωνh; Ω)

uN,−ν−1 = uN,−ν − hf (uN,−ν , vN,−ν , tN − νh, −Ωνh; Ω), end % Euler
FN = (uN,νmax

− uN,0)/T % slope for macro-step
Macro-integration

tN+1 = tN + H, XN+1 = XN + HFN % Euler macro at n=N
Compute XN+2, . . .
For n = N + 1 : �tmax/H�
Micro-integration

un,0 = Xn % initial value
For ν = −νmax : νmax, vn,ν = un−N,ν , end % save for later history
For ν = 0 : νmax − 1, un,ν+1 = un,ν + hf (un,ν , vn,ν , tn + νh, Ωνh; Ω)

un,−ν−1 = un,−ν − hf (un,−ν , vn,−ν , tn − νh, −Ωνh; Ω), end % Euler
Fn = (un,νmax

− un,−νmax
)/(2T) % slope for macro-step

Macro-integration
tn+1 = tn + H, Xn+1 = Xn + (3H/2)Fn − (H/2)Fn−1 % Adams–Bashforth2 macro

end

Finally, we point out that we have tested several alternative algorithms. For instance, we alternatively
performed the micro-integrations with the Adams–Bashforth second-order method, or we used second-
order forward approximations for F0, FN . While those modifications improve the accuracy of the results
for small step sizes, experiments reveal that they are not always beneficial for large step sizes; therefore,
we shall not be concerned with them here.
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A STROBOSCOPIC AVERAGING ALGORITHM FOR HIGHLY OSCILLATORY DELAY PROBLEMS 1117

3. The averaged system

In this section and the three that follow, we assume that the system (2.1) is of the particular form

ẋ(t) = f (x(t), y(t), Ωt). (3.1)

When comparing with the general format in (2.1) we note that now f (x, y, θ) has three arguments
rather than five. The case where f includes a slow explicit dependence on t, i.e. f = f (x, y, t, θ), may be
trivially reduced to (3.1) by adding a component xD+1 to the state vector x ∈ R

D and setting ẋD+1 = 1.
The case where f depends on Ω , i.e. f = f (x, y, θ ; Ω), is taken up in the final section. We assume that
f (x, y, θ) and the initial function ϕ in (2.2) are of class C3 and that the solution x exists in the interval
[0, tmax], where tmax is a constant (i.e. does not change with the parameter Ω).

Using an approach similar to that in the studies by Chartier et al. (2010), Chartier et al. (2012),
Chartier et al. (2015), we use a Fourier decomposition

f (x, y, θ) =
∑

k∈Z
exp(ikθ)fk(x, y).

The coefficients fk(x, y) satisfy fk ≡ f ∗−k because the problem is real.
It is easily seen that, under the preceding hypotheses, x undergoes oscillations of frequency Ω and

amplitude O(1/Ω) as Ω → ∞. To reduce the amplitude of the oscillations to O
(
1/Ω2

)
, we consider

the near identity change of variables

⎧
⎪⎪⎨

⎪⎪⎩

x = X + 1

Ω

∑

k �=0

exp(ikΩt) − 1

ik
fk(X, Y), t � 0,

x = X, −τ � t < 0,

(3.2)

where we note that x and X coincide at stroboscopic times, i.e. the change is stroboscopic. In what
follows, we use the notation z(t) = y(t − τ), t � τ , Y(t) = X(t − τ), t � 0, Z(t) = Y(t − τ), t � τ .

The proof of the following result is a straightforward, but very lengthy exercise on Taylor expansion.

Lemma 3.1 The change of variables (3.2) transforms the system (3.1) into

Ẋ = f0 − 1

Ω

∑

k �=0

exp(ikΩt) − 1

ik

∂fk
∂X

f0 − 1

Ω

∑

k �=0

exp(ikΩt) − 1

ik

∂fk
∂Y

ϕ̇(t − τ)

+ 1

Ω

∑

k �=0

exp(ikΩt) − 1

ik

∂f0
∂X

fk + 1

Ω

∑

k,
 �=0

exp(ikΩt)
exp(i
Ωt) − 1

i


∂fk
∂X

f


+O

(
1

Ω2

)
, (3.3)
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1118 J. M. SANZ-SERNA AND B. ZHU

for 0 � t < τ , and into

Ẋ = f0 − 1

Ω

∑

k �=0

exp(ikΩt) − 1

ik

∂fk
∂X

f0 − 1

Ω

∑

k �=0

exp(ikΩt) − 1

ik

∂fk
∂Y

f0τ

+ 1

Ω

∑

k �=0

exp(ikΩt) − 1

ik

∂f0
∂X

fk + 1

Ω

∑

k �=0

exp(ikΩ(t − τ)) − 1

ik

∂f0
∂Y

fkτ

+ 1

Ω

∑

k,
 �=0

exp(ikΩt)
exp(i
Ωt) − 1

i


∂fk
∂X

f


+ 1

Ω

∑

k,
 �=0

exp(ikΩt)
exp(i
Ω(t − τ)) − 1

i


∂fk
∂Y

f
τ + O

(
1

Ω2

)
, (3.4)

for t � τ . Here

fk = fk(X, Y), fkτ = fk(Y , Z), k ∈ Z.

Note that the system in (3.3)–(3.4) is of the (expected) form

Ẋ = f0 + O(1/Ω), (3.5)

where f0 is the average

f0(X, Y) = 1

2π

∫ 2π

0
f (X, Y , θ) dθ . (3.6)

By suppressing the remainder in (3.5), we obtain the averaged system Ẋ = f0(X, Y) with O(1/Ω) error;
this is not sufficiently accurate for the values of Ω of interest and we take the averaging procedure
to higher order. To do so, we perform an additional stroboscopic change of variables chosen so as to
annihilate the oscillatory parts of the O(1/Ω) terms in (3.3)–(3.4). Specifically, we take

X = X̃ + 1

Ω2

∑

k �=0

exp(ikΩt) − 1

k2

∂fk
∂X̃

f0 + 1

Ω2

∑

k �=0

exp(ikΩt) − 1

k2

∂fk
∂Ỹ

ϕ̇(t − τ)

− 1

Ω2

∑

k �=0

exp(ikΩt) − 1

k2

∂f0
∂X̃

fk − 1

Ω2

∑

k �=0

 �=0,−k

exp(i(k + 
)Ωt) − 1


(k + 
)

∂fk
∂X̃

f


+ 1

Ω2

∑

k,
 �=0

exp(ikΩt) − 1

k


∂fk
∂X̃

f
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for 0 � t < τ and

X = X̃ + 1

Ω2

∑

k �=0

exp(ikΩt) − 1

k2

∂fk
∂X̃

f0 + 1

Ω2

∑

k �=0

exp(ikΩt) − 1

k2

∂fk
∂Ỹ

f0τ

− 1

Ω2

∑

k �=0

exp(ikΩt) − 1

k2

∂f0
∂X̃

fk − 1

Ω2

∑

k �=0

exp(ikΩ(t − τ)) − exp(−ikΩτ)

k2

∂f0
∂Ỹ

fkτ

− 1

Ω2

∑

k �=0

 �=0,−k

exp(i(k + 
)Ωt) − 1

l(k + 
)

∂fk
∂X̃

f
 + 1

Ω2

∑

k,
 �=0

exp(ikΩt) − 1

k


∂fk
∂X̃

f


− 1

Ω2

∑

k �=0

 �=0,−k

exp(−ilΩτ)
exp(i(k + 
)Ωt) − 1


(k + 
)

∂fk
∂Ỹ

f
τ + 1

Ω2

∑

k,
 �=0

exp(ikΩt)

k


∂fk
∂Ỹ

f
τ

for t � τ , where fk = fk

(
X̃, Ỹ

)
and fkτ = fk

(
X̃, Ỹ

)(
Ỹ(t) = X̃(t − τ), Z̃(t) = Ỹ(t − τ)

)
.

Taking the last displays to (3.3)–(3.4) and discarding the O
(
1/Ω2

)
remainder results in the averaged

system (3.7)–(3.9) below, where, for notational simplicity, we have suppressed the tildes over X, Y and
Z and [·, ·] is the Lie–Jacobi bracket or commutator defined by

[
fi, fj

]
= ∂fj

∂X
fi − ∂fi

∂X
fj, i, j ∈ Z.

The averaged solution X will obviously approximate x at stroboscopic times with O
(
1/Ω2

)
errors

(arising from discarding the O
(
1/Ω2

)
remainder); this implies that, at least for Ω sufficiently large, X

exists in the interval
[
0, tmax

]
. We then have proved the following result:

Theorem 3.2 Consider the averaged problem

Ẋ(t) = F(X(t), Y(t), Z(t), t; Ω), t � 0, (3.7)

Y(t) = X(t − τ), t � 0,

Z(t) = Y(t − τ), t � τ ,

X(t) = ϕ(t), −τ � t � 0,

with F(X, Y , Z, t; Ω) = F(1)(X, Y , t; Ω),

F(1)(X, Y , t; Ω) = f0 +
∑

k>0

i

kΩ

(
[fk − f−k, f0] + [f−k, fk]

) −
∑

k �=0

i

kΩ

∂fk
∂Y

ϕ̇(t − τ), (3.8)
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for 0 � t < τ and F(X, Y , Z, t; Ω) = F(2)(X, Y , Z; Ω),

F(2)(X, Y , Z; Ω) = f0 +
∑

k>0

i

kΩ

(
[fk − f−k, f0] + [f−k, fk]

) −
∑

k �=0

i

kΩ

∂fk
∂Y

f0τ (3.9)

+
∑

k �=0

i

kΩ

∂f0
∂Y

fkτ +
∑

k �=0

i exp(ikΩτ)

kΩ

∂fk
∂Y

f−kτ ,

for t � τ . For Ω sufficiently large, the averaged solution X exists in the interval
[
0, tmax

]
. Furthermore,

for the approximation at stroboscopic times, we may write

max
0�t(k)�tmax

∥∥∥x
(

t(k)
)

− X
(

t(k)
)∥∥∥ = O

(
1

Ω2

)
, Ω → ∞.

We point out that, for t � τ , the dependence of Ẋ(t) on the past values X(s), −τ � s < t is through
both Y(t) = X(t − τ) and Z(t) = X(t − 2τ); this is to be compared with the situation for the original
oscillatory system (2.1), which does not include the delay 2τ . The functions F(1) and F(2) are of class
C2, but of course F is discontinuous at t = τ . By implication, X(t) will be of class C3, except at t = 0, τ
(where Ẋ(t) has a jump discontinuity), at t = 2τ (where the second derivative jumps) and t = 3τ (where
the third derivative jumps).

In the particular case where f does not depend on the delayed argument y, so that we are dealing
with an ordinary differential system, (3.8) and (3.9) are in agreement with formula (64) of Chartier
et al. (2012).

4. Error analysis: exact micro-integration

In this section we investigate the global error of the algorithm under the assumption that the micro-
integration is exact, so that the macro-integration and the numerical differentiations performed to find
the slopes Fn are the only sources of error. This scenario is of course relevant when the micro-step h is
chosen to be very small. The errors due to the Euler micro-integration will be studied in the next section.

In order to avoid misunderstandings, we state that ‘exact micro-integration’ has to be understood as
follows. Consider e.g. the computation of X2, . . ., XN in Table 1; in this section we assume that

Fn = un(T) − un(−T)

2T
,

where un solves the problem u̇n = f (un, vn, Ωt), un(0) = Xn, vn(t) = ϕ(−τ + nH + t). Of course
similar modifications of the algorithm in Table 1 have to be carried out for the computation of Fn for
other values of n.

We begin by proving a stability bound for the macro-integrator. We consider a sequence
{

X̂n

}
of

vectors in R
D such that X̂−n = ϕ(−nH), n = 1, . . . , N, and furthermore satisfy the macro-integration
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equations with residuals
{
ρ̂n

}
, i.e.

X̂1 = X̂0 + HF(1)
(

X̂0, X̂−N , 0; Ω
)

+ Hρ̂0,

X̂n+1 = X̂n + 3H

2
F(1)

(
X̂n, X̂n−N , nH; Ω

)

−H

2
F(1)

(
X̂n−1, X̂n−1−N , (n − 1)H; Ω

)
+ Hρ̂n, n = 1, . . . , N − 1,

X̂N+1 = X̂N + HF(2)
(

X̂N , X̂0, X̂−N ; Ω
)

+ Hρ̂N ,

X̂n+1 = X̂n + 3H

2
F(2)

(
X̂n, X̂n−N , X̂n−2N ; Ω

)

−H

2
F(2)

(
X̂n−1, X̂n−1−N , X̂n−1−2N ; Ω

)
+ Hρ̂n, n � N + 1.

Furthermore, we consider a second sequence
{

X̃n

}
with X̃−n = ϕ(−nH), n = 1, . . . , N, satisfying the

macro-integration equations above with residuals
{
ρ̃n

}
, rather than

{
ρ̂n

}
.

Proposition 4.1 To each bounded set B ⊂ R
D, there corresponds a constant C > 0, independent of H

and Ω , such that for any sequences
{

X̂n

}
and

{
X̃n

}
as above contained in B,

∥∥∥X̂n − X̃n

∥∥∥ � C
n−1∑

k=0

H
∥∥ρ̂k − ρ̃k

∥∥ , 0 � nH � tmax.

Proof. From the hypotheses in the preceding section, F is a Lipschitz continuous function of X, Y and
Z, with a Lipschitz constant that is uniform as t varies in the interval 0 � t � tmax and X, Y and Z vary
in B. The stability bound is then proved in a standard way by recurrence. �

In our next result we investigate the consistency of the formulas (2.9)–(2.10) used to recover the
slopes Fn. There are four cases corresponding to the four successive blocks in Table 1.

Proposition 4.2 The following results hold:

1. If the function un solves the problem

u̇n(t) = f (un(t), ϕ(−τ + tn + t), Ωt),

un(0) = Xn,

then, with Yn = ϕ(−τ + tn),

un(T) − un(0)

T
= f0(Xn, Yn) + O

(
1

Ω

)
. (4.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/39/3/1110/4969764 by Academ
y of M

athem
atics and System

 Sciences, C
AS user on 23 July 2019



1122 J. M. SANZ-SERNA AND B. ZHU

2. If un is as in the preceding item, then

un(T)−un(−T)

2T
= f0+

∑

k>0

i

kΩ

(
[fk − f−k, f0] + [f−k, fk]

)−
∑

k �=0

i

kΩ

∂fk
∂Y

ϕ̇(−τ + tn) + O

(
1

Ω2

)
,

(4.2)

where fk, k ∈ Z are evaluated at (Xn, Yn), Yn = ϕ(−τ + tn).

3. If un and vn satisfy

u̇n(t) = f (un(t), vn(t), Ωt),

v̇n(t) = f (vn(t), wn(t), Ωt),

un(0) = Xn,

vn(0) = Yn,

wn(0) = Zn,

with wn a continuously differentiable function, then

un(T) − un(0)

T
= f0(Xn, Yn) + O

(
1

Ω

)
. (4.3)

4. If un and vn are as in 3., then

un(T) − un(−T)

2T
= f0 +

∑

k>0

i

kΩ

(
[fk − f−k, f0] + [f−k, fk]

) −
∑

k �=0

i

kΩ

∂fk
∂Y

f0τ

+
∑

k �=0

i

kΩ

∂f0
∂Y

fkτ +
∑

k �=0

i

kΩ

∂fk
∂Y

f−kτ + O

(
1

Ω2

)
, (4.4)

where fk, k ∈ Z are evaluated at (Xn, Yn) and fkτ stands for fk(Yn, Zn).

Proof. Here we prove the fourth case; the other proofs are similar (and slightly simpler). For simplicity
the subindex n is dropped. We rewrite the equation for u in integral form

u(t) = X +
∫ t

0
f (u(s), v(s), Ωs) ds =

∫ t

0

∑

k

exp(ikΩs)fh(u(s), v(s)) ds

and use Picard’s iteration. Clearly for −T � t � T ,

u(t) = X + O

(
1

Ω

)
.
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We take this equality to the integral equation above and integrate with respect to s to find

u(t) = X + t f0(X, Y) +
∑

k �=0

αk(t)fk(X, Y) + O

(
1

Ω2

)
,

where

αk(t) = exp(ikΩt) − 1

ikΩ
, k ∈ Z.

Then,

u(t) = X +
∫ t

0

∑

k∈Z
exp(ikΩs)

× fk

⎛

⎝X + s f0 +
∑

m�=0

αm(s)fm + O

(
1

Ω2

)
, Y + s f0τ +

∑

m�=0

αm(s)fmτ + O

(
1

Ω2

)⎞

⎠ ds.

By Taylor expanding f at X, Y , we obtain, for −T � t � T ,

u(t) = X + t f0 +
∑

k �=0

αk(t)fk +
∫ t

0
s
∂f0
∂X

f0 ds +
∫ t

0

∑

k �=0

αk(s)
∂f0
∂X

fk ds

+
∫ t

0

∑

k �=0

αk(s)
∂f0
∂Y

fkτ ds +
∫ t

0
s
∂f0
∂Y

f0τ ds +
∫ t

0

∑

k �=0

exp(ikΩs)s
∂fk
∂X

f0 ds

+
∫ t

0

∑

k,m�=0

exp(ikΩs)αm(s)
∂fk
∂X

fm ds +
∫ t

0

∑

k �=0

exp(ikΩs)s
∂fk
∂Y

f0τ ds

+
∫ t

0

∑

k,m�=0

exp(ikΩs)αm(s)
∂fk
∂Y

fmτ ds + O

(
1

Ω3

)
.

The proof concludes by evaluating this expression at t = ±T and taking those values to the left-hand
side of (4.4). �

According to this result, (4.1) and (4.3) provide approximations with O(1/Ω) errors to (3.8) and
(3.9) (evaluated at X = Xn, Y = Yn, t = tn), respectively, as expected from the use of forward
differencing. Similarly, (4.2) approximates (3.8) (at X = Xn, Y = Yn, t = tn) with O

(
1/Ω2

)
error,

as expected of central differences. However, when comparing (4.4) with (3.9) (at X = Xn, Y = Yn,
Z = Zn, t = tn), we observe that the last sum in (3.9) has a factor exp(ikΩτ), which is not present in the
last sum in (4.4), and therefore the error is, in general, only O(1/Ω). To achieve O

(
1/Ω2

)
errors we

may assume that the functions fk(X, Y), k �= 0, are independent of the second argument Y , i.e. the delay
argument y only appears in f through f0 (this is the case in (1.1)). Alternatively, we may assume that, for
all k �= 0, exp(ikΩτ) = 1, i.e. that τ is an integer multiple of the period T = 2π/Ω .

We are now ready to give the main result of this section.
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Theorem 4.3 Assume that the problem (3.1), with the smoothness assumptions stated in the preceding
section, is integrated with SAM with exact micro-integrations. In addition assume that one of the
following hypotheses holds:

• (H1) The oscillatory Fourier coefficients fk, k �= 0 of f do not depend on the delayed argument y.

• (H2) The delay τ is an integer multiple of the period T = 2π/Ω .

Then there exist constants Ω0, H0 and K such that, for Ω � Ω0, H � H0, 0 � tn = nH � tmax, the
difference between the numerical solution and the solution of the averaged problem has the bound

‖Xn − X(tn)‖ � K

(
H2 + H

Ω
+ 1

Ω2

)
. (4.5)

Proof. We apply Proposition 4.1 with B taken as a large ball containing the trajectory X(t), 0 � t � tmax

in its interior; the vectors X(tn) play the role of X̃n and the vectors Xn play the role of X̂n. It is clear that
each X̃n is in B. For H sufficiently small and Ω sufficiently large, the same will be true for each X̂n; this
is established by means of a standard argument by contradiction using (4.5).

Each residual ρ̃n is O
(
H2

)
with the exceptions of ρ̃0, ρ̃N and ρ̃2N ; these are only O(H) because

the first two correspond to Euler steps and in the third there is a jump discontinuity in the second time
derivative of the averaged solution. According to Proposition 4.2, the residuals ρ̂n for the numerical
solution are O

(
1/Ω2

)
, with the exceptions of ρ̂0 and ρ̂N , which are of size O(1/Ω). Taking these

results to Proposition 4.1 we get a global error bound of the desired form. �
Remark 4.4 It is clear that the bound in (4.5) may be replaced by one of the form K′(H2 + 1/Ω2

)
.

We prefer the form (4.5), as it relates to three sources of error: the macro-integration H2 error, the error
H/Ω arising from differencing at 0, τ , 2τ and the error from second-order differencing at all other step
points tn.

Remark 4.5 The discrepancy between (4.4) and (3.9) that leads to the introduction of (H1) and (H2)
stems from the fact that the values of the phase θ at tn and tn−N = tn − τ are in general different in the
oscillatory problem, but the same in SAM. The hypothesis (H1) holds in most applications; in fact in all
the papers mentioned in the introduction, the delay system is obtained by adding to the right-hand side
of an oscillatory ordinary differential system a linear feedback term My, with M a constant matrix. (H2)
is relevant in those studies, where there is freedom in choosing the exact value of the large frequency Ω .

Remark 4.6 If (H1) and (H2) do not hold, the same proof yields for our algorithm a bound of the form
K

(
H2 + 1/Ω

)
under the assumption that f and ϕ are C2 functions. Numerical experiments reported in

Section 6 reveal that in that case the bound cannot be improved to K
(
H2 + 1/Ω2

)
. However, if (H1)

and (H2) do not hold, errors of size K
(
H2 + 1/Ω

)
may be obtained by means of a simpler algorithm

based on applying forward differences at each step point tn; obviously that alternative algorithm does
not require the backward integration legs (2.8).

5. Error analysis: micro-integration errors

We now take into account the errors introduced by the Euler micro-integration. We begin with an
auxiliary result. Note the improved error bound at the end of the integration interval.
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Proposition 5.1 Consider the application of Euler’s rule with constant step size h = T/νmax to integrate
in the interval 0 � t � T the initial value problem u̇ = f (u, v, Ωt), u(0) = X, where v is a known
C1 function. Denote by uν the Euler solution at t = νh. There are constants C, Ω0 and h0 such that for
h � h0, Ω � Ω0, the following bounds hold:

‖uν − u(νh)‖ � Ch, ν = 0, 1, . . . , νmax, (5.1)

‖uνmax
− u(T)‖ � C

h

Ω
, (5.2)

∥
∥∥∥

uνmax
− X

T
− u(T) − X

T

∥
∥∥∥ � Ch. (5.3)

Proof. A standard error bound for Euler’s rule is

‖uν − u(νh)‖ � exp(LT) − 1

L
Mh, ν = 0, . . . , νmax,

where L is the Lispchitz constant of f with respect to u in a neighbourhood of the solution and M is an
upper bound for ‖(1/2)ü(t)‖, 0 � t � T . In the present circumstances we have to take into account that,
as Ω → ∞, the length T = 2π/Ω of the integration interval decreases and M grows like Ω because

ü = ∂f

∂u
u̇ + ∂f

∂v
v̇ + Ω

∂f

∂t
.

From the elementary inequality (exp(LT) − 1)/L � T exp(LT) and the standard bound, we have

‖uv − u(νh)‖ � T exp(LT)Mh, ν = 0, . . . , νmax,

and therefore (5.1) holds.
By adding all the Euler equations, we find

uνmax
= X +

νmax−1∑

ν=0

hf (uν , v(νh), Ωνh),

and from (5.1),

uvmax
= X +

νmax−1∑

ν=0

hf (u(νh), v(νh), Ωνh) + O(hT), (5.4)

a relation that has to be compared with

u(T) = X +
∫ T

0
f (u(s), v(s), Ωs) ds. (5.5)
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The bound (5.2) will be established if we show that the quadrature sum in (5.4) approximates the
integral in (5.5) with errors of size O(hT). To this end we decompose the function being integrated as

f (u(s), v(s), Ωs) = f (X, v(0), Ωs) + (f (u(s), v(s), Ωs) − f (X, v(0), Ωs)) = f1 + f2.

It is easily seen (for instance by expanding in a Fourier series) that the total time derivative (d/dt)f2
remains bounded as Ω → ∞; elementary results then show that the quadrature of f2 has errors of the
desired size O(hT). On the other hand, the time derivative of f1 grows like Ω , and quadrature errors of
size O(h) may be feared. Fortunately the quadrature for f1 is actually exact, because one checks by an
explicit computation that it is exact for each Fourier mode fk(X, v(0)) exp(ikΩs).

The third bound (5.3) is a trivial consequence of (5.2). �
It goes without saying that the corresponding result holds for backward integrations with −T � t �

0. The following theorem provides the main result of this paper.

Theorem 5.2 Assume that the problem (3.1), with the smoothness assumptions stated in the preceding
sections, is integrated with SAM. In addition assume that one of the following hypotheses holds:

• (H1) The oscillatory Fourier coefficients fk, k �= 0 of f do not depend on the delayed argument y.

• (H2) The delay τ is an integer multiple of the period T = 2π/Ω .

Then there exist constants Ω0, H0, h0 and K such that, for Ω � Ω0, H � H0, h � h0, 0 � tn =
nH � tmax, the difference between the numerical solution and the solution of the averaged problem may
be bounded as follows:

∥∥Xn − X
(
tn

)∥∥ � K

(
H2 + H

Ω
+ 1

Ω2 + h

)
.

In particular, if the grids are refined in such a way that h is taken proportional to H/Ω (i.e. νmax is taken
proportional to N), then the bound becomes

∥∥Xn − X
(
tn

)∥∥ � K′
(

H2 + H

Ω
+ 1

Ω2

)
. (5.6)

Proof. We argue as in Theorem 4.3. Now in the residual for the numerical solution
{
Xn

}
we have

taken into account the micro-integration error. For n � N, the bound (5.3) (and the corresponding
bound for the backward integration) show that the micro-integration adds a term of size O(h) to the
residual. For n > N the situation is slightly more complicated because the algorithm uses past values vn,ν
that are themselves affected by micro-integration errors. However, the stability of the micro-integrator
guarantees that even when those errors are taken into account an estimate like (5.3) holds. �

We recall that taking h proportional to H/Ω makes the complexity of the algorithm independent
of Ω .
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Table 2 Errors in x1 for SAM with respect to the averaged solution for problem (1.1). Step points are
not stroboscopic times

N Ω = 25 Ω = 50 Ω = 100 Ω = 200 Ω = 400 Ω = 800 Ω = 1600 Ω = 3200

1 6.28(−2) 3.42(−2) 1.71(−2) 7.87(−3) 3.14(−3) 1.66(−3) 2.04(−3) 2.30(−3)
2 *** 7.66(−3) 3.74(−3) 1.66(−3) 8.27(−4) 7.56(−4) 7.20(−4) 7.02(−4)
4 *** *** 1.11(−3) 4.45(−4) 2.60(−4) 2.20(−4) 1.99(−4) 1.88(−4)
8 *** *** *** 1.80(−4) 6.35(−5) 5.57(−5) 5.06(−5) 4.77(−5)

16 *** *** *** *** 3.20(−5) 1.27(−5) 1.22(−5) 1.18(−5)
32 *** *** *** *** *** 6.31(−6) 2.81(−6) 2.85(−6)
64 *** *** *** *** *** *** 1.36(−6) 6.46(−7)

128 *** *** *** *** *** *** *** 3.22(−7)

6. Numerical experiments

We now present experiments that illustrate the preceding theory.
We first integrated with SAM the toggle switch problem (1.1) with α = 2.5, β = 2, A = 0.1,

ω = 0.1, B = 4.0 and τ = 0.5. The function ϕ is constant: x1(t) = 0.5, x2(t) = 2.0, −τ � t � 0,
which corresponds to the system staying at an equilibrium up to time t = 0, and then switching on the
slow and fast oscillatory forcing terms. For the macro-step size we set H = τ/N, N = 1, 2, 4, . . . and
the micro-step size was chosen as h = T/(2N) (note that for the coarsest macro-step size N = 1, there
are only two Euler steps per period). Simulations took place in the interval 0 � t � 2 that includes the
locations t = 0, t = τ and t = 2τ , where the growth in the error of the SAM solution is more pronounced
due to the lack of smoothness. SAM has no difficulty in coping with the longer intervals required in
practical simulations, but we have chosen a short interval because on longer intervals it may be very
expensive to obtain a sufficiently accurate reference solution to measure errors; see in this connection
the computational times quoted at the end of Section 7.

Table 2 reports, for varying Ω and N, the maximum error, over 0 � t � 2 in the X1 component of
the SAM solution with respect to the averaged solution obtained by integrating (2.4) (this integration
was carried out with the Matlab function dde23 with relative and absolute tolerances 10−8 and 10−10,
respectively). The combinations of N and Ω leading to values of H not significantly larger than T
were not attempted, as the HMM idea does not make sense for them. Note that here τ/T is irrational
and therefore the step points tn are not stroboscopic times. Figure 3 displays the errors in Table 2 as
functions of N; for clarity not all values of Ω are included. By looking at the columns of the table (or at
each of the four solid lines in the figure) we see that the error behaves as N−2, i.e as H2, except at the
bottom of each column, where the behaviour is as N−1. This is of course the behaviour of the bound in
(5.6). Errors along rows saturate if Ω is very large; for those values one just observes the error in the
macro-integration. This behaviour is also seen in the figure by comparing points corresponding to the
same value of N and varying Ω . Along the main diagonal of the table, errors approximately divide by
four, which is also in agreement with the bound (5.6). In the figure this corresponds to observing the
behaviour of the right-most point of each of the solid lines.

Table 3 differs from Table 2 in that now Ω is taken from the sequence 8π , 16π , . . . that consists
of values not very different from those in Table 2. In fact the errors in Table 3 are very similar to those
in Table 2. However, for the sequence 8π , 16π , . . . the step points are stroboscopic times, and it makes
sense to compare the SAM solution with the true oscillatory solution. The results are reported in Table 4.
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Fig. 3. Error in the first component of the SAM solution with respect to the solution of the averaged problem versus macro step
size H = τ/N for some of the simulations in Table 2. Different lines correspond to difference values of Ω . Here the reference line
shows the N−2 behaviour.

Table 3 Errors in x1 for SAM with respect to the averaged solution for problem (1.1). Step points are
stroboscopic times

N Ω = 8π Ω = 16π Ω = 32π Ω = 64π Ω = 128π Ω = 256π Ω = 512π Ω = 1024π

1 6.25(−2) 3.40(−2) 1.70(−2) 7.82(−3) 3.11(−3) 1.66(−3) 2.04(−3) 2.30(−3)
2 *** 7.62(−3) 3.72(−3) 1.65(−3) 8.26(−4) 7.56(−4) 7.20(−4) 7.02(−4)
4 *** *** 1.11(−3) 4.42(−4) 2.59(−4) 2.20(−4) 1.99(−4) 1.88(−4)
8 *** *** *** 1.78(−4) 6.34(−5) 5.57(−5) 5.06(−5) 4.77(−5)

16 *** *** *** *** 3.16(−5) 1.26(−5) 1.22(−5) 1.18(−5)
32 *** *** *** *** *** 6.24(−6) 2.80(−6) 2.85(−6)
64 *** *** *** *** *** *** 1.35(−6) 6.47(−7)

128 *** *** *** *** *** *** *** 3.18(−7)

From Theorems 3.2 and 5.2 the errors with respect to the true solution possess a bound of the form (5.6)
and this is consistent with the data in the table.

In order to check numerically that the hypotheses (H1)–(H2) are necessary to ensure a bound of the
form (5.6), we have considered the simple scalar equation

ẋ = y + (x − y) sin(Ωt) + y

2
cos(2Ωt); (6.1)
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Table 4 Errors in x1 for SAM with respect to the true oscillatory solution for problem (1.1). Step
points are stroboscopic times

N Ω = 8π Ω = 16π Ω = 32π Ω = 64π Ω = 128π Ω = 256π Ω = 512π Ω = 1024π

1 6.10(−2) 3.30(−2) 1.66(−2) 7.74(−3) 3.09(−3) 1.66(−3) 2.04(−3) 2.30(−3)
2 *** 6.65(−3) 3.41(−3) 1.56(−3) 8.31(−4) 7.57(−4) 7.20(−4) 7.02(−4)
4 *** *** 7.95(−4) 3.56(−4) 2.63(−4) 2.21(−4) 1.99(−4) 1.88(−4)
8 *** *** *** 9.25(−5) 6.62(−5) 5.64(−5) 5.07(−5) 4.77(−5)

16 *** *** *** *** 1.50(−5) 1.34(−5) 1.23(−5) 1.18(−5)
32 *** *** *** *** *** 3.03(−6) 2.95(−6) 2.88(−6)
64 *** *** *** *** *** *** 6.44(−7) 6.76(−7)

128 *** *** *** *** *** *** *** 1.43(−7)

Table 5 Errors between SAM solution and the averaged solution for problem (6.1). (H2) holds

N Ω = 8π Ω = 16π Ω = 32π Ω = 64π Ω = 128π Ω = 256π Ω = 512π

1 3.08(−2) 3.00(−2) 2.97(−2) 2.95(−2) 2.95(−2) 2.95(−2) 2.94(−2)
2 *** 8.41(−3) 8.36(−3) 8.35(−3) 8.34(−3) 8.33(−3) 8.33(−3)
4 *** *** 2.21(−3) 2.26(−3) 2.28(−3) 2.29(−3) 2.29(−3)
8 *** *** *** 5.64(−4) 5.84(−4) 5.91(−4) 5.94(−4)

16 *** *** *** *** 1.42(−4) 1.48(−4) 1.50(−4)
32 *** *** *** *** *** 3.57(−5) 3.73(−5)
64 *** *** *** *** *** *** 8.94(−6)

this is an academic example where (H1) does not hold (recall that in all the systems from the literature
cited (H1) holds). The averaged version is

Ẋ = Y − 1

Ω
Y ,

for 0 � t < τ and

Ẋ = Y + 1

Ω

(
Y

2
− Z

2

)
sin(Ωτ) − 1

16Ω
Z sin(2Ωτ),

for t � τ .
We used τ = 0.5, H = τ/N, h = T/(5N), a constant ϕ = 0.1 and, as before, measured errors in the

maximum norm for 0 � t � 2. Table 52 gives errors when Ω is taken from the sequence 8π , 16π , . . .,
so that the periods T are 1/4, 1/8, . . . Hypothesis (H1) does not hold, but (H2) does, so that Theorem 5.2
may be applied. In fact an N−2 (or equivalently Ω−2) behaviour is seen along the diagonals of the table.

We next slightly changed the frequencies and used the sequence 8π + π/64, 16π + π/32, . . .

(this represents an increase of less than 0.2% in each frequency). Neither (H1) nor (H2) are fulfilled
and Theorem 5.2 may not be applied. The results in Table 6 show that, for Ω large the second-order
behaviour along the main diagonal is lost, indicating that the error does not behave as in the bound (5.6).

2 For typographic reasons only, this table and the next have one column less than those presented before. There is nothing
unexpected in the results corresponding to the omitted frequency Ω = 1024π (or Ω = 1024π + 2π ).
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Table 6 Errors in x between SAM solution and the averaged solution for problem (6.1). Neither (H1)
nor (H2) hold

N Ω =8π+ π
64 Ω =16π+ π

32 Ω =32π+ π
16 Ω =64π+ π

8 Ω =128π+ π
4 Ω =256π+ π

2 Ω =512π+π

1 3.08(−2) 3.00(−2) 2.97(−2) 2.95(−2) 2.95(−2) 2.95(−2) 2.95(−2)
2 *** 8.43(−3) 8.38(−3) 8.36(−3) 8.36(−3) 8.36(−3) 8.36(−3)
4 *** *** 2.23(−3) 2.28(−3) 2.30(−3) 2.31(−3) 2.32(−3)
8 *** *** *** 5.78(−4) 6.00(−4) 6.12(−4) 6.23(−4)

16 *** *** *** *** 1.58(−4) 1.69(−4) 1.79(−4)
32 *** *** *** *** *** 5.63(−5) 6.60(−5)
64 *** *** *** *** *** *** 3.76(−5)

Note the substantial difference between Tables 5 and 6 at N = 64, in spite of the very small relative
change in the value of Ω .

7. Extensions

We finally consider the application of SAM to problems that are not of the form (3.1). The number of
variants that may arise is very high and we restrict the attention to reporting numerical results for a
case study. The corresponding analysis may be carried out by adapting the proofs given in the preceding
sections.

We study again the toggle switch problem, but now in an alternative asymptotic regime. The system
is given by

dx1

dt
= α

1 + xβ
2

− x1(t − τ) + A sin(ωt) + B̂Ω sin(Ωt), (7.1)

dx2

dt
= α

1 + xβ
1

− x2(t − τ),

where B̂ is a constant and the other symbols are as before. As Ω → ∞, the variable x1 undergoes
oscillations of frequency Ω and O(1) amplitude, which, for Ω large, makes the direct numerical
integration of the system more expensive than that of (1.1) (the amplitude there is O(1/Ω)). For an
analytic treatment, we begin by performing, for t � 0, the preliminary stroboscopic change of variables

x1 = X1 + B̂(1 − cos(Ωt)),

x2 = X2,

which differs from the identity in O(1) quantities. This leads to:

dX1

dt
= α

1 + Xβ
2

− X1(t − τ) − B̂ 1{t�τ } + A sin(ωt), (7.2)

dX2

dt
= α

1 + (X1 + B̂(1 − cos(Ωt)))β
− X2(t − τ).
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Table 7 Errors in x1 for SAM with respect to the averaged solution for problem (7.1)

N Ω = 8π Ω = 16π Ω = 32π Ω = 64π Ω = 128π Ω = 256π Ω = 512π Ω = 1024π

1 4.10(−2) 4.09(−2) 4.08(−2) 4.08(−2) 4.08(−2) 4.07(−2) 4.07(−2) 4.07(−2)
2 *** 8.08(−3) 7.89(−3) 7.81(−3) 7.77(−3) 7.76(−3) 7.75(−3) 7.75(−3)
4 *** *** 1.78(−3) 1.70(−3) 1.67(−3) 1.65(−3) 1.64(−3) 1.64(−3)
8 *** *** *** 4.29(−4) 4.08(−4) 3.99(−4) 3.99(−4) 4.06(−4)

16 *** *** *** *** 1.06(−4) 1.01(−4) 1.04(−4) 1.07(−4)
32 *** *** *** *** *** 2.62(−5) 2.50(−5) 2.68(−5)
64 *** *** *** *** *** *** 6.53(−6) 6.47(−6)

128 *** *** *** *** *** *** *** 1.63(−6)

The highly oscillatory forcing has been reduced from O(Ω) to O(1) and, in principle, it is possible
to average (7.2) by the techniques used to deal with (3.1). Unfortunately, finding the required Fourier
coefficients in closed form does not appear to be possible in general. In the particular case where β = 2,
the zero Fourier coefficient may be found by evaluating the relevant integral (3.6) with the help of the
residue theorem. This leads to the averaged system of the form Ẋ = f0 explicitly given by

dX1

dt
= α

1 + X2
2

− X1(t − τ) − B̂ 1{t�τ } + A sin(ωt), (7.3)

dX2

dt
= α

√
−M

2 +
√

N
2 +

(
X1 + B̂

) √
M
2 +

√
N

2
(

M
2 +

√
N

2

)2 +
(

X1 + B̂
)2 + √

N
− X2(t − τ),

with M = X2
1 + 2B̂X1 − 1, N = M2 + 4

(
X1 + B̂

)2
, whose solutions approximate x with errors of size at

least O(1/Ω) at stroboscopic times. However, since (7.2) is even in Ω , in this particular case the errors
are actually O

(
1/Ω2

)
.

Table 7 presents the errors in the SAM solution measured with respect to the solution of (7.3). The
experiments have B̂ = 0.1; all other details are as in the toggle switch simulations in the preceding
section. The table shows that the performance of SAM is very similar to that encountered in problem
(1.1). We also measured errors with respect to the oscillatory solution and found that they are very close
to those reported here, i.e. the situation is similar to that seen when comparing Tables 3 and 4.

Finally we mention that, for the choice of constants considered here, the integration (in the interval
0 � t � 2) of the oscillatory problem for Ω = 1024π with dde23 in a laptop computer took more
than 9,000 seconds. The corresponding SAM solution with the smallest value of H took approximately
one second. Since as pointed out before, the study of vibrational resonance requires integrations in time
intervals two orders of magnitude larger than 0 � t � 2, for many choices of the values of the constants
that appear in the model, it is clear that a direct numerical integration of the oscillatory problem is not
feasible for large values of Ω .
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