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Abstract .

We show that, when numerically integrating Hamiltonian problems, nondissipative
numerical methods do not in general share the advantages possessed by symplectic
integrators . Here a numerical method is called nondissipative if, when applied with a
small stepsize to the test equation dy/dt = iAy, A real, has amplification factors of unit
modulus. We construct a fourth order, nondissipative, explicit Runge-Kutta-Nystrom
procedure with small error constants. Numerical experiments show that this scheme
does not perform efficiently in the numerical integration of Hamiltonian problems .
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1 Introduction.

The purpose of this paper is to show that, when numerically integrating Hamil-
tonian problems, nondissipative numerical methods do not in general share the
advantages possessed by symplectic integrators. Here a numerical method is
called nondissipative if, when applied with a small stepsize to the test equation
dy/dt = iAy, A real, has amplification factors of unit modulus .
We restrict our attention to Runge-Kutta-Nystrom (RKN) methods (see e .g . [6],

Section 11 .14) for systems of the special form

dP =
f(q),

	

dq = p,

(p and q are d-dimensional vectors) or equivalently to second order systems

d2q = f
(q) .dt 2

The more general case where the second equation in (1.1) is replaced by dq/dt =
M-1p, with M a constant, invertible mass matrix might have also been catered
for in what follows; only minor adjustments are required, cf . [13], Section 6.4 .
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is given by the formulae

pn+l = pn + h

A step of length h with the RKN method of tableau

pn+l
qn+l

'y1

'Ys

all

i=1

qn+1 =
qn + hPn + h2

	

i3if(Qi),
z=1

. a15

asl

	

. . .

	

a55
/31

	

. . .

	

f3
b l

	

. . .

	

b s

bif(Q,),

where Qi, i = 1, . , s, are the stage vectors defined by

s
Qi = qn +h`yiPn +h

	

j f(Qj) .
j=1

As it is customary, we impose throughout the standard simplifying assumptions
given by

(1 .3) 13 = bi(1 - yi),

	

i = 1, . . . , s .

In the particular instance of the scalar test problem given by the harmonic
oscillator (A :f- 0 is real)

z

dt2 _
A2 q,

the application of an RKN method leads to a recursion

_

	

Rll(h2 A2) h 1R12(h2A2 )

	

pn
]

	

hR21(h2 A2 )

	

R22(h2A2)

	

qn

where Rij are rational functions whose coefficients depend on the elements of
the tableau (1 .2) (see e .g . [7]) . For explicit methods, with aij = 0, i < j, the
Rij are polynomials of degree < s . The true solution of course satisfies a similar
recursion

(1 .5)

	

p(tn + h)

	

cos hA

	

-A sin hA

	

At.)
q(t n + h) I = I A-1 sin hA

	

cos hA

	

q(tn )

It is reasonable to demand that, for small h, the amplification matrix in (1 .4)
possesses eigenvalues of unit modulus; an eigenvalue of modulus > 1 would be
associated with exponentially growing numerical solutions and an eigenvalue
of modulus < 1 would be associated with exponentially decreasing numerical
solutions . In what follows we say that an RKN method is nondissipative, if the
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corresponding amplification matrix has eigenvalues of unit modulus when A is
real and h small. This terminology is taken from [7] ; in the Russian literature
the alternative term w-stability appears to be in use [14] . In any case we feel
that the notion of nondissipativity is familiar in numerical analysis and widely
employed in connection with hyperbolic problems .
On the other hand, an RKN method is called symplectic [13], [6] if, whenever

it is applied to a Hamiltonian problem of the form (1 .1) (with f the gradient of
a scalar function), the Jacobian matrix of the mapping (pn, qn) _ (pn+1 qn+1)

satisfies the condition

8(pn+l, qn+1) T
J
8(pn+1 qn+1 ) = Ja(Pn, qn)

	

8(pn, qn)

where J is the 2d x 2d matrix

The condition (1.6) is a characteristic geometric property satisfied by the Jaco-
bian matrix of the true solution (p(tn ), q(tn)) -* (p(tn + h), q(tn + h)) . The
conditions on the tableau coefficients for an RKN method to be symplectic were
first derived by Suris [15] and are by now well known, see, among others, [1],
[2], [3], [11], [12] . Explicit symplectic RKN methods of order four appear to be
competitive with standard software when integrating Hamiltonian problems [2] .
However, the class of explicit, symplectic RKN methods is rather small and to
achieve high order it is necessary to resort to formulae with many stages [1] . As
a consequence, currently available high-order, explicit RKN methods are rather
inefficient [3] . The question arises of whether the requirement of symplecticness
could not be somewhat relaxed while retaining some of the favourable qualita-
tive features of symplectic integrators, cf . [10] . In this paper we show (see the
final Section 3) that the property of nondissipativity is, in this connection, too
weak: nondissipative RKN methods do not share the advantages of symplectic
RKN methods. This is of special interest because of two reasons . First, it is our
experience that some users of numerical methods wrongly take as synonymous
the terms nondissipativity and symplecticness . Secondly, it turns out that (see
Section 2), for RKN methods, nondissipativity is necessary and sufficient for
symplecticness in linear problems .

2 Constructing a nondissipative method .

The following result will be used .
THEOREM 1 . For a consistent Runge-Kutta-Nystrom method (1 .2)-(1.3) the

following conditions are equivalent .

(i) The method is nondissipative .

(ii) The method is symplectic when applied to linear Hamiltonian problems of
the form (1 .1) .
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(aai) The amplification matrix of the method has determinant unity, i .e .,

(2 .1)

	

R12(z)R22(z) - R12 (z)R21(z) = 1 .

Proof. The equivalence between (i) and (iii) is shown by Suris [14] . The problem
(1.1) is linear and Hamiltonian if f(q) is of the form Sq, with S a constant d x d
symmetric matrix. A step of the RKN method for such a system reads (cf. (1 .4))

and therefore the relevant Jacobian matrix is

R11(-h2S) h-1 812(-h2 S)
hR21 (-h2S)

	

R22 (-h 2 S)

Substitution in (1.6) readily makes apparent the equivalence between (ii) and
(iii) . 0
Note in particular that all symplectic (consistent) RKN methods are nondis-

sipative .
We undertook the task of constructing a nondissipative, explicit RKN method

of order four with three stages. There are nine parameters to be determined,
namely bi, 'Yi, i = 1, 2, 3, a21, a3i, a32 . These nine unknowns should satisfy the
following requirements :

(i) The seven conditions that impose order four, [6], Section II . 14, [13], Section
4.5 .

(ii) The condition (2 .1) that guarantees nondissipativity . For an explicit method
with s = 3, the left-hand side of (2 .1) is a polynomial P(z) of degree six
and therefore (2 .1) demands that the coefficients of z i in P(z), i = 1, . . . , 6
vanish, while the coefficient of z ° should be 1. Thus, apparently, nondis-
sipativity brings in seven scalar equations . However, it turns out that the
conditions relative to zi , i = 0, 1, 2 are implied by the order conditions for
order > 4. This comes about because for a method of order r the entries of
the amplification matrix in (1 .4) differ in O(hr+ 1 ) terms from those of the
matrix in (1.5) . Since the latter has unit determinant, the amplification
matrix has determinant 1+O(h''+1 ) As a result, the left-hand side of (2.1)
is 1 + O(z«T+1)/2]) for methods of order r . This leaves in (2.1) the four
conditions corresponding to z', i = 3, 4, 5, 6 . A little algebra shows that
the conditions for i = 4, 5, 6 are implied by the structure of the method .
The conclusion is that nondissipativity is ensured by the equation that
imposes that the coefficient of z3 in the left-hand side of (2.1) vanishes .

We have thus found a system with eight equations for nine unknowns . We are
interested in solutions of this system that corresponds to methods with small er-
ror constants . We wrote the error constants A and A corresponding respectively
to the p and q variables (see [13], Section 8 .5.3 for the definition) as functions

Pn+ 1
qn+I -

2 S)R11(-h2S) h -I R12(-h
hR21(-h2S)

	

R22(-h2S)
Pn

L qn l



of the nine unknown parameters . Then we used the NAG Library optimiza-
tion subroutine E04UCF to minimize \/A 2 + A2 , subject to the eight equality
constraints that impose order r = 4 and nondissipativity . Also the unknown
parameters were bounded by inequality constraints -5 < bi, aid, 'yj < 5 . The
subroutine was run with 10,000 randomly chosen initial guesses . Of all methods
found we kept the one with smallest objective function . Since the tableau co-
efficients obtained in this way do not exactly solve the equality constraints, we
fixed the values of one of the coefficients and used the values of the remaining
eight as initial guesses of a quadruple precision Newton iteration for the eight
equations being solved . In this way, we arrived at the method
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with error constants A = 2 .7 x 10 -3 and A = 2.8 x 10 -3 .
The nondissipative method has been compared with an explicit, symplectic

RKN method with the same order and same number of stages . This symplectic
method, first found by Forest and Ruth [5] and, independently, by Candy and
Rozmus [4] has

b l = S2,

	

b 2 = 1 - 252,

	

b 3 = 52,
'Y1 = 12/2,

	

'Y2 = 1/2,

	

y3 = 1 - 52/2,
a21 - b1(72 - T1), a31 = b1 (y3 - y1), a32 - b2( -Y3 - y2),

with
S2 = (2 + 2 1 / 3 +2-1 / 3)/3 .

An explicit, symplectic RKN method with three stages has six free parameters
b i , yZ , i = 1, 2, 3 and to achieve order four there are six symplectic order con-
ditions [1] . This leaves no free parameter after imposing the order conditions .
In the nondissipative case, with s = 3, r = 4, there are, as we saw, nine un-
known coefficients and eight equations, leaving one free parameter . It is therefore
reasonable to expect that the nondissipative method we constructed has error
constants significantly smaller than those of the reference symplectic integrator .
In fact, the latter has ([13], Table 9 .1) A = 1 .2 x 10 -1 , A = 3 .7 X 10-2 , which
is far from satisfactory ; the literature contains explicit, symplectic RKN meth-
ods with r = 4, s > 3 that are substantially more efficient than the symplectic
method used here, see e.g. [13], Section 9 .1 and [8], [9] . Thus in the comparisons
presented in the final section we are being biassed against symplectic integrators .

b 1 0.35873776474082084915
b2 0.24851004590527121138
b3 0.39275218935390793947
'Y1 0.16227389678337366829
72 0-46956286655940066010
'Y3 0.82773602357979500167

a21 0.14555733200712389602
a31 0.21110902166846736304
a32 0.12114681533245518567
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3 Numerical experiments .

The methods described in the preceding section were tried in the test problems
used in the comparisons of [13], Section 9 .1. Only the results corresponding to
the Kepler test problem will be reported ; the main conclusion as to the relative
merit of the algorithms does not depend on the specific test problem .
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Figure 3 .1 : Euclidean norm of the error against t, when h = 27r/1024 .

The Kepler problem used here has d = 2, f(q) = -(l/lql3)q and initial
condition

1+e
1e' ql-1-e, q2 =0, e=0.5 .
-

The solution is 27r-periodic and, as in [13], the integration covers from t = 0 to
t = 21870 x 27r .
Fig. 3 .1 depicts in a log-log scale the Euclidean norm of the error against t,

when h = 27r/1024 . The solid line corresponds to the nondissipative method
and the broken line to the symplectic method . By measuring the slopes of the
lines, it is concluded that in the symplectic method the norm of the error is a
linear function of t, a behaviour typical of symplectic integrators, see [2] . On
the other hand the error growth in the nondissipative method is quadratic in t.
When t is small, the nondissipative method is more accurate than the symplectic
algorithm; this is explained by the relative size of the error constants . However
errors build up more rapidly in the nondissipative method, which for t > 10000
is less accurate than the symplectic scheme .

Figs. 3.2 and 3 .3 correspond to h = 27r/2048 and h = 27r/4096 respectively.
We observe that the cross-over time where the nondissipative algorithm becomes

102 103 104 10 5 106



less accurate than the symplectic scheme is doubled each time h is halved . This
is consistent with the analysis in 121
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Figure 3 .2: Euclidean norm of the error against t, when h = 2ir/2048 .
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Figure 3 .3: Euclidean norm of the error against t, when h = 2ir/4096 .
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The conclusion is that, in long time integrations of Hamiltonian problems,
nondissipative methods do not in general share the good error propagation mech-
anism typical of symplectic integrators . Even an inefficient symplectic formula is
capable of outperforming the nondissipative method with small error constants
we constructed .
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