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Abstract

The paper considers non-autonomous oscillatory systems of ordinary differential equations with d ≥ 1 non-
resonant constant frequencies ω1, . . . , ωd. Formal series like those used nowadays to analyze the properties
of numerical integrators are employed to construct higher-order averaged systems and the required changes of
variables. With the new approach, the averaged system and the change of variables consist of vector-valued
functions that may be written down immediately and scalar coefficients that are universal in the sense that they
do not depend on the specific system being averaged and may therefore be computed once and for all given
ω1, . . . , ωd. The new method may be applied to obtain a variety of averaged systems. In particular we study
the quasi-stroboscopic averaged system characterized by the property that the true oscillatory solution and the
averaged solution coincide at the initial time. We show that quasi-stroboscopic averaging is a geometric procedure
because it is independent of the particular choice of co-ordinates used to write the given system. As a consequence,
quasi-stroboscopic averaging of a canonical Hamiltonian (resp. of a divergence-free) system results in a canonical
(resp. in a divergence-free) averaged system. We also study the averaging of a family of near-integrable systems
where our approach may be used to construct explicitly d formal first integrals for both the given system and its
quasi-stroboscopic averaged version. As an application we construct three first integrals of a system that arises
as a nonlinear perturbation of five coupled harmonic oscillators with one slow frequency and four resonant fast
frequencies.
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1 Introduction

The aim of this series of papers is to show how the formal series expansions that are nowadays used to analyze
numerical integrators [13], [14], [18], [23], provide a powerful means to study and implement the method of aver-
aging (see e.g. [17], [22] and also [1], Chapter 4, [2], Chapter 10). While Part I of the series [10] was restricted to
the case of systems with a single fast frequency, in this paper —which may be read independently from [10]— we
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consider systems with d ≥ 1 constant fast frequencies. The approach described here makes it possible to construct
in an explicit way higher-order averaged systems and the associated changes of variables. Before summarizing the
contributions of the paper in Subsection 1.2 below, we shall briefly review in Subsection 1.1 those basic aspects of
the method of higher-order averaging that are essential to outline the scope of our research.

1.1 High-order averaging in quasi-periodic systems

We consider averaging as applied to an initial value problem (see e.g. [21], [24])

d

dt
y = εf(y, tω), (1)

y(0) = y0 ∈ R
D, (2)

in an interval 0 ≤ t ≤ L/ε whose length increases as ε → 0. Here f = f(y, θ) depends 2π-periodically on each
of the scalar components θ1,. . . ,θd of the angular variable θ ∈ Td and ω ∈ Rd is a constant vector of angular
frequencies. Throughout the paper we assume that ω is non-resonant, i.e. k · ω �= 0 for each multi-index k ∈ Z d,
with k �= 0.1 The case where f = f(y, θ; ε) depends explicitly on ε may be reduced to the format (1), see e.g.
[21].2

In N -th order averaging, N = 1, 2, . . . , the solution y of (1)–(2) is represented as

y(t) = UN (YN (t), tω) +O(εN ), (3)

where, in the simplest case,3 UN is a change of variables of the form

UN (Y, θ) = Y + εu1(Y, θ) + · · ·+ εN−1uN−1(Y, θ), θ ∈ T
d, (4)

and YN (t) is the solution of an autonomous problem (the averaged problem)

d

dt
Y = εF1(Y ) + ε2F2(Y ) + · · ·+ εNFN (Y ), Y (0) = ξ, (5)

whose initial value is determined ξ implicitly through the equation UN (ξ,0) = y0, i.e.

ξ +

N−1∑
j=1

εjuj(ξ,0) = y0. (6)

The representation (3) implies that, except for the O(εN ) remainder, the behaviour of y is determined by the
behavior of the averaged solution YN in tandem with the quasi-periodic rotation t �→ tω.

The functions Fj and uj may be defined recursively by (j ≥ 1):

Fj(Y ) :=
1

(2π)d

∫
Td

F̃j(Y, θ)dθ, (7)

ω · ∇θuj(Y, θ) = F̃j(Y, θ)− Fj(Y ), (8)∫
Td

uj(Y, θ)dθ = 0, (9)

where
F̃1(Y, θ) := f(Y, θ)

1Of course a problem with a resonant ω may be written in non-resonant form by lowering the number d of frequencies.
2Alternatively it is also possible to let f depend smoothly on ε and expand in powers of ε as in [10].
3In practice the change of variables is often expressed in alternative ways, for instance by using Lie series. With such alternatives, the

recursion (7)–(10) has to be changed accordingly. However the exact format of the change of variables and the recursion are not essential to the
discussion that follows and we choose to focus on the form (4) for the sake of being definite. See in this connection Remark 2.16 that shows the
relations between different averaged systems.
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and, for j > 1,

F̃j(Y, θ) :=

j−1∑
r=1

[ 1
r!

∑
i1+···+ir=j−1

∂rf

∂yr
(Y, θ)

(
ui1(Y, θ), . . . , uir(Y, θ)

)
− ∂ur

∂Y
(Y, θ)Fj−r(Y )

]
, (10)

In (10), (∂rf/∂yr)(y, θ) denotes the r-th Fréchet derivative of f with respect to y evaluated at (y, θ), a multi-linear

function that maps RD× r· · · ×RD into RD. The effective computation of the Fj’s and uj’s from the relations
(7)–(10) is of course a formidable task even for moderate values of j and computer algebra tools are very useful in
this respect.

It is well known that, except in the case d = 1 of a single frequency, the phenomenon of small denominators
introduces substantial difficulties in the derivation of estimates for the remainder in (3) and in fact makes it necessary
to strengthen the hypotheses on ω beyond the requirement of non-resonance. We quote the following result from
[21], probably the oldest reference (the notation is as above):

Theorem 1.1 (Perko) Consider the system (1)–(2) where f(y, θ) is real-analytic and 2π-periodic in each compo-
nent of θ for each y in a convex region G (containing y 0) and has continuous partial derivatives of order N with
respect to y in G× Td. Assume that the vector ω ∈ Rd satisfies the strong non-resonance condition

∀k ∈ Z
d\{0}, |k · ω| ≥ c|k|−ν

for some positive constants c and ν. Assume in addition that the solution of the initial value problem

d

dt
Y = εF1(Y ), Y (0) = y0,

has a solution Y1(t) which remains in G for 0 ≤ t ≤ L/ε. Then, there exist εN , CN > 0 such that, for 0 < ε < εN ,
the problem (1)–(2) has a unique solution in G for 0 ≤ t ≤ L/ε that satisfies

‖y(t)− U(YN (t), ωt)‖ ≤ CNεN .

Note that, for fixed Y , (8) is a differential equation (the homological equation) where the unknown function
uj has to depend periodically on θ; straightforward Fourier analysis shows that the equation is solvable because
F̃j − Fj has zero angular average. However the angular average of u j is not determined by (8) and an additional
condition is needed. Above that condition is given by (9) which is equivalent to the requirement that the angular
average of the function UN (Y, θ) in (4) coincides with Y or, in other words, the change of variables is the identity
on average. There are alternative ways of performing high-order averaging; in them (9) is replaced by a suitable
condition that, together with (8), determines u j . For instance, in the case d = 1 of a single frequency ω = ω1, it is
possible to replace (9) by the condition uj(Y, 0) = 0; then UN (Y, θ) in (4) coincides with Y at θ1 = 0 and therefore
the change of variables is the identity at the initial time t = 0. With this alternative there is no need to solve an
equation to find the initial value ξ in (6); one simply has ξ = y0. Furthermore, due to the periodicity, (4) implies
that y(t) and YN (t) also coincide at the stroboscopic times n(2π/ω1), n integer, and accordingly the technique is
known as stroboscopic averaging [22].

1.2 Scope

In this paper we show how the use of B-series [15] allows the effective explicit computation of the u j’s and Fj’s
in (4) and (5) bypassing the recursive procedure in (7)–(10). With B-series, each u j and Fj is written by com-
bining so-called elementary differentials and coefficients. The elementary differentials are functions constructed
systematically in a very simple way from the function f in (1). The coefficients are numbers that are universal,
in the sense that they do not depend on the specific choice of D, f or y 0, and therefore, given ω, they may be
computed once and for all. The representation in terms of coefficients and elementary differentials has proved to be
very helpful to analyze standard numerical methods for differential equations and also to compare such methods,
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because it separates the effects of the integrator (incorporated into the coefficients) from those of the system being
integrated (which determines the elementary differentials). The same consideration may apply here to integrators
for highly-oscillatory problems; modulated Fourier expansions [12] are of course another similar tool.

The new technique may be applied to perform averaging not only as in (7)–(10), but also through variants where
the uj’s are not determined by imposing zero angular average by means of (9). In particular the B-series approach
leads in a natural way to a generalization of stroboscopic averaging to the quasi-periodic, d > 1, situation; this
generalization, where in (5) ξ = y0, will be referred to as quasi-stroboscopic averaging.

The new approach may also be advantageously applied to the derivation of estimates for the remainder in (3);
such estimates (that may be exponentially small as in [20] or [24]) are the subject of [11] and will not be considered
further here. Since we shall not be dealing with the remainder term, it is convenient to replace (4) and (5) in what
follows by

U(Y, θ) = Y + εu1(Y, θ) + ε2u2(Y, θ) + · · · ,
and

d

dt
Y = εF1(Y ) + ε2F2(Y ) + · · · ,

respectively. Truncation of these formal series in powers of ε gives the sought formulae (4) and (5) for any required
value of N .

The main ideas of the paper are contained in Section 2. To make the article more accessible, we begin by
presenting in Subsections 2.1–2.3 an introduction to rooted trees and B-series, the basic tools used in the sequel.
Subsection 2.3 ends (see (21)) by showing how to rewrite the given problem (1)–(2) as an initial value problem for
a set of complex-valued coefficients αu(t) that is completely independent of the vector field f . Subsection 2.4 is
devoted to investigating the properties of these coefficients; in particular we show their relation to a transport partial
differential equation (see (23)) which plays here the role played by the homological equation (8) in conventional
treatments. After these preliminaries, the technique of quasi-stroboscopic averaging is described in Subsection
2.5 (see Theorem 2.10). When the number d of frequencies is 1, quasi-stroboscopic averaging reduces to the
stroboscopic averaging method investigated in Part 1 4 and therefore our results here are an extension of those in
[10]; however the derivation in this paper is simpler and more direct than that provided in [10]. Subsection 2.6
considers other possible averaged systems beyond the one obtained via quasi-stroboscopic averaging; we show that
all such averaged systems may in fact be derived by first performing stroboscopic averaging and then changing
variables. Subsection 2.7 studies the effect on the averaged system of prescribing the initial condition (2) at a time
t0 �= 0.

Section 3 is devoted to the geometric properties of averaging. It turns out that quasi-stroboscopic averaging
is a geometric procedure in the sense that it commutes with changes of variables. As a consequence, the quasi-
stroboscopic averaged system may be written (see (60)) in terms of commutators (Lie brackets) of the Fourier
coefficients of the field f in (1). This in turn implies that if the original system is divergence-free or canonical
(Hamiltonian) the quasi-stroboscopic averaged system will also be divergence-free or canonical.

In Section 4 we provide a simple recursion to compute the coefficients of the quasi-stroboscopic averaged sys-
tems. By combining the coefficient values obtained from that recursion with the rewriting in terms of commutators
linked to the geometric properties of Section 3, we find a compact general expression for the quasi-stroboscopic
averaged system with an O(ε4) error term (see (64)).

Section 5 considers a family of autonomous problems where the vector field is an O(ε) perturbation of an
integrable system. Such problems may be brought to the format (1) by means of a time-dependent change of
variables. We describe how to obtain a quasi-stroboscopically averaged system (Theorem 5.4) with a number
of favorable properties (Theorem 5.5). If the original system is Hamiltonian, the averaged system will also be
Hamiltonian (Theorem 5.8) and furthermore it is possible to construct explicitly d formal first integrals of both the
given and averaged systems. As an application we construct three first integrals of a system taken from [13] that
arises as a nonlinear perturbation of five coupled harmonic oscillators with one slow frequency and four resonant
fast frequencies.

There is a short Appendix that illustrates the use of the product ∗ of maps on trees.

4For the application of the idea of stroboscopic averaging to the construction of numerical integrators the reader is referred to [5], [6].
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2 Averaging via B-series

In what follows we assume that f(y, θ) in (1) has continuous partial derivatives of all orders with respect to y in
RD × Td. We denote by fk(y) the Fourier coefficients of f , so that the corresponding Fourier expansion is

f(y, θ) =
∑
k∈Zd

eik·θfk(y); (11)

the fk(y) are complex functions, but, in order to have a real system, it is necessary that, for each k, f k ≡ f∗
−k,

where ∗ denotes complex conjugate.5 We shall furthermore assume that, except for a finite number of values of
k ∈ Z

d, all the fk’s vanish identically.
We have placed stringent hypotheses on f so as not to clutter the presentation with unwelcome details. In fact

it is possible to replace RD by a domain G ⊂ RD and, if (4) and (5) are only of interest for a particular value of N ,
continuous partial derivatives of order N with respect to y are sufficient. The hypothesis that the Fourier expansion
consists of a finite number of (nontrivial) terms is only used to ensure the convergence of a number of series that
will appear later (see Remark 2.2). Such a convergence may be ensured by imposing the alternative assumptions,
used in Theorem 1.1, that f depends analytically on θ and that ω is strongly non-resonant. Finally we note that
since most results in this paper refer to the coefficients in the expansions and these are universal, i.e. independent
of f , the hypotheses on f play no real role in most developments.

2.1 The expansion of the oscillatory solution

While formulae (7)–(10) are derived by studying the way in which changes of variables transform an oscillatory
differential system, our approach starts by studying the nature of the oscillatory solution y. In order to motivate the
combinatorial and algebraic material required later, we obtain in this subsection the first few terms of the formal
expansion in powers of ε of the solution y of the initial-value problem (1)–(2), with f given by (11). The problem
may be rewritten in integral form as

y(t) = y0 + ε

∫ t

0

f(y(s), sω) ds = y0 + ε

∫ t

0

∑
k∈Zd

eisk·ωfk(y(s)) ds, (12)

and therefore y(t) = y0 +O(ε) (in the sense of formal power series). Inserting à la Picard this approximation into
(12) we write

y(t) = y0 + ε
∑
k∈Zd

(∫ t

0

eisk·ω ds

)
fk(y0) +O(ε2),

an expression that may be taken again to (12) to obtain, after Taylor expansion,

y(t) = y0 + ε
∑
k∈Zd

(∫ t

0

eisk·ω ds

)
fk(y0) (13)

+ ε2
∑

k,l∈Zd

(∫ t

0

∫ s1

0

ei(s1k+s2l)·ω ds1ds2

)
f ′
k(y0)fl(y0) +O(ε3),

where f ′
k(y0) denotes the (Fréchet) derivative (Jacobian matrix) of fk evaluated at y0. This procedure may clearly

be iterated to find successively the εr, r = 3, 4, . . . , terms of the expansion of y(t). The complexity of the cor-
responding expressions increases rapidly with r and the mode-colored rooted trees to be introduced in the next
subsection provide a means whereby the expansion may be found in a systematic way.

It is important to emphasize at this stage that (13) includes elements of two kinds:

5We work with real systems for the sake of being definite; all our results are valid for complex systems.
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u Fu(y) αu(t) σu

k fk(y)
∫ t

0
eis1k·ω ds1 1

k

l

f ′
k(y)fl(y)

∫ t

0

∫ s1
0 ei(s1k+s2l)·ω ds1 ds2 1

k

l

m

f ′
k(y)f

′
l (y)fm(y)

∫ t

0

∫ s1
0

∫ s2
0 ei(s1k+s2l+s3m)·ω ds1 ds2 ds3 1

k

l m

f ′′
k (y)(fl(y), fm(y))

∫ t

0 eis1k·ω
( ∫ s1

0 eis2l·ω ds2
∫ s1
0 eis3m·ω ds3

)
ds1 1 + δ(l,m)

Table 1: Families of trees of orders≤ 3 with their associated elementary differentials, coefficients and symmetries.
Here δ represents Kronecker’s symbol, i.e. δ(l,m) = 1 if l = m and δ(l,m) = 0 if l �= m

1. Elementary differentials, i.e. vector-valued expressions fk(y0), f ′
k(y0)fl(y0) that depend on the initial-value

problem (1)–(2) under consideration,

2. Scalar coefficients ∫ t

0

eisk·ω ds,

∫ t

0

∫ s1

0

ei(s1k+s2l)·ω ds1ds2,

that are universal, i.e. independent of the specific choice of D, f and y 0 in (1)–(2).

2.2 Mode-coloured rooted trees and their elementary differentials

We consider rooted trees where each vertex has been colored (i.e. labelled) with a multi-index k ∈ Z d which refers
to a Fourier mode in the expansion (11). For simplicity we shall use hereafter the word tree to refer to such a
mode-coloured rooted tree. The left-most column of Table 1 lists the four families of trees with ≤ 3 vertices. Each
family contains infinitely-many trees (for instance there is a tree with one vertex for each particular value of the
multi-index k). In the table the lowest vertex of each graph corresponds to the root of the tree.

Formally the set T of trees may be defined recursively by the following two rules:

1. For each k ∈ Zd, the tree k (with one vertex —the root— colored by k) belongs to T .

2. If u1, . . . , un are trees6 ∈ T , then the tree

u = [u1 · · ·un]k , (14)

obtained by connecting through an edge their roots to a new root labelled with the multi-index k ∈ Z
d,

belongs to T .

With each tree u ∈ T we associate two integers: the order |u| is the number of vertices of u and the symmetry
σu is defined recursively as follows:

1. For each tree k of order 1, σu := 1.

6Repetitions among the uν are allowed. The order of the uν ’s is of no consequence: thus [u1, u2]k and [u2, u1]k are the same tree even if
u1 �= u2.
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2. For u in (14),
σu := r1! · · · rm! σr1

u1
· · ·σrm

um
,

where uμ, μ = 1, . . . ,m denote the pairwise distinct uν , ν = 1, . . . , n and rμ counts the number of times
that uμ appears among the uν .

The integer σu is higher for trees that have a more symmetric appearance: the tree in the last row of Table 1 has
σu = 2 if l = m and σu = 1 in other cases.

Finally, with each tree u ∈ T we associate its elementary differential (relative to the functions fk in (11)) a map
Fu : RD → RD defined by:

1. For each tree k of order 1, Fu(y) := fk(y).

2. For u in (14),

Fu(y) :=
∂nfk
∂yn

(y)
(
Fu1(y), . . . ,Fun(y)

)
.

We emphasize that even though this definition is recursive, it is a trivial matter to write down, without following any
recursive procedure, the elementary differential that corresponds to any given tree. To each vertex in the tree there
corresponds a Fréchet derivative in the elementary differential; the derivative is the n-th if the vertex has n children.
The label k of a vertex determines the function fk to be differentiated (see the first two columns in Table 1).

With these definitions we look for an expansion of the form (cf. (13))

y(t) = y0 +

∞∑
r=1

εr
∑
|u|=r

1

σu
αu(t)Fu(y0) = y0 +

∑
u∈T

ε|u|

σu
αu(t)Fu(y0), (15)

where the values of the scalar coefficients αu(t) have to be determined (the introduction of the factor 1/σu here
simplifies later formulae). Substitution of this ansatz for y(t) into (12) leads, after suitable Taylor expansions, to
the conditions

∀k ∈ Z
d, α k (t) =

∫ t

0

eisk·ω ds, (16)

∀u = [u1 · · ·un]k, αu(t) =

∫ t

0

eisk·ωαu1(s) · · ·αun(s) ds. (17)

Since the trees in the right hand-side of (17) have order < |u|, this formula makes it possible to compute recursively
the coefficients αu (see the third column in Table 1).7 We sum up our findings so far in the following proposition:

Proposition 2.1 The solution y(t) of the initial-value problem (1)–(2), with f given by (11), possesses the formal
expansion in powers of ε given by (15), where the coefficients αu(t) are recursively defined in (16)–(17).

2.3 B-series

In this subsection we introduce the formal series that are the main tool used in this paper. If δ is a map that associates
with each u ∈ T ∪ {∅} a complex number δu, the B-series defined by δ is:

B(δ, y) := δ∅y +
∞∑
r=1

εr
∑
|u|=r

1

σu
δuFu(y) = δ∅y +

∑
u∈T

ε|u|

σu
δuFu(y). (18)

Note that the B-series depends, through the elementary differentials Fu, on the choice of the functions fk in (11),
even though this dependence has not been incorporated into the notation. According to (15), for each fixed t, the
expansion for y(t) is the B-series B(α(t), y0), where α∅(t) = 1 and for u ∈ T the coefficient αu(t) is defined
through (16)–(17).

7The effective computation of these coefficients will be considered in Section 4.
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Remark 2.2 The hypotheses on f at the beginning of this section ensure that for each r the inner (infinite) series in
(18) consists of a finite number of nontrivial terms and therefore is a well-defined function of y; as a result B(δ, y) is
a well-defined formal series in powers of ε. As mentioned before, for strongly non-resonantω, the hypothesis that f
consists of finitely-many Fourier modes may be relaxed to analytic dependence of f on θ as in Perko’s Theorem 1.1.
In such a relaxed scenario, one has to build on the decay of f k as |k| → ∞ to ensure that, for well-behaved maps δ,
the inner series in (18) is a well-defined function of y. See [11] for further discussion of this point.

Remark 2.3 All formulae below involving B-series are equalities between formal series in powers of ε; this fact
will not be pointed out explicitly at each instance. It should also be mentioned that it is possible to envisage an
alternative approach where B-series are considered as formal series of terms indexed by T ∪ {∅} rather than as
formal series of powers of ε; with such an approach —that will not be taken up here— it is not necessary to
investigate the convergence of the inner sum in (18).

Given a B-series B(δ, y) with δ∅ = 1 (i.e. a near-identity B-series), and an arbitrary B-series B(η, y), it may be
shown (see [15] for the case where the vertices of the trees are not colored) that the composition

B(η,B(δ, y)) (19)

is a B-series of the form B(ζ, y), where ζ only depends on δ and η. More precisely each ζ u is an explicitly known
polynomial in the δv’s and ηw’s, v, w ∈ T ∪{∅} (see the Appendix for additional details together with an example).
We write ζ = δ∗η; and thus the non-commutative product ∗ among mappings 8 δ, η ∈ CT ∪{∅}, (δ∅ = 1) corresponds
to the composition of the associated series.

The set of all near-identity B-series is a group with respect to the composition (19) and therefore the subset
G ⊂ CT ∪{∅} consisting of the mappings δ ∈ CT ∪{∅} with δ∅ = 1 is a non-commutative group for the product ∗.
The group G is called the coefficient or Butcher group [3]. The unit of this group will be denoted by 11; of course,
11∅ = 1 and 11u = 0 for each u ∈ T .

To conclude this subsection we shall show how to derive Proposition 2.1 through the use of the product ∗. The
manipulations involved will illustrate the techniques to be used later to prove the main results. The aim is to express
the exact solution of (1)–(2) as y(t) = B(α(t), y0). Our first task is to rewrite the function f in (11) itself as a
B-series

εf(y, θ) = B(β(θ), y), ε
∑
k∈Zd

eik·θfk(y) =
∑
u∈T

ε|u|

σu
βu(θ)Fu(y),

with coefficients βu(θ) (parameterized by the angular variable θ ∈ Td) defined as follows:

βu(θ) :=

⎧⎨⎩ eik·θ if u = k for some k ∈ Zd,

0 otherwise.
(20)

Recalling that the substitution of y in f corresponds to the product ∗ of the corresponding coefficient maps α and
β, the initial value problem (1)–(2) may be rewritten in terms of B-series as:

d

dt
B(α(t), y0) = B(α(t) ∗ β(tω), y0),

B(α(0), y0) = B(11, y0).

In turn this may be rewritten as an initial-value problem in the coefficient group, 9 i.e. a problem whose unknown is
a map α : R→ G:

d

dt
α(t) = α(t) ∗ β(tω), α(0) = 11. (21)

8If A and B are sets, the notation BA means the set of all mappings φ : A → B.
9This kind of initial-value problem was first considered in [7].
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Note that we have now a universal formulation, i.e. one where the choice of f and y 0 in (1)–(2) plays no role. Using
the expression for the product ∗ (see the Appendix) we have

∀k ∈ Z
s,

d

dt
α k (t) = β k (tω)

and

∀u = [u1 · · ·un]k,
dαu(t)

dt
= β k (tω)αu1(t) . . . αun(t).

After taking into account the initial condition αu(0) = 0 for each u ∈ T , we recover the formulae (16)–(17) found
above.

2.4 The transport equation

This subsection contains a number of technical results that play a key role in the proof of the main results.
We begin with a simple auxiliary result which is a consequence of the density in T d of the quasi-periodic flow

t �→ tω with a non-resonant vector of frequencies ω ∈ Rd:

Lemma 2.4 Let w ∈ C
R×T

d

be a continuous function that, for each fixed θ, is a polynomial in t. If for all t ∈ R,
w(t, tω) = 0, then w(t, θ) ≡ 0.

The following definition will be helpful:

Definition 2.5 We shall say that a function w : R × Td → C is polynomial if there exists a complex polynomial
P ∈ C[X0, X1, . . . , X2d] in 2d+ 1 variables X0,. . . ,X2d, such that

w(t, θ) = P (t, eiθ1 , . . . , eiθd , e−iθ1 , . . . , e−iθd).

Furthermore, γ : R× Td → G is a polynomial map, if γu is a polynomial function for each u ∈ T .

It is easily established by induction in |u|, that, for each of the coefficients αu(t) that appear in the expansion
(15), there exists a (uniquely-defined) polynomial function γ u(t, θ) such that we may write10

αu(t) = γu(t, tω). (22)

Then γ ∈ GR×T
d

is a polynomial map in the sense of the definition. For instance, for u = l

k

with k = −l �= 0, a
simple computation of the iterated integral in the second row of Table 1 shows that

αu(t) =
it

l · ω +
1− eitl·ω

(l · ω)2

and therefore

γu(t, θ) =
it

l · ω +
1− eil·θ

(l · ω)2 .

We shall derive a number of properties of the γu’s.

Proposition 2.6 If γ ∈ GR×T
d

is defined in (22), then γ(0,0) = 11 and

∂tγ(t, θ) + ω · ∇θγ(t, θ) = γ(t, θ) ∗ β(θ). (23)

10Recall that ω is assumed throughout to be non-resonant and that the resonant case may be rewritten in non-resonant form by lowering the
value of d.
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Proof: The chain rule shows that, at each t and θ = tω, the equality (23) is valid since α(t) satisfies the differential
equation in (21). It is then sufficient to invoke Lemma 2.4 to see that (23) holds at each t and θ. The condition
γ(0,0) = 11 comes from the initial condition in (21). �

While the transport equation (23) possesses infinitely many solutions that satisfy the condition γ(0,0) = 11, 11

we shall establish below that only one of them is a polynomial map.

Lemma 2.7 Given a polynomial function w : R× Td → C, there exists a unique polynomial solution of

∂tz(t, θ) + ω · ∇θz(t, θ) = w(t, θ), z(0,0) = 0. (24)

Proof: Consider the Fourier expansions

w(t, θ) =
∑

k∈I⊂Zd

ŵk(t) e
ik·θ, z(t, θ) =

∑
k∈Zd

ẑk(t) e
ik·θ,

where, by assumption, I is a finite subset of Zd, and for each k ∈ I , ŵk(t) is a polynomial in t. The transport
equation in (24) then reads

d

dt
ẑk(t) + i (k · ω)ẑk(t) = ŵk(t), k ∈ Z

d. (25)

Clearly, (25) uniquely determines the polynomials ẑk(t) for k �= 0. In particular, ẑk(t) = 0 if k ∈ Zd\I . The
condition z(0,0) = 0 then becomes

ẑ0(0) = −
∑

k∈I\{0}
ẑk(0). (26)

For k = 0, the polynomial ẑ0(t) is determined from (25)–(26). �

Proposition 2.8 There exists a unique polynomial solution γ ∈ G R×T
d

of (23) such that γ(0,0) = 11.

Proof: The equation (23) together with γ(0,0) = 11 is equivalent to having, for all u ∈ T ,

∂tγu(t, θ) + ω · ∇θγu(t, θ) = eik·θγ′
u(t, θ), γu(0,0) = 0, (27)

where γ ′
u(t, θ) = 1 if |u| = 1, and

γ′
u(t, θ) =

n∏
ν=1

γuν (t, θ)

for u in (14). It is then enough to prove that for each u ∈ T , there exists a unique a polynomial function γ u(t, θ)
satisfying (27). This can readily be proved by induction on |u|: For |u| = 1, application of Lemma 2.7 immediately
gives the required result. For |u| > 1, the induction hypothesis shows that the function e ik·θγ′

u(t, θ) is polynomial,
so that applying Lemma 2.7 once more leads to the required result. �

The last result in this subsection is essential in later developments:

Proposition 2.9 The map γ defined in (22) (or in Proposition 2.8) satisfies the identities

∀t, t′ ∈ R, γ(t′,0) ∗ γ(t,0) = γ(t′ + t,0) (28)

and
∀t ∈ R, ∀θ ∈ T

d, γ(t,0) ∗ γ(0, θ) = γ(t, θ). (29)

11The method of characteristics shows that the solutions of (23) with γ(0, 0) = 11 are defined by

γ(t, θ) = χ(θ − tω) +

∫ t

0
γ(s, θ + (s− t)ω) ∗ β(θ + (s− t)ω) ds.

The initial-value function χ : Td → G has to vanish at θ = 0, but it is otherwise arbitrary.
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Proof: Both identities may be combined into one:

∀t, t′ ∈ R, ∀θ ∈ T
d, γ(t′,0) ∗ γ(t, θ) = γ(t′ + t, θ).

Consider, for fixed t′, the map γ̃ ∈ GR×T
d

defined as γ̃(t, θ) = γ(t′,0)−1 ∗ γ(t′ + t, θ). By the linearity of ∗ with
respect to the right factor (see the Appendix), γ̃(t, θ) is a solution of (23); it is furthermore polynomial, and trivially
satisfies γ̃(0,0) = 11. By Proposition 2.8, γ̃(t, θ) ≡ γ(t, θ). �

2.5 Quasi-stroboscopic averaging

We are now ready to describe the technique of quasi-stroboscopic averaging. The identity (28) together with
γ(0,0) = 11 shows that the mappings

ᾱ(t) := γ(t,0), (30)

parameterized by t ∈ R, form a one-parameter subgroup of the coefficient group G. Therefore ᾱ(t) is the solution
of the autonomous initial-value problem (cf. (21))

d

dt
ᾱ(t) = ᾱ(t) ∗ β̄, ᾱ(0) = 11, (31)

with

β̄ :=
d

dt
ᾱ(t)

∣∣∣∣
t=0

. (32)

(For completeness, we include here a proof, but the result is of course standard in the theory of differential equations:

d

dt′
ᾱ(t′) =

d

dt
ᾱ(t′ + t)

∣∣∣∣
t=0

=
d

dt
ᾱ(t′) ∗ ᾱ(t)

∣∣∣∣
t=0

= ᾱ(t′) ∗ β̄;

when differentiating the product ∗ we have taken into account once more that it is linear with respect to the right
factor, see the Appendix.) According to (29) the solution α(t) = γ(t, tω) of the oscillatory problem (21) may be
represented as

α(t) = ᾱ(t) ∗ κ(tω)

in terms of the solution of the autonomous problem (31) and the map κ ∈ G T
d

defined by

κ(θ) := γ(0, θ). (33)

After plugging the maps α(t), ᾱ(t), β̄, and κ(θ) into the corresponding B-series, we conclude:

Theorem 2.10 The solution y of (1)–(2) may be written as

y(t) = U(Y (t), tω) (34)

where U is the change of variables (parameterized by θ ∈ Tsd)

U(Y, θ) := B(κ(θ), Y ) := Y +
∑
u∈T

ε|u|

σu
κu(θ) Fu(Y ) (35)

and Y (t) is the solution of the (averaged) autonomous initial value problem

d

dt
Y = εF (Y ), Y (0) = y0, (36)

with

εF (Y ) := B(β̄, Y ) :=
∑
u∈T

ε|u|

σu
β̄u Fu(Y ). (37)
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d
dty = εf(y, tω)

f(y, θ) = B(β(θ), y)

d
dtY = εF (Y )
F (Y ) = B(β̄, Y )

d
dt Ŷ = εF̂ (Ŷ )

F̂ (Ŷ ) = B(̂̄β, Ŷ )
↓ (16)–(17) ↑ (32) ↑ (43)

y(t) = B(α(t), y0)
α(t) = γ(t, tω)

→ Y (t) = B(ᾱ(t), y0)
ᾱ(t) = γ(t,0)

→ Ŷ (t) = B(̂̄α(t), Ŷ (0))̂̄α(t) = λ ∗ ᾱ(t) ∗ λ−1

↓ ↑
y(t) = U(Y (t), tω)

U(Y, θ) = B(κ(θ), Y )
κ(θ) = γ(0, θ)

→
y(t) = Û(Ŷ (t), tω)

Û(Ŷ , θ) = B(κ̂(θ), Ŷ )
κ̂(θ) = λ ∗ κ(θ)

← Y = V (Ŷ )

Y = B(λ, Ŷ )

Table 2: Overview of Section 2. The table consists of three blocks of rows. The first row of the top block contains
the original oscillatory system with solution y, the quasi-stroboscopically averaged system with solution Y and a
general B-series averaged system with solution Ŷ (as in Section 2.6). The second row of the top block provides the
B-series for the corresponding vector fields f , F , F̂ . The middle block refers to the solutions y, Y , Ŷ and the bottom
block to the changes of variables that relate these solutions. The computation starts from the given β(θ) in the top
left corner; the arrows and equation numbers show how to reach the coefficients β̄, κ(θ) of the stroboscopically
averaged system and the associated change of variables. For general B-series averaged systems (Section 2.6) the
change V in the bottom right corner may be chosen arbitrarily; again the arrows and equation numbers show how

to reach the coefficients ̂̄β, κ̂(θ)

Here β̄ and κ(θ) are as defined in (32) and (33).
Furthermore the averaged solution Y possesses an expansion

Y (t) = B(ᾱ(t), y0) = y0 +
∑
u∈T

ε|u|

σu
ᾱu(t) Fu(y0) (38)

with ᾱ(t) defined in (30).

Table 2 shows the path we have followed to define and compute the coefficients β̄u of the averaged system and
κu(θ) of the change of variables; these coefficients are universal in the sense mentioned before. For the averaged
system we find, after computing βu for |u| = 1, 2:

d

dt
Y = εf0 + ε2

∑
k 	=0

i

k · ω
(
f ′
0(Y )fk(Y )− f ′

k(Y )f0(Y ) + f ′
k(Y )f−k(Y )

)
+O(ε3).

This is the extension to the multi-frequency case of formula (28) in [10]. The ε 3 terms will be displayed in formula
(64). Note that with our approach the sets of coefficients β̄u and κu(θ) may be found independently of each other,
while in (7)–(10) the uj’s and Fj’s are coupled.

The oscillatory and averaged solutions y(t) and Y (t) coincide at the initial time t = 0, because κ(0) =
γ(0,0) = 11. In the single frequency case, d = 1, the equality (34) implies that y(t) and Y (t) also coincide at
the stroboscopic times t = n(2π/ω), n integer; this is the situation considered in [10]. However when d > 1 the
angle tω never returns to its initial value 0 ∈ Td and the stroboscopic effect is not present. For d > 1 we shall refer
to the averaging technique described in the theorem as quasi-stroboscopic averaging, because, for arbitrarily small
μ > 0, there exist quasi-periodsTμ > 0 such thatU(Y, nTμω) = Y +O(nμ) and thus y(nTμ) = Y (nTμ)+O(nμ).

2.6 General high-order averaging

The quasi-stroboscopic averaged system (36)–(37) is by no means the only averaged version of the oscillatory
system (1); it is always possible to transform (36)–(37) by changing variables in RD. The proof of our next result
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is standard and will not be given. While in Theorem 2.10 we spelled out the B-series that appeared, we shall not do
so hereafter.

Proposition 2.11 (i) Under a smooth invertible change of variables

Y = V (Ŷ ),

the initial-problem (36)–(37) of quasi-stroboscopic averaging is transformed into

d

dt
Ŷ = εF̂ (Ŷ ), V (Ŷ (0)) = y0, (39)

with F̂ given by the pull-back

F̂ (Ŷ ) :=

(
∂V (Ŷ )

∂Ŷ

)−1

F (V (Ŷ )). (40)

If y solves the oscillatory initial value problem (1)–(2), then (cf. (34))

y(t) = Û(Ŷ (t), tω), (41)

where Ŷ is the solution of (39) and Û is the change of variables (parameterized by θ ∈ Ts)

Û(Ŷ , θ) := U(V (Ŷ ), θ).

(Here U is as in (35).)
(ii) In the particular case where V is given by a B-series, i.e.

V (Ŷ ) = B(λ, Ŷ )

with λ ∈ G, the change Û is a near-identity B-series (parameterized by θ ∈ Ts)(cf. (35)):

Û(Ŷ , θ) = B(κ̂(θ), Ŷ ), κ̂(θ) := λ ∗ κ(θ), (42)

the solution Ŷ (t) satisfies (cf. (38))

Ŷ (t) = B(̂̄α(t), Ŷ (0)), ̂̄α(t) := λ ∗ ᾱ(t) ∗ λ−1,

and (cf. (32))

εF̂ (Ŷ ) = B(̂̄β, Ŷ ), ̂̄β :=
d

dt
̂̄α(t)∣∣∣∣

t=0

. (43)

Table 2 describes the computation of all required B-series starting from the given original system (1) and the
chosen λ.

Remark 2.12 In (7)–(10), the change of variables (41) is determined to ensure

1

(2π)d

∫
Td

Û(Ŷ , θ) dθ = Ŷ .

By taking angular averages on both sides of the equality (42) this requirement leads to the condition 11 = λ ∗χ with

χ =
1

(2π)d

∫
Td

κ(θ) dθ. (44)

Thus (7)–(10) is the instance of Proposition 2.11 (ii) that corresponds to the choice λ = χ −1.
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Remark 2.13 In part (ii) the coefficients ̂̄βu are computed from the coefficients ̂̄αu(t). It is also possible to express

the ̂̄βu in terms of the β̄u by changing variables in (39) (refer to Table 2), the recipe is

̂̄β = λ ∗ β̄ ∗ λ−1. (45)

The product in the right-hand side cannot be interpreted in terms of compositions as in (19) because β̄ /∈ G.
The derivation of (45) and the interpretation of the right-hand side require to think of λ and β̄ as complex-valued
applications defined in a set of forests (rather than rooted trees), as in [8] or [9]. 12

It is remarkable that all averaged systems may be obtained by choosing appropriately V (or λ) in Proposition
2.11. We consider first the case where the change of variables y �→ Ŷ is assumed to be given by a B-series:

Theorem 2.14 Suppose that the change of variables (41) with

Û(Ŷ , θ) = B(κ̂(θ), Ŷ ), κ̂ ∈ GTd

,

transforms the oscillatory differential system (1) into an (averaged) autonomous differential system. Then the
averaged system and the change Û are those obtained by applying Proposition 2.11 (ii) with λ = κ̂(0).

Proof: The averaged solution satisfies Ŷ (t) = B(̂̄α(t), Ŷ (0)) for a suitable polynomial map t �→ ̂̄α(t) ∈ G witĥ̄α(0) = 11, while y(t) = B(γ(t, tω), y(0)). Then the hypothesis of the theorem may be expressed as:

B(̂̄α(t) ∗ κ̂(tω), y0) = B(κ̂(0) ∗ γ(t, tω), y0)

for an arbitrary initial value y0. Lemma 2.4 yields:

B(̂̄α(t) ∗ κ̂(θ), y0) = B(κ̂(0) ∗ γ(t, θ), y0),

and, in particular, for θ = 0,
B(̂̄α(t) ∗ κ̂(0), y0) = B(κ̂(0) ∗ ᾱ(t), y0),

and thus Û(Ŷ , θ) = U(V (Ŷ ), θ) with V (Ŷ ) = B(κ̂(0), Ŷ ). �
We study next the situation when the change Û is not necessarily given by a B-series.

Theorem 2.15 Assume that the change of variables (41) with

Û(Ŷ , θ) = Ŷ + εû1(Ŷ , θ) + ε2û2(Ŷ , θ) + · · · (46)

transforms the oscillatory differential system (1) into an (averaged) autonomous differential system (d/dt) Ŷ =

εF̂ (Ŷ ). Then there is a near-identity change of variables Y = V ( Ŷ ) such that (39) and (40) hold, i.e. the averaged
problem is obtained by changing variables in the quasi-stroboscopic averaged problem (36)–(37). Furthermore
V (·) = Û(·,0).

Proof: We carry out the proof first for the case where Û(Ŷ ,0) ≡ Ŷ , i.e. Ŷ and y coincide at t = 0. Let Ŷ = Φt(y0)
be the solution flow of the averaged system; by expanding Φ t in powers of ε and substituting into (46) we obtain

Û(Ŷ (t), θ) = y0 + εG1(t, θ, y0) + ε2G2(t, θ, y0) + · · ·

where each Gj is polynomial for each fixed value of the variable y0. By hypothesis Û(Ŷ (t), tω) must coincide with
y(t) = B(γ(t, tω), y0) and thus, for each j,

Gj(t, θ, y0) =
∑
|u|=j

1

σu
γu(t, θ)Fu(y0)

12The use of forests is essential in establishing the connection between formal series and Hopf algebras, see e.g. [4], [19]. That connection
clarifies greatly the computation of the product ∗.
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whenever θ = tω; application of Lemma 2.4 shows that the equality holds in fact for all t and θ. Thus

Û(Ŷ (t), θ) = B(γ(t, θ), y0)

and, in particular, at t = 0,
Û(y0, θ) = B(κ(θ), y0).

Here we recognize that the change Û is in fact the one (35) that transforms the original system (1) into the quasi-
stroboscopically averaged (36)–(37) and the proof is complete.

When Û(·,0) =: V (·) is not the identity map the proof is similar, but an initial change of variables V ( Ŷ ) = Z
is required. �

Remark 2.16 The preceding results show that V (·) = Û(·,0) is the only ‘free parameter’ in the whole procedure.
All possible averaged systems are obtained by performing the (time-independent) change of variables Y = V ( Ŷ )
in the quasi-stroboscopic system (36)–(37). If V happens to be given by a B-series, then the averaged system
resulting from the change of variables has a B-series right-hand side and the relation (41) will hold for a function Û
expressible as a B-series.

2.7 Changing the initial time

If the initial condition that supplements the system (1) is prescribed at an initial time t 0 �= 0,

y(t0) = y0, (47)

it may be of interest to look for a change of variables y(t) = Ũ(Ỹ , tω) that satisfies

Ũ(Ỹ , t0ω) ≡ Ỹ (48)

(instead of U(Y,0) ≡ Y ) so as to ensure that (47) leads to an initial condition Ỹ (t0) = y0.
If Ũ is sought as a B-series, Ũ(Ỹ , θ) = B(κ̃(θ), Ỹ ), the condition (48) becomes κ̃(t0ω) = 11 or, in the frame-

work of Proposition 2.11 (see (42)), λ ∗ κ(t0ω) = 11. Therefore the required change of variables has coefficients

κ̃(θ) = κ(t0ω)
−1 ∗ κ(θ) (49)

and, if we define ˜̄α(t) := κ(t0ω)
−1 ∗ ᾱ(t) ∗ κ(t0ω) (50)

then Ỹ (t) = B(˜̄α(t), Ỹ (0)) or, since the averaged problem is autonomous

Ỹ (t) = B(˜̄α(t− t0), y0).

The coefficients ˜̄βu for the right-hand side F̃ of the averaged equation may be found either by differentiation of˜̄αu(t) or as in Remark 2.13.

In the proposition below, we shall derive alternative expressions for κ̃(θ), ˜̄α(t) and ˜̄β. Some notation and a
lemma are required. The total multi-index I(u) ∈ Zd of a tree u ∈ T is defined as the sum of all the multi-indices
that label its vertices. More precisely

1. For each tree k of order 1, I(u) := k.

2. For u in (14),
I(u) := k+ I(u1) + · · ·+ I(un),
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If δ ∈ CT ∪{∅} and θ ∈ Td, we define δθ ∈ CT ∪{∅} as follows. For each u ∈ T,

δθu = eiI(u)·θδu, (51)

and δθ∅ = δ∅. It follows (see the Appendix) that, for δ, η ∈ CT ∪{∅}, with δ∅ = 1, and θ ∈ Td,

(δ ∗ η)θ = δθ ∗ ηθ. (52)

Lemma 2.17 For each t ∈ R and each θ, θ0 ∈ Td,

γ(0, θ0)
−1 ∗ γ(t, θ + θ0) = γθ0(t, θ). (53)

Proof: By definition of β(θ) (see (20)), β(θ + θ0) = βθ0(θ), and then (52) and (23) imply that γ̃(t, θ) := γ θ0(t, θ)
solves the transport equation

∂tγ̃(t, θ) + ω · ∇θγ̃(t, θ) = γ̃(t, θ) ∗ β(θ + θ0).

Furthermore γ̃(0,0) = 11. On the other hand, γ(0, θ0)−1 ∗ γ(t, θ + θ0) satisfies the same transport equation and
also takes the value 11 at t = 0, θ = 0. The proof is concluded by applying Lemma 2.7 as in Proposition 2.8. �

Proposition 2.18 With the notation above,

κ̃(θ) = κt0ω(θ − t0ω), ˜̄α(t) = ᾱt0ω(t), ˜̄β =
d

dt
˜̄α(t)∣∣∣∣

t=0

.

Proof: The formula for ˜̄β is obviously a consequence of the formula for ˜̄α(t). From (49)–(50) and the definitions
of ᾱ and κ in (30) and (33), we see that it remains to prove that

γ(0, t0ω)
−1 ∗ γ(0, θ) = γt0ω(0, θ − t0ω), γ(0, t0ω)

−1 ∗ γ(t,0) ∗ γ(0, t0ω) = γt0ω(t,0).

The identity (29) makes it possible to rewrite the last equality in the simpler form

γ(0, t0ω)
−1 ∗ γ(t, t0ω) = γt0ω(t,0),

and, accordingly, the proposition is a consequence of the preceding lemma. �

3 Geometric properties of quasi-stroboscopic averaging

The coefficient group (G, ∗) may be regarded (in a formal way) as an infinite-dimensional Lie group. The corre-
sponding Lie algebra is given by

g = {β ∈ C
T ∪{∅} : β∅ = 0},

because g is the set of all possible values of the velocity (dα/dt)(0) of the curves t �→ α(t) ∈ G that satisfy
α(0) = 11.13 Following Murua [19] we may consider the subgroup Ĝ ⊂ G of those δ ∈ G ⊂ CT ∪{∅} such that for
all u, v, w ∈ T

δu◦v + δv◦u = δuδv, (54)

δ(u◦v)◦w + δ(v◦u)◦w + δ(w◦u)◦v = δuδvδw, (55)

where ◦ denotes the Butcher product in T , i.e. u ◦ v is the tree obtained by grafting the root of v into the root of u
(for u in (14), u ◦ v = [u1, . . . , un, v]k). The geometric significance of Ĝ is that for δ ∈ Ĝ the processes of forming

13In fact (32) and (43) provide examples of the computation of an element in the Lie algebra —infinitesimal generator— in terms of the
corresponding one-parameter semigroup.
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B-series and changing variables in the vector field commute (see Proposition 3.1 below). In particular, for the true
solution y, it is true that for each t ∈ R, α(t) ∈ Ĝ.

Given δ ∈ Ĝ, the relations (54)–(55) may be used [19] to group together terms in the B-series B(δ, y) and obtain
the more compact form:

B(δ, y) = y +
∞∑
r=1

∑
k1,...,kr∈Zd

εrδk1···kr fk1···kr(y); (56)

here the notation is as follows:

• δk1···kr = δuk1···kr
, where the (‘tall’ or ‘un-ramified’) trees uk1···kr ∈ T are recursively defined by

uk := k , uk1···kr := [uk1···kr−1 ]kr .

• fk1···kr(y) := ∂yfk2···kr(y)fk1(y).

In (56) there is only a term per word k1 · · ·kr over the alphabet Zd; in (18) there is a term per rooted tree with
vertices labelled by the same alphabet. Nevertheless, for δ ∈ Ĝ, the constraints (54)–(55) still impose some relations
among the values of the coefficients δuk1···kr

so that not all of them may be chosen arbitrarily (for instance 2δkk =

δ2k for each k ∈ Zd).
The Lie algebra ĝ of Ĝ is of course a subalgebra of g; for β ∈ ĝ the B-series B(β, y) may be rewritten [19] as

B(β, y) =

∞∑
r=1

∑
k1,...,kr∈Zd

εrβk1···kr fk1···kr(y); (57)

where

βk1···kr :=
d

dt
αk1···kr(t)

∣∣∣∣
t=0

(58)

and t �→ α(t) ∈ Ĝ is a smooth curve with α(0) = 11. Not all the values βk1···kr are independent, because of
the constraints on the coefficients αk1···kr(t) mentioned above (for instance βkk = 0 for each k ∈ Zd, since
(d/dt)αkk = αk(t)(d/dt)αk(t) and αk(0) = 0). The Dynkin–Specht–Wever theorem [16], implies that (57) may
be rearranged to read

B(β, y) =

∞∑
r=1

∑
k1,...,kr∈Zd

εr

r
βk1···kr [[· · · [[fk1 , fk2 ], fk3 ] · · · ], fkr ](y), (59)

where, for each pair of vector fields, f , g,

[f, g](y) =

(
∂

∂y
g(y)

)
f(y)−

(
∂

∂y
f(y)

)
g(y)

denotes the corresponding commutator (Lie bracket). It should be emphasized that in the representation (59) not all
the iterated commutators are linearly independent in view of the skew-symmetry of [·, ·] and of the Jacobi identity
(for instance [fk1 , fk2 ] = −[fk2, fk1 ] for all k1,k2 ∈ Zd).14

Since commutators are geometric objects (i.e. the operations forming commutators and changing variables in a
vector field commute), we obtain from (59):

14This point is taken up in the next section.
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Proposition 3.1 Consider a change of co-ordinates y = C(x), so that the vector fields f k, k ∈ Zd, in (11) become
in the new variables

f̃k(x) =

(
∂

∂x
C(x)

)−1

fk(C(x)).

For each δ ∈ CT ∪{∅}, denote by B̃(δ, x) the B-series with elementary differentials F̃u(x) built from the vector
fields f̃k(x) in lieu of the elementary differentials built from the fk(y).

• If β ∈ ĝ, then

B̃(β, x) =

(
∂

∂x
C(x)

)−1

B(β,C(x)),

• If δ ∈ Ĝ, then
C(B̃(δ, x)) = B(δ, C(x)).

If δ ∈ G\Ĝ, the commutation in the proposition only holds if y = C(x) is an affine map.
After these preparations, we may state our next theorem, which implies that quasi-stroboscopic averaging is

geometric in nature: the quasi-stroboscopic averaging procedure and an arbitrary smooth change of variables in
RD commute with each other, so that quasi-stroboscopic averaging makes sense (intrinsically) for non-autonomous
quasi-periodic smooth ODEs defined on smooth manifolds. The cases of divergence-free and canonical vector fields
are singled out in the statement of the theorem; similar results hold of course for any other Lie algebra of vector
fields. Another application is to the case of dynamical systems with symmetry, where averaging may be used to
construct normal forms for bifurcations.

Theorem 3.2 (i) The autonomous system in (36)–(37) corresponding to quasi-stroboscopic averaging can be writ-
ten in the form

d

dt
Y =

∞∑
r=1

∑
k1,...,kr∈Zd

εr

r
β̄k1···kr [[· · · [[fk1 , fk2], fk3 ] · · · ], fkr ](Y ), (60)

where the coefficients β̄k1···kr are defined from the ᾱk1···kr (t) := ᾱuk1···kr
(t) by differentiation as in (58).

(ii) Consider the case where the vector field (11) is divergence-free and therefore the solution flow of (1) is
volume-preserving. In this case the averaged system (60) is also divergence-free and therefore its solution flow is
volume-preserving. In addition, the change of variables (35), i.e. U(·, θ) = B(κ(θ), ·), is volume-preserving for
each θ ∈ Td.

(iii) Consider the case where D is even and (11) is the canonical Hamiltonian vector field associated with the
Hamiltonian function H(y, θ) with Fourier expansion

H(y, θ) =
∑
k∈Zd

eik·θHk(y)

(so that, for each k ∈ Zd, fk(y) is the canonical Hamiltonian vector field associated with Hk). In this case
the averaged system (60) is also canonical, with Hamiltonian function ε H̄ defined in terms of canonical Poisson
brackets15 {·, ·} of the Hk:

εH̄ =

∞∑
r=1

∑
k1,...,kr∈Zd

εr

r
β̄k1···kr {{· · · {{Hk1, Hk2}, Hk3} · · · }, Hkr}. (61)

In addition, the change of variables (35), i.e. U(·, θ) = B(κ(θ), ·), is canonical for each θ ∈ T d.

15Since the different references use different signs, we point out that here

{F,G} =
∑
j

(
∂F

∂pj

∂G

∂qj
− ∂F

∂qj

∂G

∂pj

)
.
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Proof: As noted before, we have that, for each t ∈ R, α(t) = γ(t, tω) ∈ Ĝ. Application of Lemma 2.4 implies
that, for all t and θ, γ(t, θ) ∈ Ĝ, and thus, according to (30)–(32), β̄ ∈ ĝ, so that (60) holds.

Since volume-preserving maps form a group, divergence-free vector fields form a Lie algebra and commutators
of divergence-free vector fields are again divergence free. The definition (33) proves that κ(θ) is volume preserving
for each θ. This proves (ii).

A similar argument proves that in (iii) the averaged vector field and the change of variables are canonical.
The formula (61) is a direct consequence of the standard homomorphism of the Lie algebra of Hamiltonian func-
tions/Poisson brackets onto the Lie algebra of canonical vector fields/commutators [2].

�

Remark 3.3 Since the relations (54)–(55) are obviously nonlinear, the B-series obtained by taking the arithmetic
mean of several B-series with coefficients in Ĝ does not have coefficients in Ĝ, except in trivial cases. For this
reason the coefficients (44) are such that χ, χ−1 /∈ Ĝ and the corresponding averaging does not share the favorable
geometric properties of quasi-stroboscopic averaging.

4 Computing the coefficients

Next we give simple recursions to obtain the coefficients of the B-series B(γ(t, θ), y) that are the key to compute the
quasi-stroboscopically averaged system and the associated change of variables (see Table 2). Since, from the proof
of Theorem 3.2 we know that γ(t, θ) ∈ Ĝ, it is enough to obtain the coefficients γk1···kr(t, θ) := γuk1···kr

(t, θ),
where the tall trees uk1···kr ∈ T were defined in the preceding subsection.16 The notation 0r is shorthand for the
word 0 · · ·0 (r letters), etc.

Proposition 4.1 Given r ≥ 1, k ∈ Zd − {0}, and l1, . . . , ls ∈ Zd,

γk(t, θ) =
i

k · ω (1− eik·θ),

γ0r(t, θ) = tr/r!,

γ0rk(t, θ) =
i

k · ω (γ0r−1k(t, θ)− γ0r(t, θ)eik·θ),

γkl1···ls(t, θ) =
i

k · ω (γl1···ls(t, θ)− γ(k+l1)l2···ls(t, θ)),

γ0rkl1···ls(t, θ) =
i

k · ω (γ0r−1kl1···ls(t, θ)− γ0r(k+l1)l2···ls(t, θ)).

(62)

Proof: Particularizing (27) for u = uk1···kr , we see that γk1···kr(t, θ) := γuk1···kr
(t, θ) satisfies

(∂t + ω · ∇θ)γk1···kr(t, θ) = γk1···kr−1(t, θ)e
ikr ·θ, γk1···kr(0,0) = 0. (63)

Lemma 2.7 can be used to prove by induction on r that, for each k 1, . . . ,kr ∈ Zd, (63) has a unique polynomial
solution γk1···kr(t, θ). Hence, the proposition follows if the coefficients γk1···kr(t, θ) recursively determined by
(62) satisfy (63), which we next prove by induction on r. One can trivially check that (63) is true for r = 1. Now,
by applying the linear operator (∂t + ω · ∇θ) to both sides of the equality defining each γk1···kr (t, θ) with r > 1 in
(62) and applying the induction hypothesis, one arrives at (63). �

Proposition 4.1 provides the following recursive formulae to compute the coefficients β̄k1···kr = ∂tγk1···kr (0,0)
required in the representation (60) of the averaged equations in quasi-stroboscopic averaging:

16The recursive formulae in Proposition 4.1 may be generalized to compute γu(t, θ) for arbitrary u ∈ T . Alternatively, one can compute the
coefficients γu(t, θ) for all u by applying the explicit formulae given in [19] to find the coefficients αu (u ∈ T ) of an arbitrary α ∈ Ĝ in terms
of the corresponding αk1···kr .
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Theorem 4.2 Given r ≥ 1, k ∈ Zd\{0}, and l1, . . . , ls ∈ Zd,

β̄k = 0,

β̄0 = 1,

β̄0r+1 = 0,

β̄0rk =
i

k · ω (β̄0r−1k − β̄0r ),

β̄kl1···ls =
i

k · ω (β̄l1···ls − β̄(k+l1)l2···ls),

β̄0rkl1···ls =
i

k · ω (β̄0r−1kl1···ls − β̄0r(k+l1)l2···ls).

To conclude this section, we shall give the first few terms in (60) more explicitly. By application of the Jacobi
identity and the skew-symmetry of the commutators, (60) can be rewritten as

d

dt
Y = ε

∑
k

β̄kfk + ε2
∑
k>l

β̄lk[fl, fk]

+ε3

⎛⎝∑
k 	=l

β̄llk[fl, [fl, fk]] +
∑

l>k<m, m	=l

β̄mlk [fm, [fl, fk]]

⎞⎠+O(ε4),

where < is some total ordering in the set of multi-indices Zd. We may assume that the ordering is such that k > 0
for k �= 0. By taking into account the actual values of β̄k1···kr obtained from Theorem 4.2, we get the truncated
averaged system

d

dt
Y = εf0 + ε2F2 + ε3F3 +O(ε4), (64)

where

F2 =
∑

k>−k

i

k · ω ([fk − f−k, f0] + [f−k, fk]),

F3 =
∑
k 	=0

1

(k · ω)2

(
[f0, [f0, fk]] + [fk, [fk, f−k]]−

1

2
[fk, [fk, f−2k]] + [f−k, [fk, f0]]

)
+

∑
0 	=m	=−l	=0

−1
(l · ω)((m + l) · ω) [fm, [fl, f0]] +

∑
−l>k<l, k 	=0

1

(k · ω)(l · ω) [f−l, [fl, fk]]

+
∑

m>k<−k
m+k 	=0

−1
(k · ω)(m · ω) [fm, [f−k, fk]] +

∑
0 	=m	=±l	=0
m>−m−l<l

−1
(m · ω)((m + l) · ω) [fm, [fl, f−m−l]].

When d = 1, formula (64) coincides with the messy formula (29) in [10]; a comparison of these two formulae
clearly bears out the advantage of expressing the averaged system in terms of commutators as in (60).

5 Averaging for a class of near-integrable systems

In this section we study autonomous systems of the form

d

dt
x =

d∑
j=1

ωjgj(x) + ε h(x), (65)
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where gj and h are smooth functions17 in R
D and the flows Ψ[j]

t of the systems

d

dt
x = gj(x)

are assumed to be 2π-periodic and commute with each other, i.e. Ψ [i]
s ◦ Ψ[j]

t = Ψ
[j]
t ◦ Ψ

[i]
s . It is obvious that if, for

θ = (θ1, . . . , θd) ∈ T
d, we set

Ψθ := Ψ
[1]
θ1
◦ · · · ◦Ψ[d]

θd
,

then, for each θ, θ′ ∈ Td, Ψθ ◦ Ψθ′ = Ψθ+θ′ , so that the family {Ψθ : θ ∈ Td} is a commutative d-parameter
group of transformations in RD . As we shall discuss later, this setting caters for many near-integrable Hamiltonian
systems.

The time-dependent change of variables x = Ψ tω(y) transforms (65) into

d

dt
y = εf(y, tω), f(y, θ) :=

(
∂

∂y
Ψθ(y)

)−1

h(Ψθ(y)), (66)

a system of the format (1) considered in the preceding sections.

Remark 5.1 When the non-autonomous system (1) is rewritten as

d

dt
y = εf(y, θ),

d

dt
θ = ω,

it becomes a member of the class (65) with Ψ
[j]
t (y, θ) = (y, θ+ tej) (ej denotes the j-th unit vector in Rd). Since,

as we have just seen, the autonomous (65) may be recast in non-autonomous form, we conclude that (1) and (65)
may be regarded as equivalent.

The application of Theorem 2.10 to (66) shows that

y(t) = B(γ(t, tω), y(0)),

where, of course, γ is the map we found before and the elementary differentials implied in the B-series are those
associated with the function f defined in (66). As a consequence, the solution flow of (65) may be represented as

x(t) = Ψtω(B(γ(t, tω), x(0)));

this is the starting point to construct an averaged system to describe the dynamics of x(t).

5.1 The averaged system

If, for each t ∈ R, θ ∈ Td, we define
Φt,θ(x) := Ψθ(B(γ(t, θ), x)), (67)

then the flow of (65) is given by
x(t) = Φt,tω(x(0)). (68)

In order to study the properties of the mapping Φ t,θ, we first require the following:

Lemma 5.2 For any δ ∈ Ĝ, θ ∈ T
d and x ∈ R

D,

B(δ,Ψθ(x)) = Ψθ(B(δθ , x)) (69)

(δθ ∈ Ĝ was defined in (51)).

17More precisely it is required that gj and h are such that the transformed vector field f in (66) satisfies the requirements specified at the
beginning of Section 2.
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Proof: Consider, for fixed θ ∈ Td, the change of variables y = Ψθ(x). From Proposition 3.1 we know that

B(δ,Ψθ(x)) = Ψθ(B̃(δ, x)),

where the notation B̃ means that the implied elementary differentials F̃u(x) are built from the pulled-back vector
fields

f̃k(x) :=

(
∂

∂x
Ψθ(x)

)−1

fk(Ψθ(x))

instead of from fk(y). Thus, we have to prove that B̃(δ, x) = B(δθ, x) and in order to do so it is sufficient to
establish that, for each tree u,

F̃u(x) = eiI(u)·θFu(x),

a fact that is a consequence of the equality f̃k(x) = eik·θfk(x) which we shall prove next.
The definition of fk as a Fourier coefficient of f in (66) yields:

fk(y) =
1

(2π)d

∫
Td

e−ik·θ′
f(y, θ′) dθ′ =

1

(2π)d

∫
Td

e−ik·θ′
(

∂

∂y
Ψθ′(y)

)−1

h(Ψθ′(y)) dθ′.

Then, using the definition of the pulled-back f̃k(x) above and the group property of Ψ θ, we may proceed as follows:

f̃k(x) =
1

(2π)d

∫
Td

e−ik·θ′
(

∂

∂x
Ψθ(x)

)−1(
∂

∂y
Ψθ′(y)

)−1

h(Ψθ′(y)) dθ′

=
1

(2π)d

∫
Td

e−ik·θ′
(

∂

∂x
Ψθ+θ′(x)

)−1

h(Ψθ+θ′(x))dθ′

=
1

(2π)d

∫
Td

e−ik·θ′
f(x, θ + θ′)dθ′

=
1

(2π)d

∫
Td

e−ik·(θ′−θ)f(x, θ′)dθ′

= eik·θfk(x).

�
We are now in a position to prove that the collection {Φ t,θ} is a (d+ 1)-parameter commutative group:

Proposition 5.3 For each t, t′ ∈ R and θ, θ′ ∈ Td:

Φt′,θ′ ◦ Φt,θ = Φt+t′,θ+θ′.

Proof: By virtue of Lemma 5.2, we have that

Φt′,θ′ ◦ Φt,θ = Ψθ′ ◦B(γ(t′, θ′), ·) ◦Ψθ ◦B(γ(t, θ), ·)
= Ψθ′ ◦Ψθ ◦B(γθ(t′, θ′), ·) ◦B(γ(t, θ), ·)
= Ψθ+θ′ ◦B(γ(t, θ) ∗ γθ(t′, θ′), ·),

and, by (53) and (28)–(29), we may write

γ(t, θ) ∗ γθ(t′, θ′) = γ(t,0) ∗ γ(0, θ) ∗ γθ(t′, θ′)

= γ(t,0) ∗ γ(t′, θ + θ′)

= γ(t+ t′, θ + θ′).

�
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It follows from the proposition that the flow (68) of the original system (65) admits the factorizations

Φt,tω = Φ0,tω ◦ Φt,0 = Φt,0 ◦ Φ0,tω; (70)

here (see (33))
Φ0,θ(·) = Ψθ

(
B(γ(0, θ), ·)

)
= Ψθ

(
B(κ(θ), ·)

)
(71)

is a map parameterized by θ ∈ Td, and

Φt,0(·) = Ψ0

(
B(γ(t,0), ·)

)
= B(ᾱ, ·)

is the t-flow (see (31)–(32)) of an autonomous (averaged) system

d

dt
X = ε h̃(X), ε h̃(X) :=

d

dt
Φt,0(X)

∣∣∣∣
t=0

= B(β̄, X). (72)

The factorizations (70) lead to the following result.

Theorem 5.4 (i) Let x be a solution of (65). Then, x(t) = Φ0,tω(X(t)), where X is the solution of the averaged
system (72) with initial value X(0) = x(0), and Φ0,θ is the map in (71).

Alternatively, for each t ∈ R, x(t) = X(t), where X is the solution of the averaged system (72) with initial
value X(0) = Φ0,tω(x(0)).

(ii) Assume that Λ : RD → R is a first integral of the given system (65), i.e. Λ(x(t)) = Λ(x(0)) for each t ∈ R

and each solution x. Then Λ is a first integral of the averaged system (72), Λ(X(t)) ≡ Λ(X(0)). Furthermore, for
each θ ∈ Td, the transformation Φ0,θ also preserves the value of Λ: Λ ◦ Φ0,θ = Λ.

Proof: (i) is a direct consequence of (70). For (ii) we note thatΛ◦Φ t,tω = Λ implies Λ◦Φt,0 = Λ andΛ◦Φ0,θ = Λ;
this is proved by expanding Λ(Φt,θ(·)) − Λ(·) in powers of ε and applying Lemma 2.4 at each order of ε. �

It is perhaps useful to recall that ε h̃(X) = B(β̄, X) may be written as in the right-hand side of (60) (with Y
replaced by X), where the coefficients β̄k1···kr may be recursively obtained from Theorem 4.2.

5.2 A decomposition of the vector field

The group property of the maps Φ t,θ implies that the right-hand side of (65) may be re-written as the sum of d+ 1

vector fields that commute with each other; the details are as follows. For each j, the maps Φ [j]
t := Φ0,tej form a

one-parameter semigroup and therefore are the t-flow of the autonomous system

d

dt
x = g̃j(x), g̃j(x) :=

d

dt
Φ0,tej (x)

∣∣∣∣
t=0

. (73)

(Note that Φ[j]
t depends 2π-periodically on t.) Differentiation in (67) reveals that the fields g̃ j are related to the

fields gj by

g̃j(x) = gj(x) +B(β[j], x), β[j] :=
d

dt
γ(0, tej)

∣∣∣∣
t=0

=
d

dt
κ(tej)

∣∣∣∣
t=0

. (74)

The factorizations in (70) may now be taken further:

Φ0,tω = Φ
[1]
tω1
◦ · · · ◦ Φ[d]

tωd
, Φt,tω = Φt,0 ◦ Φ[1]

tω1
◦ · · · ◦ Φ[d]

tωd
.

(The flows in the right-hand sides of these identities commute with each other.) Accordingly Theorem 5.4 may be
supplemented by the following result:

23



Theorem 5.5 (i) The map Φ0,tω in Theorem 5.4 is the time t flow of the system

d

dt
x =

d∑
j=1

ωj g̃j(x),

where the fields g̃j(x) are given by (74) and generate 2π-periodic flows.
(ii) The given system (65) may be rewritten as

d

dt
x =

d∑
j=1

ωj g̃j(x) + ε h̃(x),

where each of the fields ωj g̃j(x), j = 1, . . . , d, h̃(x) commute with each other and εh̃ is the averaged vector field
(72).

(iii) Assume that Λ is a first integral of the given system (65). Then Λ is also a first integral of each of the
systems (73).

Remark 5.6 Theorem 5.5 is related to the application of classical normal form theory in the semisimple case with
imaginary eigenvalues [22] as follows: If each g j(x) is linear , then (65) is of the form dx/dt = Ax+εh(x), where
A is a diagonalizable matrix with imaginary eigenvalues that are linear combinations with integer coefficients of the
frequencies ω1, . . . , ωd. In normal form theory, a near-identity formal change of variables is recursively constructed
such that in the new variables z, (65) reads dz/dt = Az + εĥ(z), where ĥ(z) commutes with Az. In the original
variables, this gives a decomposition of (65) of the form provided by Theorem 5.5.

In order to compute explicitly the g̃j(x), we note that, since γ(t, θ) ∈ Ĝ for each t and θ, we have β [j] ∈ ĝ and
thus

g̃j(x) = gj(x) +

∞∑
r=1

∑
k1,...,kr∈Zd

εr

r
β
[j]
k1···kr

[[· · · [[fk1 , fk2], fk3 ] · · · ], fkr ](x), (75)

where

β
[j]
k1···kr

:=
d

dt
γk1···kr(0, tej)

∣∣∣∣
t=0

.

In turn, the coefficients γk1···kr (t, θ) are given recursively in Proposition 4.1. The next result, a direct consequence
of that proposition, lists the recursive formulae to compute the β [j].

Theorem 5.7 Given r ≥ 1, k ∈ Zd\{0}, and l1, . . . , ls ∈ Zd,

β
[j]
k =

k · ej
k · ω ,

β
[j]
0r = 0,

β
[j]
0rk =

i

k · ω (β
[j]
0r−1k − β

[j]
0r ),

β
[j]
kl1···ls =

i

k · ω (β
[j]
l1···ls − β

[j]
(k+l1)l2···ls),

β
[j]
0rkl1···ls =

i

k · ω (β
[j]
0r−1kl1···ls − β

[j]
0r(k+l1)l2···ls).
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5.3 The Hamiltonian case

Let us assume hereafter that D is even and that the fields gj(x), j = 1, . . . , d, and h(x) in (65) are all canonical and
arise from the Hamiltonian functions in involution I j(x), j = 1, . . . , d, and K(x) respectively. Then (65) is itself a
canonical system with Hamiltonian function

H(x) :=
d∑

j=1

ωjIj(x) + εK(x). (76)

In the unperturbed, ε = 0, case, the hypothesis that the flows Ψ
[j]
t commute with each other imply that the Ij

are d conserved quantities of (65) in involution [2]; then (65) is integrable with flow given by the composition
Ψ

[1]
tω1
◦ · · · ◦Ψ[d]

tωd
. ThusH is near-integrable, and in fact many near-integrable Hamiltonians may be brought to the

form (76); some examples follow.

• Assume that x = (a, θ), with a ∈ RD/2 and θ ∈ TD/2, and that

H(x) =
D/2∑
j=1

λjaj + εK(a, θ).

Here a and θ are action and angle variables in the unperturbed problem and the λ j provide the D/2, possibly
resonant, corresponding angular frequencies. We may find a non-resonant ω ∈ R

d, with d ≤ D/2 such that
each λj is a linear combination with integer coefficients of the ωk and thenH takes the form (76).

• Assume that
H = H0(x) + εK(x), (77)

where H0 is quadratic and possesses D/2 oscillatory normal modes with frequencies λ1, . . . , λD/2. Again
the λj may be rewritten in terms of non-resonant ωk and thenH takes the form (76) with quadratic I j ’s.

In the application of the material of the preceding subsections to the present Hamiltonian case, we note that the
transformation Ψθ is canonical for each θ ∈ Td and this implies that the transformed system (66) is also canonical.
Theorem 3.2 (iii) then reveals that the averaged system (72) is canonical with a Hamiltonian function ε K̃ given
by the right-hand side of (61), where the Hk are the Fourier coefficients of the Hamiltonian K(Ψθ(y)) of the
transformed field in (66). In addition we have the following result:

Theorem 5.8 (i) Each system (73) is canonical, with Hamiltonian function

Ĩj(x) := Ij(x) +
∞∑
r=1

∑
k1,...,kr∈Zd

εr

r
β
[j]
k1···kr

{{· · · {{Hk1, Hk2}, Hk3} · · · }, Hkr}(x).

(ii) The functions Ĩj(x), j = 1, . . . , d, are first integrals in involution of both the given system (65) and of the
averaged system (72).

Proof: Part (i) is a consequence of the fact that β [j] belongs to ĝ. For part (ii) we note that H is of course a first
integral of (65); then Theorem 5.5 (iii) implies that H is a first integral of each of the systems (73) or, in other
words, that the Poisson brackets {H, Ĩj} vanish. This in turn shows that each Ĩj is a first integral of the original
system with HamiltonianH. Theorem 5.4 (ii) yields finally that each Ĩj is a first integral of (72). �
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The first terms in the expansion of Ĩj(x) are explicitly given by

Ĩj(x) = Ij(x) + ε
∑
k>0

k · ej
k · ω (Hk(x) +H−k(x))

+ ε2
∑
k>0

i
k · ej
(k · ω)2 ({H0, Hk −H−k}(x) + {Hk, H−k}(x)) (78)

+ ε2
∑

0<k<l

(Ak,l,j(x) +A−k,l,j(x) +Ak,−l,j(x) +A−k,−l,j(x)) +O(ε3),

where

Ak,l,j(x) =
i

(l+ k) · ω
(k · ej
k · ω −

l · ej
l · ω

)
{Hl, Hk}(x).

5.4 An application

We consider the Hamiltonian system with five degrees of freedom (q ∈ R 5, p ∈ R5)

H(p, q) = λ1

(
1

2
p21 +

1

2
q21

)
+

5∑
j=2

(
1

2
p2j +

λ2
j

2
q2j

)
+ ε U(q), (79)

U(q) =
δ2

8
q21q

2
2 + δ4

(√
70

20
+ q2 + q3 +

5

2
q4 + q5

)4

,

where
λ1 = ε, λ2 = λ3 = 1, λ4 = 2, λ5 =

√
2.

The specific case with parameter values ε = 1/70, δ = 1/
√
70, and initial values

p(0) = (−0.2, 0.6δ, 0.7δ, 0.8δ,−0.9δ), q(0) = (1, 0.3δ, 0.8δ, 0.7δ,−1.1δ)

is considered in [13], XIII.9.1 (but variables there are scaled differently, in particular t in that reference corresponds
to εt here).

In (79) the quadratic part corresponds to five uncoupled harmonic oscillators (cf. (77)) with frequencies λ 1, . . . ,
λ5, and Hamiltonian functions

J1 = λ1

(
1

2
p21 +

1

2
q21

)
, Jj =

1

2
p2j +

λ2
j

2
q2j , j = 2, . . . , 5.

In Figure 1 we have plotted, for the parameter values and initial conditions mentioned above, the evolution of the
five quantities Jj and the sum J2 + J3 + J4 for 0 ≤ t ≤ 500/ε2. We observe that J1, J2 + J3 + J4 and J5 are
approximately conserved over the whole time interval. (The conservation of J 1 is not studied in [13].)

To finish this section, we apply to (79) the results we have obtained in the article. The Hamiltonian (79), where
for the time being δ is regarded as a constant whose value is independent of the value of the parameter ε, is of the
form (76), with x = (p, q), ω = (1,

√
2) ∈ R2, and

I1 = J2 + J3 + J4, I2 =
1√
2
J5, K =

1

2
p21 +

1

2
q21 + U(q),

so that Theorems 5.5 and 5.8 lead to the decomposition

H(p, q) = Ĩ1(p, q) +
√
2Ĩ2(p, q) + εK̃(p, q),
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Figure 1: Energy exchange between J2, J3, J4 (wiggly lines) and almost conservation of J1 (bottom), J5, J2 +
J3 + J4 (top); the horizontal axis corresponds to the variable εt.

with formal first integrals Ĩ1(p, q) and Ĩ2(p, q) in involution. These integrals correspond to the near-conservation of
J2+J3+J4 and J5 along motions of (79). Moreover, the averaged Hamiltonian K̃(p, q) happens to be of the form

K̃(p, q) =
1

2
p21 +

1

2
q21 + δ2 R(p, q; δ2),

and therefore the averaging process can be applied to K̃(p, q) with δ2 considered as the perturbation parameter.
This gives rise to a further decomposition

K̃(p, q) = Ĩ3(p, q) + δ2 R̃(p, q; δ2),

where Ĩ3(p, q) =
1
2p

2
1 +

1
2q

2
1 +O(δ2) and Ĩ3(p, q) and K̃(p, q) are in involution. Since H is a first integral of K̃ ,

then Ĩ3 is also a first integral of H . We then end up with a decomposition

H(p, q) = Ĩ1(p, q) +
√
2Ĩ2(p, q) + εĨ3(p, q) + εδ2R̃(p, q; δ2),

where Ĩj(p, q), j = 1, 2, 3, are in involution with H(p, q). This matches the approximate conservation of J 2+J3+
J4, J5 and J1 in Figure 1.

We have computed the formal first integrals Ĩj(p, q), j = 1, 2, 3 (except for remainders of size O(ε3), O(ε3),
and O(δ6) respectively) by applying formula (78); this results in polynomials in the variables p, q that consist of
the sum of 1653, 1574 and 17050 monomials respectively (a computer algebra programme was of course used to
compute the Poisson brackets that feature in (78)). In order to check the size of the variation of the truncated versions
of Ĩj(p, q) along the solution of the original Hamiltonian system, we have computed, in the interval 0 ≤ t ≤ 500/ε 2

with a high-order splitting algorithm with small step size, the solution corresponding to the above initial data. In
Figure 5.4, (Ĩj(p(t), q(t)) − Ĩj(p(0), q(0))/ε

dj , with18 d1 = d3 = 5, d2 = 7, are plotted as functions of ε2t for
ε = δ2 = 1/70 (in blue) and ε = δ2 = 1/140 (in red) in respectively.

Appendix: multiplication of coefficients

In this appendix we give details of the product ∗ in G. It is hoped that this will increase the readability of the paper;
for a more complete treatment the reader is referred to [13], Chapter III.

18The exponent dj in the scaling factor for each conserved quantity is determined by the scaling of the initial condition in tandem by the
degree, as polynomials in the solution components, of the Poisson brackets discarded when truncating.
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Figure 2: (Ĩ1(p(t), q(t)) − Ĩ1(p(0), q(0)))/ε
5, (Ĩ2(p(t), q(t)) − Ĩ2(p(0), q(0))/ε

7, (Ĩ3(p(t), q(t)) −
Ĩ3(p(0), q(0))/ε

5 as functions of the scaled time ε2t. The blue solutions correspond to ε = δ 2 = 1/70 and
the red solutions to ε = δ2 = 1/140

Given δ ∈ CT ∪{∅} with δ∅ = 1 (that is δ ∈ G, so that B(δ, y) is a near-identity B-series), and an arbitrary
B-series B(η, y), the composition B(η,B(δ, y)) is a B-series of the form B(ζ, y), where ζ∅ = η∅δ∅ and for u ∈ T
the coefficient ζu = (δ ∗ η)u , u ∈ T equals η∅δu + ηuδ∅ = η∅δu + ηu plus a sum of products of the form
ηu0δu1 · · · δum with |u0| + |u1| + · · · + |um| = |u|, u0, . . . , um ∈ T . For instance, for the tree in the last row of
Table 1 it holds that (we use brackets rather than subscripts for typographical convenience):

ζ
(

k

l m )
= η(∅) δ

(
k

l m )
+ η
(

k

)
δ
(

l

)
δ
(

m

)
(80)

+ η
(

k

l )
δ
(

m

)
+ η
(

k

m )
δ
(

l

)
+ η
(

k

l m )
δ(∅).

Multiplication of the formula (80) by exp(i(k+ l+m) · θ) establishes the validity of (52) at u = k

l m

.
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In the general case, the coefficient (δ ∗ η)u, u ∈ T can be written as

(δ ∗ η)u = η(Lδ(u)), (81)

where, for each fixed δ ∈ G, Lδ : V → V is a linear map (defined below) in the vector space V = span(T ∪{∅}) of
linear combinations (with complex coefficients) of rooted trees, and η (originally defined as a map T ∪ {∅} → C)
has been extended by linearity to V (i.e. η(

∑
j λjuj) =

∑
j λjηuj for each linear combination

∑
j λjuj of trees).

In order to define the linear map Lδ, we first extend the notation [u1 · · ·um]k (used to recursively represent trees
in T ), to define for each m ≥ 1 and each multi-index k ∈ Zd, an m-linear, commutative m-ary operation on V by
setting

[∅]k = k , [u1 · · ·um−1∅]k = [u1 · · ·um−1]k.

Now, Lδ(u) is defined recursively by

Lδ(∅) = ∅, Lδ(u) = δu ∅+ [Lδ(u1) · · ·Lδ(um)]k if u = [u1 · · ·um]k. (82)

One can check that for any u ∈ T , Lδ(u) = δ(u) ∅+ u+ v where v a sum of rooted trees with fewer vertices than
u.

Observe that pictorially, in the right-hand side of (80), the tree associated with the right factor η ranges in the
set of trees obtained by pruning some edges in the tree in the left-hand side (‘pruning’ includes complete uprooting,
as in the first term, or no pruning at all, as in the last). In each term, the trees associated with the left factor δ
are precisely the parts that have been chopped off. It can be shown that (81)–(82) imply that the same pruning
procedure is valid to write the formula for (δ ∗ η)u for arbitrary u ∈ T .
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