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Abstract

The paper considers non-autonomous oscillatory systems of ordinary differential equations with d > 1 non-
resonant constant frequencies wi, ..., wq. Formal series like those used nowadays to anayze the properties
of numerical integrators are employed to construct higher-order averaged systems and the required changes of
variables. With the new approach, the averaged system and the change of variables consist of vector-valued
functions that may be written down immediately and scalar coefficients that are universal in the sense that they
do not depend on the specific system being averaged and may therefore be computed once and for all given
w1, --.,wqd. The new method may be applied to obtain a variety of averaged systems. In particular we study
the quasi-stroboscopic averaged system characterized by the property that the true oscillatory solution and the
averaged solution coincide at theinitial time. We show that quasi-stroboscopic averaging is a geometric procedure
because it isindependent of the particular choice of co-ordinates used to write the given system. Asaconsequence,
quasi-stroboscopic averaging of a canonical Hamiltonian (resp. of adivergence-free) system resultsin a canonical
(resp. in a divergence-free) averaged system. We also study the averaging of afamily of near-integrable systems
where our approach may be used to construct explicitly d formal first integrals for both the given system and its
quasi-stroboscopic averaged version. As an application we construct three first integrals of a system that arises
as a nonlinear perturbation of five coupled harmonic oscillators with one slow frequency and four resonant fast
frequencies.
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1 Introduction

The aim of this series of papersis to show how the formal series expansions that are nhowadays used to analyze
numerical integrators[13], [14], [18], [23], provide a powerful means to study and implement the method of aver-
aging (seee.g. [17], [22] and dso [1], Chapter 4, [2], Chapter 10). While Part | of the series [10] was restricted to
the case of systems with a single fast frequency, in this paper —which may be read independently from [10]— we
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consider systemswith d > 1 constant fast frequencies. The approach described here makes it possible to construct
in an explicit way higher-order averaged systems and the associated changes of variables. Before summarizing the
contributions of the paper in Subsection 1.2 below, we shall briefly review in Subsection 1.1 those basic aspects of
the method of higher-order averaging that are essential to outline the scope of our research.

1.1 High-order averagingin quasi-periodic systems
We consider averaging as applied to an initial value problem (see e.g. [21], [24])

%y = ef(y,tw), @
y(0) = yo R, )

inaninterval 0 < t < L/e whose length increasesase — 0. Here f = f(y, 6) depends 27-periodically on each
of the scalar components 6,...,0, of the angular variable § € T and w € R? is a constant vector of angular
frequencies. Throughout the paper we assume that w is non-resonant, i.e. k - w # 0 for each multi-index k € Z ¢,
with k # 0.! The case where f = f(y,0;<) depends explicitly on ¢ may be reduced to the format (1), see e.g.
[21].2

In N-th order averaging, N = 1,2, ..., the solution y of (1)—(2) is represented as

y(t) = UN(YN(t)v tw) + O(EN)v (3)
where, in the simplest case,® Uy is achange of variables of the form
Un(Y,0) =Y +eus(Y,0) + -+ eV tun_1(Y,0),  0eT, (4)

and Y (¢) is the solution of an autonomous problem (the averaged problem)

d

Y =ehy)+ E2RY)+ -+ eNFy(Y),  Y(0)=¢, (5)
whose initial valueis determined £ implicitly through the equation U (£, 0) = yo, i.€e.

N-1

£+ ) &luj(€,0) = yo. (6)

j=1

The representation (3) implies that, except for the O(¢ ™) remainder, the behaviour of y is determined by the
behavior of the averaged solution Yy in tandem with the quasi-periodic rotation ¢ — tw.
Thefunctions F; and u; may be defined recursively by (j > 1):

1 -
F(Y) = D /T F5(v,0)db, )
w - Vou;(Y,0) = Fj(Y,0) — F;(Y), ®)
[ w0 o ©
’H‘d

where .
Fl(Ya 9) = f(Yv 9)

10f course a problem with aresonant w may be written in non-resonant form by lowering the number d of frequencies.

2Alternatively it is also possible to let f depend smoothly on e and expand in powers of € asin [10].

3In practice the change of variables is often expressed in alternative ways, for instance by using Lie series. With such alternatives, the
recursion (7)—(10) has to be changed accordingly. However the exact format of the change of variables and the recursion are not essential to the
discussion that follows and we choose to focus on the form (4) for the sake of being definite. See in this connection Remark 2.16 that shows the
relations between different averaged systems.



and, for j > 1,

j—1
ou,

BEo=3[n 3 SLea(n e, ve) - FEEoR.m)]. o)

r=1 i1+ Fir=75—1

In(10), (0" f/0y")(y, 6) denotesthe r-th Fréchet derivative of f with respect toy evaluated at (y, §), amulti-linear
function that maps RPx -". xRP into RP. The effective computation of the F;’s and s from the relations
(7)—(20) is of course aformidable task even for moderate values of j and computer algebratools are very useful in
this respect.

It is well known that, except in the case d = 1 of a single frequency, the phenomenon of small denominators
introduces substantial difficultiesin the derivation of estimatesfor the remainder in (3) and in fact makesit necessary
to strengthen the hypotheses on w beyond the requirement of non-resonance. We quote the following result from
[21], probably the oldest reference (the notation is as above):

Theorem 1.1 (Perko) Consider the system (1)—«(2) where f(y, 6) is real-analytic and 27r-periodic in each compo-
nent of # for each y in a convex region G (containing y¢) and has continuous partial derivatives of order N with
respect to y in G x T<. Assume that the vector w € R¢ satisfies the strong non-resonance condition

vk € Z\{0}, Ik -w| > clk|™
for some positive constants ¢ and v. Assume in addition that the solution of theinitial value problem

d

EY =eR(Y), Y (0) = yo,

hasa solution Y7 (t) whichremainsin G for 0 < ¢ < L/e. Then, thereexist ey, Cy > 0 suchthat, for 0 < e < ey,
the problem (1)—(2) has a unique solution in G for 0 < t < L /e that satisfies

y(t) — U(Yn (1), wt)|| < Cne™.

Note that, for fixed Y, (8) is a differential equation (the homological egquation) where the unknown function
u; has to depend periodically on 6; straightforward Fourier analysis shows that the equation is solvable because
Fj — F; has zero angular average. However the angular average of « ; is not determined by (8) and an additional
condition is needed. Above that condition is given by (9) which is equivalent to the requirement that the angular
average of the function U 5 (Y, ) in (4) coincides with Y or, in other words, the change of variablesis the identity
on average. There are aternative ways of performing high-order averaging; in them (9) is replaced by a suitable
condition that, together with (8), determines v ;. For instance, inthe case d = 1 of asinglefrequency w = wy, itis
possibleto replace (9) by the conditionu ; (Y, 0) = 0; then Un (Y, 6) in (4) coincideswith Y at 6, = 0 and therefore
the change of variables is the identity at the initial time ¢ = 0. With this alternative there is no need to solve an
equation to find the initial value £ in (6); one simply has ¢ = yo. Furthermore, due to the periodicity, (4) implies
that y(¢) and Yy (¢) aso coincide at the stroboscopic times n(2x /w1 ), n integer, and accordingly the techniqueis
known as stroboscopic averaging [22].

1.2 Scope

In this paper we show how the use of B-series [15] allows the effective explicit computation of the » ;'s and F;'s
in (4) and (5) bypassing the recursive procedure in (7)—«10). With B-series, each v ; and F; is written by com-
bining so-called elementary differentials and coefficients. The elementary differentials are functions constructed
systematically in a very simple way from the function f in (1). The coefficients are numbers that are universal,
in the sense that they do not depend on the specific choice of D, f or yq, and therefore, given w, they may be
computed once and for al. The representation in terms of coefficients and elementary differentials has proved to be
very helpful to analyze standard numerical methods for differential equations and also to compare such methods,



because it separates the effects of the integrator (incorporated into the coefficients) from those of the system being
integrated (which determines the elementary differentials). The same consideration may apply here to integrators
for highly-oscillatory problems; modulated Fourier expansions[12] are of course another similar tool.

The new technique may be applied to perform averaging not only asin (7)—10), but also through variants where
the u;'s are not determined by imposing zero angular average by means of (9). In particular the B-series approach
leads in a natural way to a generalization of stroboscopic averaging to the quasi-periodic, d > 1, situation; this
generalization, wherein (5) £ = yo, will be referred to as quasi-stroboscopic averaging.

The new approach may aso be advantageously applied to the derivation of estimates for the remainder in (3);
such estimates (that may be exponentially small asin[20] or [24]) are the subject of [11] and will not be considered
further here. Since we shall not be dealing with the remainder term, it is convenient to replace (4) and (5) in what
follows by

U(Y,0) =Y +euy (Y, 0) + ux(Y,0) + - - -,

and
d

o= eFR(Y)+E2FR(Y) +---,
respectively. Truncation of these formal seriesin powers of ¢ gives the sought formulae (4) and (5) for any required
valueof N.

The main ideas of the paper are contained in Section 2. To make the article more accessible, we begin by
presenting in Subsections 2.1-2.3 an introduction to rooted trees and B-series, the basic tools used in the sequel.
Subsection 2.3 ends (see (21)) by showing how to rewrite the given problem (1)—(2) as an initial value problem for
a set of complex-vaued coefficients «,,(t) that is completely independent of the vector field f. Subsection 2.4 is
devoted to investigating the properties of these coefficients; in particular we show their relation to atransport partial
differential equation (see (23)) which plays here the role played by the homological equation (8) in conventional
treatments. After these preliminaries, the technique of quasi-stroboscopic averaging is described in Subsection
2.5 (see Theorem 2.10). When the number d of frequencies is 1, quasi-stroboscopic averaging reduces to the
stroboscopic averaging method investigated in Part 14 and therefore our results here are an extension of those in
[10]; however the derivation in this paper is simpler and more direct than that provided in [10]. Subsection 2.6
considers other possible averaged systems beyond the one obtained via quasi -stroboscopi ¢ averaging; we show that
all such averaged systems may in fact be derived by first performing stroboscopic averaging and then changing
variables. Subsection 2.7 studies the effect on the averaged system of prescribing the initial condition (2) at atime
to # 0.

Section 3 is devoted to the geometric properties of averaging. It turns out that quasi-stroboscopic averaging
is a geometric procedure in the sense that it commutes with changes of variables. As a consequence, the quasi-
stroboscopic averaged system may be written (see (60)) in terms of commutators (Lie brackets) of the Fourier
coefficients of the field f in (1). Thisin turn implies that if the origina system is divergence-free or canonical
(Hamiltonian) the quasi-stroboscopic averaged system will aso be divergence-free or canonical.

In Section 4 we provide a simple recursion to compute the coefficients of the quasi-stroboscopic averaged sys-
tems. By combining the coefficient values obtained from that recursion with the rewriting in terms of commutators
linked to the geometric properties of Section 3, we find a compact general expression for the quasi-stroboscopic
averaged system with an O(e?) error term (see (64)).

Section 5 considers a family of autonomous problems where the vector field is an O(g) perturbation of an
integrable system. Such problems may be brought to the format (1) by means of a time-dependent change of
variables. We describe how to obtain a quasi-stroboscopically averaged system (Theorem 5.4) with a number
of favorable properties (Theorem 5.5). If the original system is Hamiltonian, the averaged system will also be
Hamiltonian (Theorem 5.8) and furthermoreit is possible to construct explicitly d formal first integrals of both the
given and averaged systems. As an application we construct three first integrals of a system taken from [13] that
arises as a nonlinear perturbation of five coupled harmonic oscillators with one slow frequency and four resonant
fast frequencies.

Thereisashort Appendix that illustrates the use of the product x of maps on trees.

4For the application of the idea of stroboscopic averaging to the construction of numerical integrators the reader is referred to [5], [6].



2 AveragingviaB-series

In what follows we assume that f(y, ) in (1) has continuous partial derivatives of all orders with respect to y in
RP x T9, We denote by fi(y) the Fourier coefficients of £, so that the corresponding Fourier expansion is

= > e fily); (11)

kezd

the fx(y) are complex functions, but, in order to have areal system, it is necessary that, for each k, fx = f*,,
where * denotes complex conjugate.> We shall furthermore assume that, except for a finite number of values of
k € 74, dl the f,’s vanish identically.

We have placed stringent hypotheses on f so as not to clutter the presentation with unwelcome details. In fact
itis possibleto replace R” by adomain G ¢ R” and, if (4) and (5) are only of interest for a particular value of IV,
continuous partial derivatives of order N with respect to y are sufficient. The hypothesisthat the Fourier expansion
consists of afinite number of (nontrivial) termsis only used to ensure the convergence of a number of series that
will appear later (see Remark 2.2). Such a convergence may be ensured by imposing the aternative assumptions,
used in Theorem 1.1, that f depends analytically on 6 and that w is strongly non-resonant. Finaly we note that
since most results in this paper refer to the coefficients in the expansions and these are universal, i.e. independent
of f, the hypotheseson f play no real rolein most devel opments.

2.1 Theexpansion of the oscillatory solution

While formulae (7)—(10) are derived by studying the way in which changes of variables transform an oscillatory
differential system, our approach starts by studying the nature of the oscillatory solution . In order to motivate the
combinatorial and algebraic material required later, we obtain in this subsection the first few terms of the formal
expansion in powers of ¢ of the solution y of the initial-value problem (1)—(2), with f given by (11). The problem
may be rewritten in integral form as

f=yote / Fs) sy ds =y te [ 3 e fily(s)) ds, (12)

0 kezd

and therefore y(t) = yo + O(e) (in the sense of formal power series). Inserting & la Picard this approximationinto

(12) we write
=Y +¢ Z (/ “kwds) fie(yo) + O(e?),

kezd

an expression that may be taken again to (12) to obtain, after Taylor expansion,

y(t) = yo+e Y, (/ el dS) (o) (13)

kezd

te </ / eilsiktaal) “’d81d82> Fielyo) filyo) + O(%),

k,lezd

where f; (o) denotes the (Fréchet) derivative (Jacobian matrix) of fi evaluated at yo. This procedure may clearly
be iterated to find successively thee”, r = 3,4,..., terms of the expansion of y(t¢). The complexity of the cor-
responding expressions increases rapidly with » and the mode-colored rooted trees to be introduced in the next
subsection provide a means whereby the expansion may be found in a systematic way.

It isimportant to emphasize at this stage that (13) includes elements of two kinds:

SWe work with real systems for the sake of being definite; all our results are valid for complex systems.



u Fu(y) Oéu(t) Ou

O) fe(y) [y etk ds, 1

8 fll((y)fl(y) f(; f(;l ei(81k+821)w d81 dSQ 1

g fl/((y)fl/(y)fm (y) fg 081 fosz 61(81k+821+s3m)'“’ d51 d82 ng 1
%9@ YW AW, fm(y)) | fy ek ( Jo e dsy [ et d83)ds1 1+46(1,m)

Table 1: Families of trees of orders < 3 with their associated elementary differentials, coefficients and symmetries.
Here ¢ represents Kronecker'ssymbol,i.e. §(1,m) =1ifl=mandd6(l,m) =0if l #m

1. Elementary differentials, i.e. vector-valued expressions fix (vo). fi.(yo) fi(yo) that depend on theinitial-value
problem (1)—2) under consideration,

t t S1
/ ezsk-w dS, / / ez(slk+521)~w dSldSQ,
0 0 JO

that are universal, i.e. independent of the specific choice of D, f and y¢ in (1)—2).

2. Scdar coefficients

2.2 Mode-coloured rooted trees and their elementary differentials

We consider rooted trees where each vertex has been colored (i.e. labelled) with a multi-index k € Z ¢ which refers
to a Fourier mode in the expansion (11). For simplicity we shall use hereafter the word tree to refer to such a
mode-coloured rooted tree. The left-most column of Table 1 lists the four families of trees with < 3 vertices. Each
family contains infinitely-many trees (for instance there is a tree with one vertex for each particular value of the
multi-index k). In the table the lowest vertex of each graph correspondsto the root of the tree.

Formally the set 7 of trees may be defined recursively by the following two rules:

1. Foreachk € Z¢, thetree @ (with one vertex —the root— colored by k) belongsto 7.

2. Ifuq, ..., u, aretrees® € T, then the tree
= [ug - Uplk (14)

obtained by connecting through an edge their roots to a new root labelled with the multi-index k € Z <,
belongsto 7.

With each tree w € T we associate two integers: the order |u| is the number of vertices of « and the symmetry
o, 1s defined recursively as follows:

1. For eachtree @ of order 1, o, := 1.

6Repetitions among the v, are allowed. The order of the u,’s is of no consequence: thus [uz, u2]y and [us, u1]y are the same tree even if
ul # ug.



2. For w in (14),

¢ — T1 T
oy =r1lrplogl o,

where u,, 4 = 1,...,m denote the pairwise distinct v, v = 1,...,n and r, counts the number of times
thet u,, appearsamong the .

The integer o, is higher for trees that have a more symmetric appearance: the tree in the last row of Table 1 has
o, =2ifl=mand o, = 1inother cases.

Finally, with each tree u € T we associate its elementary differential (relativeto the functions f in (11)) amap
Fu : RP — RP defined by:

1. For each tree @ of order 1, F,.(y) := fx(y).

2. For w in (14), 5
Fuls) = S0 0) (P )., ).

We emphasize that even though this definitionisrecursive, it isatrivial matter to write down, without following any
recursive procedure, the elementary differential that correspondsto any given tree. To each vertex in the tree there
corresponds a Fréchet derivativein the elementary differential; the derivativeisthe n-th if the vertex hasn children.
The label k of avertex determinesthe function f to be differentiated (see the first two columnsin Table 1).

With these definitions we look for an expansion of the form (cf. (13))

3

0 Jul
yt)=yo+ > " Y Uiau(t)]:u(yo) = v+ ) —au(t)Fuyo), (15)

r=1  |ul=r “ weT

where the values of the scalar coefficients o, (t) have to be determined (the introduction of the factor 1/0,, here
simplifies later formulae). Substitution of this ansatz for y(¢) into (12) leads, after suitable Taylor expansions, to
the conditions

t
etskw s, (16)

vk € 74, aR)(t :/
On= [
t
Yu = [ug - - up ]k, ay(t) = / ek @a, (s) -, (s)ds. a7
0
Sincethetreesin the right hand-side of (17) have order < |u|, thisformulamakesit possible to compute recursively

the coefficients a,, (see the third column in Table 1).” We sum up our findings so far in the following proposition:

Proposition 2.1 The solution y(t) of the initial-value problem (1)—(2), with f given by (11), possesses the formal
expansion in powers of £ given by (15), where the coefficients v, (¢) are recursively defined in (16)—17).

2.3 B-series

In this subsection weintroducetheformal seriesthat are the main tool used in this paper. If § isamap that associates
with eachu € 7 U {0} acomplex number ¢, the B-series defined by 4 is:

s 1 elul
B(0,y) :==dpy + ) & —O0uFuly) =0py + ) ——0uFuly). (18)
(8,y) g |Z" () ZTU ()
Note that the B-series depends, through the elementary differentials F,,, on the choice of the functions fy in (11),
even though this dependence has not been incorporated into the notation. According to (15), for each fixed ¢, the
expansion for y(t) is the B-series B(a(t), yo), where ag(t) = 1 and for u € T the coefficient «,(¢) is defined
through (16)—(17).

"The effective computation of these coefficients will be considered in Section 4.




Remark 2.2 The hypotheseson f at the beginning of this section ensure that for each r theinner (infinite) seriesin
(18) consists of afinite number of nontrivial terms and thereforeis awell-defined function of y; asaresult B(4, y) is
awell-defined formal seriesin powersof . As mentioned before, for strongly non-resonant w, the hypothesisthat f
consists of finitely-many Fourier modes may be relaxed to analytic dependence of f on 6 asin Perko’s Theorem 1.1.
In such arelaxed scenario, one hasto build on the decay of fy as |k| — oo to ensurethat, for well-behaved maps 6,
theinner seriesin (18) is awell-defined function of y. See [11] for further discussion of this point.

Remark 2.3 All formulae below involving B-series are equalities between formal series in powers of ¢; this fact
will not be pointed out explicitly at each instance. It should also be mentioned that it is possible to envisage an
alternative approach where B-series are considered as formal series of terms indexed by 7 U {0} rather than as
formal series of powers of ¢; with such an approach —that will not be taken up here— it is not necessary to
investigate the convergence of the inner sumin (18).

Given aB-series B(4, y) with 6y = 1 (i.e. anear-identity B-series), and an arbitrary B-series B(n, y), it may be
shown (see [15] for the case where the vertices of the trees are not colored) that the composition

B(n, B(9,y)) (19)

isaB-series of the form B(¢, y), where ¢ only dependson § and r. More precisely each ¢, isan explicitly known
polynomial inthed,’sand n,,'s, v,w € T U{0} (seethe Appendix for additional detailstogether with an example).
Wewrite ¢ = §*7; and thus the non-commutative product + among mappings® 6, 7 € CTY{%} (5, = 1) corresponds
to the composition of the associated series.

The set of al near-identity B-series is a group with respect to the composition (19) and therefore the subset
G ¢ CTYU} consisting of the mappingsd € C7 {1} with §; = 1 is a non-commutative group for the product .
The group G is caled the coefficient or Butcher group [3]. The unit of this group will be denoted by 1; of course,
ly=1and1l, =0foreachu € T.

To conclude this subsection we shall show how to derive Proposition 2.1 through the use of the product «. The
manipulationsinvolved will illustrate the techniquesto be used later to provethe main results. Theaim isto express
the exact solution of (1)<2) as y(t) = B(«(t),yo). Our first task is to rewrite the function f in (11) itself as a
B-series "

f5.0) = BEOLy), Y Uy = Y B0 Fuly).

kezd weT %

with coefficients 3,,(6) (parameterized by the angular variable § € T?) defined as follows:

Bu(f) = €7 ifu= () for somek < z4, (20)
0 otherwise.

Recalling that the substitution of y in f corresponds to the product = of the corresponding coefficient maps « and
3, theinitial value problem (1)—(2) may be rewritten in terms of B-series as:

Bla(t),yo) = Bla(t) x f(tw), yo),
B(Q(O),yo) = B(]I-ayO)

dt

In turn this may be rewritten as an initial-value problem in the coefficient group, ° i.e. a problem whose unknown is
amapa:R —G:

d

Ea(t) = a(t) x B(tw), a(0) = 1. (22)

81f A and B are sets, the notation B4 means the set of all mappings ¢ : A — B.
9This kind of initial-value problem wasfirst considered in [7].



Note that we have now auniversal formulation, i.e. one wherethe choiceof f andy in (1)—(2) playsnorole. Using
the expression for the product * (see the Appendix) we have

vk € Z°, %a@(t) = ﬁ@(tw)

and

dac;t(t) = ﬁ®(tw)au1 (1), ().

After taking into account theinitial condition «,,(0) = 0 for each u € T, we recover the formulae (16)—(17) found
above.

Vu = [uy - -ty x,

24 Thetransport equation

This subsection contains a number of technical results that play a key rolein the proof of the main results.
We begin with a simple auxiliary result which is a consequence of the density in T ¢ of the quasi-periodic flow
t — tw with anon-resonant vector of frequenciesw € R

Lemma 2.4 Let w € CEXT* be a continuous function that, for each fixed 6, is a polynomial in ¢. If for all ¢ € R,
w(t,tw) = 0, thenw(t, §) = 0.

The following definition will be helpful:

Definition 2.5 We shall say that a function w : R x T¢ — C is polynomial if there exists a complex polynomial
P e C[Xop, X1,...,X24] in2d + 1 variables Xy,. .., X24, such that

w(t,0) = P(t, e, ... e =1 e7i0a)
Furthermore, v : R x T¢ — G isa polynomial map, if ~,, isa polynomial function for each v € 7.

It is easily established by induction in |u/, that, for each of the coefficients «,, (¢) that appear in the expansion
(15), there exists a (uniquely-defined) polynomial function ., (¢, §) such that we may write®

y (t) = Yu(t, tw). (22)

Then~y € GRXT* isapolynomial map in the sense of the definition. For instance, for u = withk = —-1#0,a
simple computation of the iterated integral in the second row of Table 1 shows that
it 1 — eitltw

Oéu(t) = m + 7(1 - w)2

and therefore ,
1— 61,1~9

(RN

it
We shall derive anumber of propertiesof the~,,’s.
Proposition 2.6 If v GRXT" is defined in (22), then v(0,0) = 1 and

Dy (1,0) +w - V(£ 6) = A(£.6)  B(0). (23

10Recall that w is assumed throughout to be non-resonant and that the resonant case may be rewritten in non-resonant form by lowering the
value of d.




Proof: The chain rule showsthat, at each t and 6 = tw, the equality (23) isvalid since «(t) satisfies the differential
equation in (21). It is then sufficient to invoke Lemma 2.4 to see that (23) holds at each ¢t and 6. The condition
~(0,0) = 1 comes from theinitia conditionin (21). O

While the transport equation (23) possesses infinitely many solutions that satisfy the condition v(0,0) = 1,
we shall establish below that only one of them is a polynomial map.

Lemma 2.7 Given a polynomial function w : R x T¢ — C, there exists a unique polynomial solution of
Oz(t,0) +w - Voz(t,0) = w(t,0), 2(0,0) = 0. (24)

Proof: Consider the Fourier expansions

w(t79) = Z wk(t) eik'e, Z(t,(g) — Z Zék(t) eika,

kelczd kezd

where, by assumption, I is a finite subset of Z¢, and for each k € I, w(t) is a polynomial in ¢. The transport

equation in (24) then reads

%sk(t) bi(k-w)a(t) = an(t), ke zl (25)

Clearly, (25) uniquely determines the polynomials 2y (¢) for k # 0. In particular, 2y (t) = 0 if k € ZI\I. The
condition z(0, 0) = 0 then becomes

20(0)=— Y &l0). (26)

kel\{0}
For k = 0, the polynomial Z¢(t) is determined from (25)—(26). O
Proposition 2.8 There exists a unique polynomial solution v € GRXT of (23) such that 4(0,0) = 1.
Proof: The equation (23) together with (0, 0) = 1 isequivalent to having, foral v € T,

Dvu(t,0) +w - Voryu(t,0) = ™, (£,60),  7(0,0) =0, @)
where~, (¢t,0) = 1if ju| =1, and

71/1, (tv 9) = H Yu, (ta 9)
v=1

for w in (14). It is then enough to prove that for each u € T, there exists a unique a polynomial function (¢, 6)
satisfying (27). This can readily be proved by induction on |u|: For |u| = 1, application of Lemma2.7 immediately
givesthe required result. For |u| > 1, the induction hypothesis shows that the function e %4/ (¢, §) is polynomial,
so that applying Lemma 2.7 once more leads to the required result. (I

Thelast result in this subsection is essential in later developments:

Proposition 2.9 The map v defined in (22) (or in Proposition 2.8) satisfies the identities
vt,t' € R, A(t',0) x7(t,0) = (' +1,0) (28)

and
vVt € R, V6 € T¢, v(t,0) % (0,0) = ~(t,0). (29)

11The method of characteristics shows that the solutions of (23) with v(0, 0) = 1 are defined by
t
1(6,0) = X(O = t) + [ 20,0+ (s = t)w) + B0 + (5 = 1) d.
0

Theinitial-value function x : T — G hasto vanish a 6 = 0, but it is otherwise arbitrary.
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Proof: Both identities may be combined into one:
vt,t' e R, V0 € T, Y(t',0) xy(t,0) = y(t' +t,0).

Consider, for fixed t/, themap 5 € G**T* defined as (¢, 6) = (', 0)~1 % y(' + t,6). By thelinearity of x with
respect to the right factor (see the Appendix), 7 (¢, 8) isasolution of (23); |t|sfurthermorepolynom|al and trivialy
satisfies 4(0, 0) = 1. By Proposition 2.8, 4(¢, 0) = (¢, 6). O

2.5 Quasi-stroboscopic averaging
We are now ready to describe the technique of quasi-stroboscopic averaging. The identity (28) together with
~(0,0) = 1 shows that the mappings

a(t) :=(t,0), (30)
parameterized by ¢ € R, form a one-parameter subgroup of the coefficient group G. Therefore a(t) isthe solution
of the autonomousiinitial-value problem (cf. (21))

d _
Zalt) =a(t) 4, a0)=1, (3
with
Bi= La( (32
dt o
(For compl eteness, weinclude here a proof, but the result is of course standardin the theory of differential equations
d d d _
—a(t')= —a(lt' +t = —a(t') xa(t ot
o) = ol +n| = Zal)sa) =alt)«5

when differentiating the product « we have taken into account once more that it is linear with respect to the right
factor, see the Appendix.) According to (29) the solution «(t) = (¢, tw) of the oscillatory problem (21) may be
represented as

at) = a(t) x k(tw)

in terms of the solution of the autonomous problem (31) andthemap < € G T defined by
#(8) = (0,0). (33)
After plugging the maps (), a(t), 3, and x(#) into the corresponding B-series, we conclude:
Theorem 2.10 The solution y of (1)—(2) may be written as
y(t) =U(Y (1), tw) (34)
where U is the change of variables (parameterized by 8 € T*d)
U0) = B0, Y) =Y+ Y ) FulY) @)
wer 7

and Y'(t) is the solution of the (averaged) autonomousinitial value problem

%Y =cF(Y), Y (0) = o, (36)

with u
SF(Y) = B(B,Y) = Y =B, Fu(Y). (37)

weT Y



dy = ef(y,tw) Y = eF(Y) 4y = Efi(?)
f(y.0) = B(B(0),y) F(Y) = B(B)Y) F(Y) = B(3,Y)

1 (16)417) 1(32) e
y(t) = Ble(t),yo) .  Y() = Bal) w) . Y@ = B(a),Y(0))
alt) = y(ttw) alt) = ~(t,0) at) = Axa(t)x At

I )
0) = B(k(0), - (Y,0) = B(R®0),Y) <+ >
K0 = (0,6) RO = Axn(9) Y = BO.Y)

Table 2: Overview of Section 2. The table consists of three blocks of rows. Thefirst row of the top block contains
the original oscillatory system with solution y, the quasi-stroboscopically averaged system with solution Y and a
general B-series averaged system with solution Y (asin Section 2.6). The second row of the top block providesthe
B-seriesfor the corresponding vector fields f, F, F'. Themiddleblock refersto the sol utionsy, Y, Y and the bottom
block to the changes of variables that relate these solutions. The computation starts from the given () in the top
left corner; the arrows and equation numbers show how to reach the coefficients 3, x(6) of the stroboscopically
averaged system and the associated change of variables. For general B-series averaged systems (Section 2.6) the
change V' in the bottom Light corner may be chosen arbitrarily; again the arrows and equation numbers show how

to reach the coefficients /3, % (6)

Here 3 and () are as defined in (32) and (33).

Furthermore the averaged solution Y possesses an expansion
el
Y (t) = B(a(t),yo) = yo + Z

uET

a(t) Fulyo) (38)

with a(t) defined in (30).

Table 2 shows the path we have followed to define and compute the coefficients 3, of the averaged system and
k4, (0) of the change of variables; these coefficients are universal in the sense mentioned before. For the averaged
system we find, after computing 3., for |u| = 1, 2:

DV = efo+ e S T (BOAY) — SV oY) + V) (V) + O,

k#£0

Thisis the extension to the multi-frequency case of formula (28) in[10]. Thee ? termswill be displayed in formula
(64). Note that with our approach the sets of coefficients 3, and «,, () may be found independently of each other,
whilein (7)—(10) the v ;’sand F;’s are coupled.

The oscillatory and averaged solutions y(t) and Y (¢) coincide at the initial time ¢ = 0, because x(0) =
~(0,0) = 1. Inthe single frequency case, d = 1, the equality (34) implies that y(¢) and Y (¢) also coincide at
the stroboscopic times ¢t = n(2x/w), n integer; thisis the situation considered in [10]. However when d > 1 the
angle tw never returnsto itsinitial value 0 € T¢ and the stroboscopic effect is not present. For d > 1 we shall refer
to the averaging technique described in the theorem as quasi-stroboscopic averaging, because, for arbitrarily small
w > 0, thereexist quasi-periodsT),, > 0 suchthat U (Y, nT,w) = Y +O(nu) andthusy(nT,) = Y (nT,)+O(nu).

2.6 General high-order averaging

The quasi-stroboscopic averaged system (36)—(37) is by no means the only averaged version of the oscillatory
system (1); it is always possible to transform (36)—<37) by changing variablesin R . The proof of our next result
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is standard and will not be given. While in Theorem 2.10 we spelled out the B-series that appeared, we shall not do
SO hereafter.

Proposition 2.11 (i) Under a smooth invertible change of variables
Y =V(Y),

the initial-problem (36)—(37) of quasi-stroboscopic averaging is transformed into

%? =cF(Y), V(Y(0) =y, (39)
with ' given by the pull-back
~ —1
~o [av(Y) ~
F(Y):= ( e ) F(V(Y)). (40)

If y solvesthe oscillatory initial value problem (1)—(2), then (cf. (34))
y(t) = U(Y(2), tw), (41)
where Y isthe solution of (39) and U is the change of variables (parameterized by 6 € T*)
UY,0):=UV(Y),6).

(HereU isasin (35).)
(ii) In the particular case where V' is given by a B-series, i.e.

V(Y)=B(\Y)
with A € G, the change Uisa near-identity B-series (parameterized by 6 € T#)(cf. (35)):

U(V,0) = BRO),T),  #(60) = A=r(0), (2)

the solution Y (¢) satisfies (cf. (38))

Y(t)=B(@&(),Y(0),  at):=Axa(t) =A™
and (cf. (32))
cF(Y)=B(B,Y), B§:= %5(7&) : (43)

t=0

Table 2 describes the computation of all required B-series starting from the given original system (1) and the
chosen \.

Remark 2.12 In (7)—10), the change of variables (41) is determined to ensure

1 ~ ~ ~
— Uly.0)do =Y.
(%wﬂd(”

By taking angular averages on both sides of the equality (42) this requirement leads to the condition 1 = A x y with

1
X= G /W #(0) do. (44

Thus (7)—<(10) is the instance of Proposition 2.11 (ii) that correspondsto the choice A = y .
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Remark 2.13 In part (ii) the coefficients Eu are computed from the coefficients @, (¢). It isalso possible to express
the 3, interms of the 3,, by changing variablesin (39) (refer to Table 2), therecipeis

B=AxBsA L. (45)

The product in the right-hand side cannot be interpreted in terms of compositions as in (19) because B¢ G.
The derivation of (45) and the interpretation of the right-hand side require to think of A and 3 as complex-valued
applications defined in a set of forests (rather than rooted trees), asin [8] or [9]. 2

It is remarkable that all averaged systems may be obtained by choosing appropriately V' (or ) in Proposition
2.11. We consider first the case where the change of variablesy +— Y is assumed to be given by a B-series:

Theorem 2.14 Suppose that the change of variables (41) with

U(Y,0) = B((©),Y), #"ed",
transforms the oscillatory differential system (1) into an (averaged) autonomous differential system. Then the
averaged system and the change U are those obtained by applying Proposition 2.11 (ii) with A = &(0).

Proof: The averaged solution satisfies Y (t) = B(a(t), Y (0)) for a suitable polynomial map t — a(t) € G with
a(0) = 1, whiley(t) = B(y(t, tw), y(0)). Then the hypothesis of the theorem may be expressed as:

~

B(a(t) *« K(tw), yo) = B(R(0) * (¢, tw), yo)
for an arbitrary initial value iyo. Lemma?2.4 yields:
B(a(t) * 7(6), yo) = B(R(0) *~(t,6),10),

and, in particular, for 6 = 0,

~

B(a(t) «£(0),y0) = B(K(0) * a(t), yo),

andthus U(Y,6) = U(V(Y),6) with V(Y) = B(7(0),Y). O
We study next the situation when the change U is not necessarily given by a B-series.

Theorem 2.15 Assume that the change of variables (41) with

UY,0) =Y +euy(Y,0) + 2V, 0) + - - (46)
transforms the oscillatory differential system (1) into an (averaged) autonomous differential system (d/dt) Y =
eF(Y). Thenthereisa near-identity change of variablesY = V(Y") such that (39) and (40) hold, i.e. the averaged

problem is obtained by changing variables in the quasi-stroboscopic averaged problem (36)—(37). Furthermore

Proof: We carry out the proof first for the casewhere U(Y,0) = Y, i.e. Y andy coincideat t = 0. Let Y = ®,(y,)
be the solution flow of the averaged system; by expanding ® ; in powers of £ and substituting into (46) we obtain

U(Y (£),0) = yo + £G1(t, 0, 0) + €2Ga(t, 0, y0) + - --

where each G ; is polynomial for each fixed value of the variabley . By hypothesis U (?(t), tw) must coincidewith
y(t) = B(vy(t, tw), yo) and thus, for each j,

G(t.0.30) = 3 —=u(t.6) Fulun)

lu|=j

12The use of forests is essential in establishing the connection between formal series and Hopf algebras, see e.g. [4], [19]. That connection
clarifies greatly the computation of the product x.
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whenever 6 = tw; application of Lemma 2.4 shows that the equality holdsin fact for al ¢ and 6. Thus

ﬁ(?(t)a 9) = B(’Y(tv 6)7 yO)

and, in particular, at ¢t = 0,

~

Ul(yo,0) = B(k(0),y0)-

Here we recognize that the change U isin fact the one (35) that transforms the original system (1) into the quasi-
stroboscopically averaged (36)—(37) and the proof is complete. R

When U (-, 0) =: V(-) is not the identity map the proof is similar, but an initial change of varigblesV(Y') = Z
isrequired. O

~

Remark 2.16 The preceding results show that V'(-) = U(+, 0) isthe only ‘free parameter’ in the whole procedure.
All possible averaged systems are obtained by performing the (time-independent) change of variablesY = V( }7)
in the quasi-stroboscopic system (36)—37). If V' happens to be given by a B-series, then the averaged system
resulting from the change of variables has a B-series right-hand side and the relation (41) will hold for afunction U
expressible as a B-series.

2.7 Changing theinitial time

If theinitial condition that supplementsthe system (1) is prescribed at an initial time¢ # 0,
y(to) = vo, (47)
it may be of interest to ook for a change of variables y(t) = U(Y, tw) that satisfies
U, tow) =Y (48)

(instead of U (Y, 0) = Y) so asto ensure that (47) leadsto an initial condition ?(to) = Yo.
If U is sought as a B-series, U(Y, 0) = B(k(0),Y"), the condition (48) becomes % (tow) = 1 or, in the frame-
work of Proposition 2.11 (see (42)), A x x(tow) = 1. Therefore the required change of variables has coefficients

R(0) = k(tow) ™! * K(0) (49)

and, if we define

a(t) :== k(tow) " * a(t) * k(tow) (50)

then Y (t) = B(a(t), Y (0)) or, since the averaged problem is autonomous
Y(t) = B(a(t —to), yo)-

The coefficients Eu for the right-hand side F* of the averaged equation may be found either by differentiation of
., (t) or asin Remark 2.13.

In the proposition below, we shall derive alternative expressions for %(6), a(t) and 5 Some notation and a
lemma are required. The total multi-index Z(u) € Z¢ of atreew € T is defined as the sum of all the multi-indices
that label its vertices. More precisely

1. For eachtree @ of order 1, Z(u) := k.

2. Foruin (14),
Z(uw):=k+Z(ur) + -+ Z(up),

15



If 6 € CTY{} and 6 € T9, we define 6¢ € CTV1%} asfollows. For eachu € T,
60 = T b5, (51)
and 6§ = &y. It follows (see the Appendix) that, for 6,7 € C7V1%} with 6y = 1, and 6 € T¢,
(6%n)? =6%%n?. (52)
Lemma2.17 For eacht € R and each 8, 6, € T¢,
7(0,00) " * 4 (t, 0+ 6p) = 7% (t,0). (53)

Proof: By definition of 3(6) (see (20)), (6 + 6o) = 5% (6), and then (52) and (23) imply that (¢, ) := v % (¢, 6)
solves the transport equation

(¢, 0) +w - Voy(t,0) = (¢, 0)  B(0 + 0o).

Furthermore 7(0,0) = 1. On the other hand, v(0,60) ! * v(t,0 + 6) satisfies the same transport equation and
also tekesthevalue 1 at ¢ = 0, & = 0. The proof is concluded by applying Lemma 2.7 asin Proposition 2.8. J

Proposition 2.18 With the notation above,

R(0) = K% (0 — tow), a(t) = a“(t), B = —alt)

Proof: The formulafor E is obviously a consequence of the formulafor a(t). From (49)—(50) and the definitions
of @ and « in (30) and (33), we see that it remainsto provethat

(0, tow) ™ % 7(0,0) =09 (0,0 — tow), (0, t0w) ! (£, 0) % ¥(0, tow) = ~"“(t,0).
Theidentity (29) makesit possible to rewrite the last equality in the simpler form
’Y(Ov tow)_l * V(tv tow) = ’ytaw(ta 0)7

and, accordingly, the proposition is a consequence of the preceding lemma. (O

3 Geometric properties of quasi-stroboscopic averaging

The coefficient group (G, *) may be regarded (in a formal way) as an infinite-dimensional Lie group. The corre-
sponding Lie algebrais given by

g={seC g =0},
because g is the set of all possible values of the velocity (da/dt)(0) of the curvest — «af(t) € G that satisfy

a(0) = 1.3 Following Murua [19] we may consider the subgroup G C G of those § € G ¢ C7Y{?} such that for
alu,v,weT

5uou + 51)01}, = 5u51u (54)
5(uov)ow + 5(1)ou)ow + 5(u;ou)ov = 511,51)5107 (55)

where o denotes the Butcher product in 7, i.e. u o v is the tree obtained by grafting the root of v into the root of
(foruwin(14),uov = [uq,...,un, v]k). Thegeometric significance of G isthat for § € G the processes of forming

BIn fact (32) and (43) provide examples of the computation of an element in the Lie algebra —infinitesimal generator— in terms of the
corresponding one-parameter semigroup.
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B-series and changing variablesin the vector field commute (see Proposition 3.1 below). In particular, for the true
solution y, it istruethat for each ¢t € R, a(t) € G.

Givené € G, therelations (54)—(55) may be used [19] to group together termsin the B-series B(4, y) and obtain
the more compact form:

B,y)=y+ > & 01y e, fier e, (9); (56)
r=1ky,... k,€Zd

here the notation is as follows:

® Ok, k. = Ouy, ., » Wherethe (‘tall’ or ‘un-ramified’) treesuy, .., € T arerecursively defined by

Uk 1= @, Uk, .-k, ‘= [Uk1~~~k7v71]kr'

L4 fkl"'k'r(y) = ayfk2~~~k7v(y)fk1 (y)

In (56) thereis only a term per word k; - - - k, over the alphabet Z%; in (18) there is a term per rooted tree with
verticeslabelled by the same a phabet. Nevertheless, for § € G, the constraints (54)—(55) till impose some relations
among the values of the coefficients ¢ ey 1y, SO that not al of them may be chosen arbitrarily (for instance 26 i =
62 foreachk € Z%).

TheLiealgebrag of G isof course asubalgebraof g; for 3 € g the B-series B(/3, y) may be rewritten [19] as

BBy) =Y Y. Bk firtk ®); (57)
r=1ky,... k,.€Z4
where p
By -k, 1= o0k, () (58)
dt 0

andt — a(t) € G isasmooth curve with o(0) = 1. Not all the values fy, ..., are independent, because of
the constraints on the coefficients oy, ..., (t) mentioned above (for instance Bi = 0 for each k € Z9, since
(d/dt)axk = ax(t)(d/dt)ax(t) and ax(0) = 0). The Dynkin-Specht—\Wever theorem [16], implies that (57) may
be rearranged to read

B(ﬁvy) :Z Z E%Bk1“~kr [["'[[fk1afk2]7fk3]"']7fk7v](y)7 (59)

r=1 ki,...y k,ezd
where, for each pair of vector fields, f, g,

a0 = (590 ) 1) = (5510 ) )

denotes the corresponding commutator (Lie bracket). It should be emphasized that in the representation (59) not all
the iterated commutators are linearly independent in view of the skew-symmetry of [, -] and of the Jacobi identity
(for instance [fx, , fi,] = —[fiss fie, ] fOr al ky, ko € Z4).24

Since commutators are geometric objects (i.e. the operations forming commutators and changing variablesin a
vector field commute), we obtain from (59):

14This point is taken up in the next section.
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Proposition 3.1 Consider a change of co-ordinatesy = C(x), so that the vector fields fy, k € Z<, in (11) become
in the new variables

e = (Zew) e

For each 6 € C7V{%}, denote by B(6, z) the B-series with elementary differentials 7., (x) built from the vector
fields fi () inlieu of the elementary differentials built fromthe fi (y).

e If 3 €7, then B
B(3r) = (52C0))  B(5.CW),
o If§ € G, then )
C(B(d,z)) = B(4,C(x)).

Ifé e Q\QA, the commutation in the proposition only holdsif y = C(z) is an affine map.

After these preparations, we may state our next theorem, which implies that quasi-stroboscopic averaging is
geometric in nature: the quasi-stroboscopic averaging procedure and an arbitrary smooth change of variables in
RP commute with each other, so that quasi-stroboscopic averaging makes sense (intrinsically) for non-autonomous
guasi-periodic smooth ODEs defined on smooth manifolds. The cases of divergence-freeand canonical vector fields
are singled out in the statement of the theorem; similar results hold of course for any other Lie algebra of vector
fields. Another application is to the case of dynamical systems with symmetry, where averaging may be used to
construct normal formsfor bifurcations.

Theorem 3.2 (i) The autonomous systemin (36)—(37) corresponding to quasi-stroboscopic averaging can be writ-
ten in the form

Y=Y Y Sl bl fiul il D A0, (60)

r=1 ki,... k,€2%

where the coefficients Sy, .. i, are defined fromthe ay, .k, (t) := Quy, .,, (1) by differentiation asin (58).

(if) Consider the case where the vector field (11) is divergence-free and therefore the solution flow of (1) is
volume-preserving. In this case the averaged system (60) is also divergence-free and therefore its solution flow is
volume-preserving. In addition, the change of variables (35), i.e. U(+,0) = B(k(0), ), is volume-preserving for
each ) € T?.

(iii) Consider the case where D is even and (11) is the canonical Hamiltonian vector field associated with the
Hamiltonian function H (y, #) with Fourier expansion

H(y,0) =Y ™" He(y)
kezd

(so that, for each k € Z, fi(y) is the canonical Hamiltonian vector field associated with Hy). In this case
the averaged system (60) is also canonical, with Hamiltonian function e H defined in terms of canonical Poisson
brackets'® {-, -} of the Hy:

H=3" Y B 0 (i, Bk Hig) L Fi ) (61)

r=1 ki,... k,€2%

In addition, the change of variables (35), i.e. U(-,6) = B(x(#), ), is canonical for each € T <.

15Since the different references use different signs, we point out that here

(ro) = 3 (206 _ or 06
’ 7 Opj 0q;  Oqj Op;
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Proof: As noted before, we have that, for each ¢ € R, a(t) = (¢, tw) € G. Application of Lemma 2.4 implies
that, for all t and 0, (¢, 0) € G, and thus, according to (30)~(32), /3 € g, so that (60) holds.

Since volume-preserving maps form a group, divergence-freevector fields form a Lie algebraand commutators
of divergence-freevector fields are again divergence free. The definition (33) provesthat «(6) is volume preserving
for each . This proves(ii).

A similar argument proves that in (iii) the averaged vector field and the change of variables are canonical.
The formula (61) is a direct consequence of the standard homomorphism of the Lie algebra of Hamiltonian func-
tions/Poisson brackets onto the Lie algebra of canonical vector fields‘commutators[2].

O

Remark 3.3 Since the relations (54)—(55) are obviously nonlinear, the B-series obtained by taking the arithmetic
mean of several B-series with coefficients in G does not have coefficients in G, except in trivial cases. For this
reason the coefficients (44) are such that x, x ~* ¢ G and the corresponding averaging does not share the favorable
geometric properties of quasi-stroboscopic averaging.

4 Computing the coefficients

Next we give simplerecursionsto obtain the coefficients of the B-series B(v(t, 0), y) that arethe key to computethe
quasi-stroboscopically averaged system and the associated change of variables (see Table 2). Since, from the proof
of Theorem 3.2 we know that (¢, 6) € G, it is enough to obtain the coefficients vy, ..k, (t,0) := Yuy, ... (£, 0),
where the tall trees uy, ...k, € 7 were defined in the preceding subsection.® The notation 0" is shorthand for the
word 0 - - - 0 (r letters), etc.

Proposition 4.1 Givenr > 1,k € Z¢ — {0}, and 1, ..., € Z¢,

_ i __ik6
Wt ) = =(1—e ),
Yor(t,6) = &)r],
7 k-0
,YOTk(t79) = k..w(rYO"'*lk(te) ’yor(t 9) e ) (62)
2
Ykl -1, (t79) = k~w(’yll"'ls (tae) _'Y(k+11)12---15 (t79))7
)
Yorkl, ~15(t,9) = k.w('yo"'*lk11~~~ls(ta9)_'YOT(k+11)lz~~~ls(ta9))'

Proof: Particularizing (27) for u = uk,.. k., we seethat yi, ..k, (£, 0) 1= Yuy, ., (¢, 0) satisfies

(O + w - Vo) ey de, (1:0) = Yy aeo, (1,0)€™ % iy, (0,0) = 0. (63)

Lemma 2.7 can be used to prove by induction on r that, for each k 1, ..., k, € Z¢, (63) has a unique polynomial
solution vy, ..k, (t, 8). Hence, the proposition follows if the coefficients vy, ...k, (¢, #) recursively determined by
(62) satisfy (63), which we next prove by induction on r. One can trivially check that (63) istrue for r = 1. Now,
by applying the linear operator (9 + w - V) to both sides of the equality defining each vy, .. k.. (¢,0) withr > 1in
(62) and applying the induction hypothesis, one arrives at (63). O

Proposition 4.1 providesthe following recursive formul aeto computethe coefficients By, ..k, = 0,k (0,0)
required in the representation (60) of the averaged equationsin quasi-stroboscopic averaging:

16The recursive formulae in Proposition 4.1 may be generalized to compute ~, (¢, 8) for arbitrary « € 7. Alternatively, one can compute the
coefficients v, (¢, 0) for al u by applying the explicit formulae given in [19] to find the coefficients oy, (v € T) of an arbitrary o € Ginterms
of the corresponding oy, .. k,.-
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Theorem 4.2 Givenr > 1,k € Z4\{0},and 1y, ...,1, € Z4,

Bk = 07
60 = 17
BO'+1 = 07
_ z’ _ _
ﬁo"k = (5OT—1k - Bor)v
By 1, = (/5’11 1 = Bt 1),
_ z’ _
ﬁo"'kh“ls - k W (ﬂor_lkh"'ls - ﬂ07'(k+11)12~~~15)'

To conclude this section, we shall give the first few termsin (60) more explicitly. By application of the Jacobi
identity and the skew-symmetry of the commutators, (60) can be rewritten as

%Y = 526kfk+5 Zﬁlkfl;fk

k>1

+¢? (Z Buclfi, [ Al + D Bk fms [, fk]]) + O(e),

k#1 I>k<m, m#1

where < is some total ordering in the set of multi-indices Z¢. We may assume that the ordering is such that k > 0

for k # 0. By taking into account the actual values of fy, .., obtained from Theorem 4.2, we get the truncated
averaged system

%Y_5f0+62F2+63F3+0( ); (64)
where
Fy= 3" = (fic— forc Jol + [ fid),
k>-k
P =3 terye (Voo A+ Ui Ui f-od) = 3l Ui -]+ [F-a i ol
k#0
-1 1
oo T Pl 0 ey U e A
—1 -1
+ 7[fmv[f* 7f]]+ [fma[faf*m*]]'
,,:HE (k- w)(m - w) o gﬁm%;g (m - w) (1) ) R

When d = 1, formula (64) coincides with the messy formula (29) in [10]; a comparison of these two formulae
clearly bears out the advantage of expressing the averaged system in terms of commutators asin (60).

5 Averaging for aclass of near-integrable systems

In this section we study autonomous systems of the form
Z w;g;(x) + & h(x), (65)
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where g; and /, are smooth functions” in R” and the flows ¥”) of the systems

d
7t = 95(x)

are assumed to be 27-periodic and commute with each other, i.e. ¥ S \Ilgj] = \Ilgj] o U, 1t is obviousthat if, for

0= (91,...,9d) € Td,weset
[d]

Wy =hlo. 0wl

then, for each 0,6’ € T4, Wy 0 Uy = Wy 4, SO that the family {¥y : 6 € T?} is a commutative d-parameter
group of transformationsin R”. Aswe shall discuss later, this setting caters for many near-integrable Hamiltonian
systems.

The time-dependent change of variables z = ¥ 4, (y) transforms (65) into

0

Gl 100 = () HEw), (66

asystem of the format (1) considered in the preceding sections.

Remark 5.1 When the non-autonomous system (1) is rewritten as

d d
%y - Ef(y7 9)7 EQ = w,

it becomes amember of the class (65) with \I/Lj] (y,0) = (y,0 + te;) (e; denotesthe j-th unit vector in R9). Since,
as we have just seen, the autonomous (65) may be recast in non-autonomous form, we conclude that (1) and (65)
may be regarded as equivalent.

The application of Theorem 2.10 to (66) shows that

y(t) = B(y(t, tw), y(0)),

where, of course, v is the map we found before and the elementary differentials implied in the B-series are those
associated with the function f defined in (66). As a consequence, the solution flow of (65) may be represented as

{E(t) = \Iltw(B(’Y(ta tw)a (E(O))),

thisis the starting point to construct an averaged system to describe the dynamics of x(t).

5.1 The averaged system

If, foreacht € R, # € T, we define
Py g(x) := Vo(B(y(t,0), x)), (67)
then the flow of (65) is given by
z(t) = Dy 40 (2(0)). (68)
In order to study the properties of the mapping ¢ . ¢, we first require the following:

Lemma5.2 Foranys € G, 6 € T¢ and z € R?,
B(8,¥g(x)) = Wg(B(8”, x)) (69)
(8% € G was defined in (51)).

"More precisely it is required that g; and h are such that the transformed vector field f in (66) satisfies the requirements specified at the
beginning of Section 2.
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Proof: Consider, for fixed § € T, the change of variablesy = W y(z). From Proposition 3.1 we know that
B(8,Vg(x)) = Uy(B(S,x)),

where the notation B means that the implied elementary differentials ]:'u(x) are built from the pulled-back vector
fields

1
fla) = (r00@)  Aelaa)

instead of from fi.(y). Thus, we have to prove that B(d,z) = B(6%,z) and in order to do so it is sufficient to
establish that, for each tree u, ) _
Fulz) = ezI(u)ﬂ]_—u(x)’

afact that is a consequence of the equality fi(z) = e’ fi () which we shall prove next.
The definition of fy, asaFourier coefficient of f in (66) yields:

1 —ik-6’ ’ ’_ 1 —ik-0’ 0 - ’
fk(y)=w/we %O F(y,0')do —W/We kb (a—y‘l’ef(y)) h(Wor(y)) de'.

Then, using the definition of the pulled-back fi(z) aboveand the group property of ¥ 4, we may proceed asfollows:

@ = g [ (Zww) (Lew) )

- (271r)d /m e (5%‘1/9+9’($)> _ h(Poro (x))do’

O
We are now in a position to prove that the collection {® ¢} isa(d + 1)-parameter commutative group:

Proposition 5.3 For eacht,t’ € Rand#, 0’ € T%:
Dy g0 Prog = Prirr o100
Proof: By virtue of Lemma 5.2, we have that

(I)t’ﬂ’ o cI)t,G = VYpo B(ry(tl7 9/), ) oWyo B(’y(t, 9)7 )
Vg 0 Wy o0 B('(t',6'),-) o B(1(t,0),-)
= \I/9+9’ OB(’V(tvg) *Ve(tlvgl)v')v

and, by (53) and (28)—(29), we may write

v(t,0) x7°(t',0')

Y(t,0) % 7(0,0) «7°(t',0)
= y(t,0)xy({t,0+0")
vyt +t,0+0").
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It follows from the proposition that the flow (68) of the original system (65) admits the factorizations
Dy 1 = Do 1w © Pro = Pro 0 Poies (70)

here (see (33))
Do,0(-) = o (B(7(0,0),-)) = Vo(B(k(0). ")) (71)

isamap parameterized by € T¢, and
(I)t,O(') = \IIO (B(’Y(ta 0)7 )) = B(O_t, )
isthe ¢-flow (see (31)—32)) of an autonomous (averaged) system

d - - d _
ZX=eh(X),  ch(X):= 2@ 0(X) = B(B,X). 72

The factorizations (70) lead to the following result.

Theorem 5.4 (i) Let = be a solution of (65). Then, x(t) = ®¢ .. (X (¢)), where X is the solution of the averaged
system (72) with initial value X (0) = x(0), and @ ¢ isthemap in (71).

Alternatively, for each ¢t € R, z(t) = X (t), where X is the solution of the averaged system (72) with initial
value X (0) = ®¢ 4 (2(0)).

(i) Assumethat A : RP — Risafirst integral of the given system (65),i.e. A(z(¢)) = A(z(0)) for eacht € R
and each solution . Then A isafirst integral of the averaged system (72), A(X (t)) = A(X(0)). Furthermore, for
each 6 € T, the transformation g ¢ also preservesthevalueof A: Ao &g = A.

Proof: (i) isadirect consequenceof (70). For (ii) wenotethat Ao®; ,, = AimpliesAo®; o = Aand Ao®g g = A;
thisis proved by expanding A(®, ¢(-)) — A(-) in powers of £ and applying Lemma 2.4 at each order of ¢. [J

It is perhaps useful to recall that & E(X) = B(B, X) may be written as in the right-hand side of (60) (with Y
replaced by X), where the coefficients fy, ...k, may be recursively obtained from Theorem 4.2.

5.2 A decomposition of the vector field

The group property of the maps , ¢ implies that the right-hand side of (65) may be re-written asthe sum of d + 1

vector fields that commute with each other; the details are as follows. For each j, the maps ® £j] = Pg e, forma
one-parameter semigroup and therefore are the ¢-flow of the autonomous system

d d

Em =g (73)

i(x), gj(r) = - Po,te; (v
B, B = e )

(Note that <I>£j] depends 2-periodically on ¢.) Differentiation in (67) reveals that the fields g ; are related to the
fields g; by

= —nlte;) (74)

dt

3i(0) = 93(2) + B, 2), BV = a0, tey)

t=0 t=0

The factorizationsin (70) may now be taken further:
Py = Pr00 ¢1[5ﬂ1 00 Bl

twg*

D 40 = oM o... 0

twi twg?

(The flows in the right-hand sides of these identities commute with each other.) Accordingly Theorem 5.4 may be
supplemented by the following result:
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Theorem 5.5 (i) Themap @ 4, in Theorem 5.4 is the time ¢ flow of the system

—x = ijg]

where thefields g, (x) are given by (74) and generate 27-periodic flows.
(i) The given system (65) may be rewritten as

d
d ) -
—x = E w;g;(x) + e h(x),
=1

where each of thefieldsw;g;(z), 7 = 1,...,d, E(m) commute with each other and e/ is the averaged vector field
(72).

(iii) Assume that A is a first integral of the given system (65). Then A is also a first integral of each of the
systems (73).

Remark 5.6 Theorem 5.5 isrelated to the application of classical normal form theory in the semisimple case with
imaginary eigenvalues[22] asfollows: If each g ;(x) islinear , then (65) isof theform dz/dt = Ax +eh(x), where
A isadiagonalizablematrix with imaginary eigenvaluesthat arelinear combinationswith integer coefficients of the
frequencieswy, . .., wy. Innormal form theory, anear-identity formal change of variablesis recursively constructed
such that in the new variables z, (65) reads dz/dt = Az + eh(z), where h(z) commuteswith Az. In the original
variables, this gives a decomposition of (65) of the form provided by Theorem 5.5.

In order to compute explicitly the g, (x), we note that, sincey(¢, ) € G for each t and 6, we have 81! € § and
thus

DR ﬁkl e - s fials fiea] -1, e (2), (75)

r=1 ky,....k,.€Z4
where

d
B = L a0ty
ki---k, dt 1 J o

In turn, the coefficients vy, ...k, (¢, 6) are given recursively in Proposition 4.1. The next result, a direct consequence
of that proposition, lists the recursive formulae to compute the 3 7],

Theorem 5.7 Givenr > 1,k € Z4\{0},and 1y, ...,1, € Z4,

oo ke

k k-w’

([)Jr] = 07

gr]k - (ﬁor 1k 7])
6k11 1. (/811 1, /Bk]+11)12 1)
([)Jr]k11~~~15 = (/Bor 1Kl -1, c[)Jv]'(k+11)12...15)'
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5.3 TheHamiltonian case

Let us assume hereafter that D is even and that thefields g ;(z), j = 1,...,d, and h(z) in (65) areall canonical and
arise from the Hamiltonian functionsin involution I ; (), j = 1,...,d, and K (x) respectively. Then (65) isitself a
canonical system with Hamiltonian function

Z w;Li(x) + eK (z). (76)

In the unperturbed, ¢ = 0, case, the hypothesis that the flows \I/P] commute with each other imply that the I
are d conserved quantities of (65) in involution [2]; then (65) is integrable with flow given by the composition

ol 6.0 \I/[ ] . Thus H is near-integrable, and in fact many near-integrable Hamiltonians may be brought to the

twy

form (76) some examplesfollow
e Assumethat z = (a, ), witha € RP/2 and § € TP/2, and that

D/2
x) = Z Aja; +eK(a,b).

J=1

Here a and § are action and angle variables in the unperturbed problem and the A ; providethe D/2, possibly
resonant, corresponding angular frequencies. We may find a non-resonant w € R ¢, with d < D/2 such that
each )\; isalinear combination with integer coefficients of the w), and then H takes the form (76).

e Assumethat
H = Ho(z) + eK(z), (77)

where H is quadratic and possesses D /2 oscillatory normal modes with frequencies Ay, ..., Ap /2. Again
the \; may be rewritten in terms of non-resonant w,, and then H takes the form (76) with quadratic I ;'s.

In the application of the material of the preceding subsections to the present Hamiltonian case, we note that the
transformation W is canonical for each 6 € T¢ and thisimplies that the transformed system (66) is also canonical.
Theorem 3.2 (iii) then reveals that the averaged system (72) is canonical with a Hamiltonian function ¢ K given
by the right-hand side of (61), where the Hy are the Fourier coefficients of the Hamiltonian K (¥ 4(y)) of the
transformed field in (66). In addition we have the following result:

Theorem 5.8 (i) Each system (73) is canonical, with Hamiltonian function
~ > 5
L) =ILix)+> Y B s AL {{H, Hio }, iy} -+ }, Hig, Hx).
r=1 kl,...,k,,.EZd

(ii) The functions fj (x),j =1,...,d, arefirst integrals in involution of both the given system (65) and of the
averaged system (72).

Proof: Part (i) is a consequence of the fact that 51! belongsto g. For part (ii) we note that 7 is of course afirst
integral of (65); then Theorem 5.5 (iii) implies that # is a first integral of each of the systems (73) or, in other
words, that the Poisson brackets {#, I,} vanish. Thisin turn shows that each I; is afirst integral of the original

system with Hamiltonian . Theorem 5.4 (ii) yields finally that each I isafirst integral of (72). O
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The first termsin the expansion of I;(z) are explicitly given by

Li(x) = +6Zk )+ H_y())
+€222

e? Z (Akpj () + A (@) + Ak —15(@) + Ak —15(2) + O(®),

0<k<l1

5 ({Ho, Hx — H_x}(x) + {Hx, H-x}(x)) (78)

where

{ (k-ej 1

Ms(0) = g (e~ 7o) U i @)

54 An application

We consider the Hamiltonian system with five degrees of freedom (¢ € R®, p € R®)

1
H(p,q) = M ( P+ q1)+z< —qj>+€U(q), (79
4
52, V70 5
Ulg) = §Q1 2+54<2—0+Q2+Q3+2(J4+%>,

where
)\126’ AQ:)‘?):la A4:25 A5:\/§

The specific case with parameter valuese = 1/70, § = 1/+/70, and initial values
p(0) = (—0.2,0.66,0.75,0.85,—0.95),  ¢(0) = (1,0.35,0.85,0.75, —1.16)

isconsideredin[13], X111.9.1 (but variablesthere are scaled differently, in particular ¢ in that reference corresponds
to et here).

In (79) the quadratic part corresponds to five uncoupled harmonic oscillators (cf. (77)) with frequencies A 4, ...,
A5, and Hamiltonian functions

Lo N o
In Figure 1 we have plotted, for the parameter values and initial conditions mentioned above, the evolution of the
five quantities J; and the sum Jo + J5 + J, for 0 < ¢ < 500/<2. We observethat J1, J> + J3 + J4 and J; are
approximately conserved over the whole time interval. (The conservation of .J; is not studied in[13].)
To finish this section, we apply to (79) the results we have obtained in the article. The Hamiltonian (79), where
for the time being ¢ is regarded as a constant whose value is independent of the value of the parameter ¢, is of the
form (76), with 2 = (p, ¢), w = (1, v/2) € R?, and

1 1., 1
Js, K =-pi+-qi+U(q),

I = Jy+ J3 + Ju, I = 5 5

so that Theorems 5.5 and 5.8 lead to the decomposition

H(pv Q) = jl (pv Q) + \/§j2(pa Q) + Ek(pa Q)v
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Figure 1. Energy exchange between J,, Js, J4 (wiggly lines) and amost conservation of .J; (bottom), J5, Jo +
Js + Jy (top); the horizontal axis correspondsto the variable et.

with formal first integrals I (p, ¢) and I (p, ¢) ininvolution. Theseintegrals correspond to the near-conservation of
Ja + Js + J4 and J; along maotions of (79). Moreover, the averaged Hamiltonian K (p, ¢) happensto be of the form

- 1 1

K(p.q) = 5pi + 5ai +0* R(p, 4;0%),
and therefore the averaging process can be applied to K (p, q) with §2 considered as the perturbation parameter.
This givesrise to afurther decomposition

K(p,q) = I3(p,q) + 5* R(p, ¢; 0%),

where I3(p, q) = 3p? + 1¢? + O(6?) and I3(p, q) and K (p, q) areininvolution. Since H is afirst integral of K,
then I; isalso afirst integral of H. We then end up with a decomposition

H(p.q) = Li(p.q) + V2L(p, q) + eI3(p, q) + °R(p, q; 6°),

where fj (p,q), 7 =1,2,3,areininvolution with H (p, ¢). This matches the approximate conservation of J o + Js +
Js, Js and J; inFigure 1.

We have computed the formal first integrals I; (p, q), j = 1,2, 3 (except for remainders of size O(£3), O(£?),
and O(69) respectively) by applying formula (78); this results in polynomials in the variables p, ¢ that consist of
the sum of 1653, 1574 and 17050 monomials respectively (a computer algebra programme was of course used to
computethe Poisson bracketsthat featurein (78)). In order to check the size of the variation of the truncated versions
of f (p, q) dlong the solution of the original Hamiltonian system, we have computed, in theinterval 0 < ¢ < 500/« 2
W|th a high-order splitting algorithm with small step size, the solution corresponding to the above initial data. In
Figure 5.4, (I;(p(t), q(t)) — I;(p(0),q(0))/e%, with'® d; = d3 = 5, d» = 7, are plotted as functions of £t for
e=6%= 1/70 (inblue) and e = 62 = 1/140 (|n red) in respectively.

Appendix: multiplication of coefficients

In this appendix we give details of the product « in G. It is hoped that this will increase the readability of the paper;
for amore complete treatment the reader is referred to [13], Chapter 111.

18The exponent d; in the scaling factor for each conserved quantity is determined by the scaling of the initial condition in tandem by the
degree, as polynomials in the solution components, of the Poisson brackets discarded when truncating.
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Figure 20 (Li(p(t),q(t)) — Li(p(0),9(0)))/e°, (La(p(t),q(t)) — I2(p(0),q(0)/e", (Is(p(t),a(t)) —
I3(p(0), ¢(0))/£5 as functions of the scaled time £2(. The blue solutions correspond to e = 62 = 1/70 and
thered solutionstoe = 62 = 1/140

Given § € C7TV1% with 6y = 1 (that is§ € G, so that B(4,y) is a near-identity B-series), and an arbitrary
B-series B(n, y), the composition B(n, B(d, y)) is aB-series of the form B((, y), where (g = ngdy andforu € T
the coefficient ¢, = ( * n)y , u € T equas nyd, + nudp = Mydu + 1. Plus a sum of products of the form
NugOuy * * * Ouy, WIth ug| + ur] + -+ - + |tm| = |ul, uo, . . ., um € T . For instance, for the tree in the last row of
Table 1 it holdsthat (we use brackets rather than subscripts for typographical convenience):

C(QEQQD) = n(®)5<%§)+77(®)5(®) 5(@) (80)
*"(g> (@) +"(g) 5(®) +n(®@®) 5(0).

Multiplication of the formula (80) by exp(i(k +1+ m) - ) establishesthe validity of (52) at u = 8 .
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In the general case, the coefficient (6 * 1), u € T can be written as
(6% m)u = n(Ls(w)), (81)

where, for each fixedd € G, Ls : V — V isalinear map (defined below) in the vector space V = span(7 U {0}) of
linear combinations (with complex coefficients) of rooted trees, and n (originally defined asamap 7 U {(}} — C)
has been extended by linearity to V (i.e. n(3_; Aju;) = >, Ajn., for eachlinear combination 3, A;u; of trees).

In order to define the linear map L 5, wefirst extend the notation [u - - - ., |k (Used to recursively represent trees
in 7)), to define for each m > 1 and each multi-index k € Z¢, an m-linear, commutative m-ary operation on V' by
setting

[Q]]k = @; [ul to um—lmk = [ul t um,—l]k-
Now, L;(u) isdefined recursively by
Ls@) =0, Ls(u) =0, 0+ [Ls(ur) - Ls(um) it w=[ur - umk. (82)

One can check that for any u € T, Ls(u) = d(u) @ 4+ u + v where v asum of rooted trees with fewer vertices than
U.

Observe that pictorialy, in the right-hand side of (80), the tree associated with the right factor » rangesin the
set of trees obtained by pruning some edgesin thetreein the left-hand side (‘ pruning’ includes complete uprooting,
as in the first term, or no pruning at al, asin the last). In each term, the trees associated with the left factor §
are precisely the parts that have been chopped off. It can be shown that (81)—(82) imply that the same pruning
procedureis valid to write the formulafor (§ x )., for arbitrary uw € T.
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