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1: INTRODUCTION
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• Wish to obtain (possibly correlated) samples q(0), q(1), . . . from target
pdf of the form ∝ exp(−V (q)), q ∈ Rd. (This assumes density > 0

everywhere. This hypothesis is not essential.)

• Statistical mechanics/ Molecular dynamics: q configuration variables,
V potential energy, target is Boltzmann distribution.

• Bayesian statistics: target pdf π(θ). Then q = θ, V (q) = −L(θ) is
the negative log-likelihood of target.
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• HMC (Hybrid/Hamiltonian Monte Carlo) (Duane et. al. 1987) is a very
popular sampling method.

• HMC is an MCMC method: Generates trajectories q(0) 7→ q(1) 7→ · · · 7→
q(n) 7→ . . . of Markov chain with target as invariant distribution.

• HMC is based on ideas from Hamiltonian mechanics and statistical phy-
sics.

• I will start by providing some background.
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2. STATISTICAL PHYSICS
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• For a conservative mechanical system, Newton’s second law reads

Mq̈ = −∇V (q),

(q ∈ Rd collects the positions, d is the number of degrees of freedom, the
symmetric, positive definite matrix M contains the masses and V is the
potential energy).

• As t varies, the total energy (1/2)q̇(t)TMq̇(t) + V (q(t)) is conserved.

• Now assume that the system, rather than being isolated from the env-
ironment, is inside a heat bath at constant (absolute) temperature 1/β.
(Think of a protein inside the human body.) Molecules of the heat bath hit
the system and interchange energy with it.

• Keeping track of all interchanges is impossible and a statistical descrip-
tion is needed. (Maxwell, Boltzmann, Gibbs,. . . )
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• Statistical mechanics uses the Hamiltonian formulation of mechanics.
This introduces a new independent variable p = Mq̇ (momentum). The
space Rd × Rd of pairs (q, p) is the phase space.

Newton’s second law is rewritten as the first-order system

q̇ = M−1p, ṗ = −∇V (q),

i.e. in the symmetric form, due to Hamilton:

q̇ = ∂H/∂p, ṗ = −∂H/∂q,

where H(q, p) = (1/2)pTM−1p+V (q) is the total energy of the system
expressed as a function of q and p. (H defined up to an additive constant.)

• In a heat bath q(t), p(t) evolve stochastically so as to preserve the cano-
nical probability measure: dµ = (1/Z) exp(−βH(q, p)) dqdp, where Z is
the normalizing constant

∫
Rd×Rd exp(−βH)dqdp (partition function).
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• In view of the product structure

exp(−βH(q, p)) = exp
(
− β(1/2)pTM−1p

)
× exp

(
− βV (q)

)
,

q and p are stochastically independent.

• The momenta have a Gaussian density

∝ exp(−β(1/2)pTM−1p)

(Maxwell’s distribution). From here it follows that the average kinetic energy
is 1/(2β) × d: the absolute temperature 1/β is twice the average kinetic
energy per degree of freedom.

• The positions q have the Boltzmann density ∝ exp(−βV (q)): minima
of the potential energy are modes of the probability. As the temperature
diminishes those minima carry more and more probability.
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3. SYMMETRIES OF THE HAMILTONIAN DYNAMICS
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• For the Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q
,

with arbitrary H, denote by ϕt : Rd × Rd → Rd × Rd the solution flow, i.e.
ϕt(q, p) is the value at time t of the solution with initial values (q, p) at the
initial time t = 0.

• The flow has important geometric properties.
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• For each t the flow preserves volume in phase space (Liouville): ∀Ω ⊂
Rd × Rd, ϕt(Ω) has the same 2d-dimensional Lebesgue measure as Ω.
[In fact, the flow has a stronger property: symplecticness (Poincaré).]

• The flow preserves energy: H(ϕt(q, p)) = H(q, p).

• As a consequence, the flow preserves the canonical probability measure
[dµ ∝ exp(−βH(q, p)) dqdp]: i.e. ∀Ω ⊂ Rd×Rd, ϕt(Ω) carries the same
probability as Ω.

[But note that the —deterministic— Hamiltonian dynamics does not de-
scribe the random motions of the system in the heat bath.]
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Time reversibility of classical mechanics.

• For the special form H(q, p) = (1/2)pTM−1p+V (q) we found above,
the flow is reversible: if ϕt(q, p) = (q?, p?), then ϕt(q?,−p?) = (q,−p).

• Another formulation: if S denotes the momentum flip (q, p) 7→ (q,−p)

(S ◦ S = Id), then S ◦ φt is an involution: (S ◦ φt) ◦ (S ◦ φt) = Id.

• And yet another: φ−t = (φt)−1 = S ◦ φt ◦ S.

• Note S lets H invariant: H ◦ S = H and leaves invariant the Lebesgue
measure in phase-space dqdp.
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• Double-well potential V (q) = (q2 − 1)2 (bimodal distribution).
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• For simplicity I’ll set hereafter β = 1, but using different temperatures
may of course be useful when sampling, because at higher temperatures
moving between different probability modes becomes easier (tempering).
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4. THE ALGORITHM
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A Markov chain that preserves exp(−V (q))dq:

In the phase space of the variable (q, p) consider the Hamiltonian system
with H = (1/2)pTM−1p +V (q) and its solution flow ϕT . [T > 0, M are
parameters.]

• If q(n) is an element of the chain, then q(n+1) is defined as follows.

+ Generate p(n) from pdf ∝ exp(−(1/2)pTM−1p)), independent from
q(n) (and from past). (Momentum refreshment, needed for ergodicity.)

+ Define (q(n+1), p̃(n+1)) = (S ◦ ϕT )(q(n), p(n)) [p̃(n+1) will be di-
scarded so S might have been omitted here].

• Proof: refreshment, Hamiltonian flow ϕT and momentum flip S preserve
canonical probability measure dµ ∝ exp(−(1/2)pTp − V (q))dqdp and
hence the marginal on q (which is our target).
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• Good news: by suitably choosing T , q(n+1) may be far away from q(n)

(implications: low correlation, chain explores quickly Rd) (cf. random walk
Metropolis).

• Bad news: ϕT only known in trivial cases.

• Good idea: use a numerical approximation Ψ to ϕT , i.e. at each step
of the Markov chain, integrate numerically the Hamiltonian dynamics with
step-length h in the interval 0 ≤ t ≤ T . If the integrator preserves exactly
volume and energy then everything will work.

• Additional bad news: No numerical integrator preserves volume and
energy (Ge and Mardsden 1988). Thus no Ψ preserves the canonical
distribution µ. [An early result in Geometric Integration (SS 1995).]

• Additional good idea: Use an accept/reject mechanism to enforce con-
servation of µ.

17



ALGORITHM:

• Draw p(n) ∼ N (0,M). (Momentum refreshment.)

• From the initial condition (q(n), p(n)) integrate numerically (see next
slide) the Hamiltonian system of differential equations

d

dt
q = M−1p,

d

dt
p = −∇V (q), 0 ≤ t ≤ T,

to get (q?, p?). Proposal is (q?,−p?) = S
(
Ψ(q(n), p(n))

)
.

• Calculate a(n) = min
(
1, exp(H(q(n), p(n))−H(q∗, (−)p∗))

)
.

• Draw u(n) ∼ U(0,1). If a(n) ≥ u(n), set q(n+1) = q∗ (acceptance);
otherwise set q(n+1) = q(n) (rejection).
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• The numerical integration is performed by choosing and integer L, setting
h = T/L and performing L time-steps of length h:

(qj+1, pj+1) = ψh(qj, pj).

The approximation Ψ to ϕT is the L-fold composition ψh ◦ · · · ◦ ψh.

• If this integrator is both volume-preserving and reversible, then, as I will
prove later, the algorithm above is correct, in the sense that it preserves the
target measure. [It would be possible to use more general integrators but
then the accept/reject mechanism would have to be changed and become
more complicated. See Fang, SS & Skeel, 2014.]

• I will not be concerned with the ergodicity/convergence to equilibrium of
the algorithm (see Bou-Rabee, Eberle & Zimmer 2019 and its references).
And I will not consider the many available variants.
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• The acceptance rate

a(n) = min
(
1, exp(H(q(n), p(n))−H(q∗, p∗))

)
is a decreasing function of the change in energy over an integration leg

∆H(q(n), p(n)) = H(q∗, p∗)−H(q(n), p(n))

(recall that, conditional on (q(n), p(n)), (q∗, p∗) is deterministic).

• Since, for the true solution (q(t), p(t)) starting at (q(n), p(n)),

H(q(T ), p(T )) = H(q(n), p(n)),

we have (conservation of energy)

∆H(q(n), p(n)) = H(q∗, p∗)−H(q(T ), p(T ))

and ∆H is also the integration error in H at the end of the integration leg.
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• It follows that, for fixed T and (q(n), p(n)), ∆H behaves as O(hr) (r
is the order of the integrator): by reducing h we may get acceptance ra-
tes arbitrarily close to 1 (but reducing the step-size implies more work to
generate each proposal).

• By choosing T appropriately we expect to get proposals away from the
current state q(n) of the Markov chain.

• These facts are summarized in the slogan: HMC may give proposals that
are both away from the current state and accepted with high probability.

• But in practice things are not so simple: how to choose T and h, Hamil-
tonian dynamics may backtrack its progress, artifacts arise due to special
choices of T and/or h—various remedies available.
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5. THE INTEGRATOR
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• At present the (second-order) Störmer/Verlet/leapfrog scheme is the in-
tegrator of choice. In its velocity form one time-step consists of three sub-
steps

pi+1/2 = pi −
h

2
∇Vq(qi), (kick)

qi+1 = qi + hM−1pi+1/2, (drift)

pi+1 = pi+1/2 −
h

2
∇qV (qi+1). (kick)

• Note that, over a single time-step, it is volume-preserving because each
sub-step is volume preserving. It follows that over L time-steps is also
volume-preserving. Hence the proposal map S◦Ψ also preserves volume.

• Time-reversibility of Ψ follows from the palindromic structure.

• Cost: A gradient evaluation per time-step. The first kick at the present
time-step reuses the gradient at the second kick of the previous time-step.
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• A position version of the integrator also exists, with a drift/kick/drift stru-
cture. . .

• . . . but the velocity form has some advantages (Bou-Rabee & SS 2018).
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6. CORRECTNESS OF THE ALGORITHM
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•Momentum refreshment obviously leaves exp(−H)dqdp invariant, so we
only have to deal with the Markov substep based on numerical integration.

• I will use a result, due to C. Andrieu and his coworkers (who claim that
the result covers the correctness of 99% MCMC algorithms).
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Theorem: Let µ be a probability distribution on (Ξ,Q), σ : Ξ → Ξ an
involution (σ2 = Id) and consider for ξ, ξ′ ∈ Ξ the kernel

P (ξ, dξ′) = a(ξ) δσ(ξ)(dξ′) + [1− a(ξ)] δξ(dξ
′),

(i.e. σ provides proposals) with acceptance ratio

a(ξ) = min{1,
η(σ(ξ))

η(ξ)
},

where η is the density of µ with respect to a σ-invariant measure ν.

Then for all measurable sets A and B:∫
A
π(dξ)P (ξ,B) =

∫
B
π(dξ)P (ξ, A)

(P is µ-reversible) and in particular has µ as an invariant distribution.
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• Apply to HMC, with Ξ the phase space of the variable ξ = (q, p), ν the
Lebesgue measure and µ ∝ exp(−H(ξ))dqdp so that η = exp(−H(ξ)).

• HMC kernel and acceptance probability formula are of the form conside-
red in the theorem with σ = S ◦Ψ.

• Two things remain to be checked:

• σ has to be an involution—but this is just the demand that the integrator
is reversible S ◦Ψ ◦ S ◦Ψ = Id.

• dqdp has to be left invariant by σ = S ◦Ψ—but this is just the demand
that the integrator preserves volume .
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• The proof of Andrieu’s result (inspired by a well-known 1998 paper by
Tierney) hinges on the fact that

min
{

1, exp
(
−H

(
S ◦Ψ(ξ)

))
/ exp

(
−H(ξ)

)}
is the factor that when multiplying exp(−H(ξ))dξ turns it into a measure

min
{

exp
(
−H

(
S ◦Ψ(ξ)

))
, exp

(
−H(ξ)

)}
dξ

that is invariant by the proposal map ξ 7→ S ◦Ψ(ξ). (The map switches the
terms within the curly brackets —reversibility— and preserves dξ —volume
preservation.)
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• Note that all proposals with ∆H < 0 are accepted.

• In addition, by using the arguments used to prove the reversibility of the
chain, we may prove that if P(∆H) = 0, then, at stationarity:

E(a) = 2P(∆H > 0) = P(∆H > 0) + P(∆H < 0).

More generally, even if P(∆H) 6= 0,

P(∆H > 0) = P(∆H < 0)
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7. OVERVIEW
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In the remaining two lectures I will study the interplay between the numeri-
cal integrator and the sampling properties of HMC. More precisely:

• I will show that the properties of volume-preservation and reversibility
have a big impact on the behaviour of the errors in the numerical integra-
tion. This has important implications on the acceptance rate and on the
sampling properties of HMC.

• I will study whether the leapfrog algorithms is the best one may use within
HMC.

I have aimed at a self-contained presentation that does not assume much
background.
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