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1: INTRODUCTION



e Wish to obtain (possibly correlated) samples ¢(9), ¢(1), ... from target

pdf of the form « exp(—V(q)), ¢ € R%. (This assumes density > 0
everywhere. This hypothesis is not essential.)

e Statistical mechanics/ Molecular dynamics: g configuration variables,
V' potential energy, target is Boltzmann distribution.

e Bayesian statistics: target pdf 7(0). Then g = 6, V(q) = —L(0) is
the negative log-likelihood of target.



e HMC (Hybrid/Hamiltonian Monte Carlo) (Duane et. al. 1987) is a very
popular sampling method.

e HMC is an MCMC method: Generates trajectories ¢(0) — ¢(1) — ...
q(”) — ... of Markov chain with target as invariant distribution.

e HMC is based on ideas from Hamiltonian mechanics and statistical phy-
sics.

e | will start by providing some background.



2. STATISTICAL PHYSICS



e For a conservative mechanical system, Newton’s second law reads

Mq= —-VV(qg),

(g € R4 collects the positions, d is the number of degrees of freedom, the
symmetric, positive definite matrix M contains the masses and V is the
potential energy).

e As t varies, the total energy (1/2)¢(¢t)! Mq(t) + V (g(t)) is conserved.

e Now assume that the system, rather than being isolated from the env-
ironment, is inside a heat bath at constant (absolute) temperature 1/5.
(Think of a protein inside the human body.) Molecules of the heat bath hit
the system and interchange energy with it.

e Keeping track of all interchanges is impossible and a statistical descrip-
tion is needed. (Maxwell, Boltzmann, Gibbs,...)



e Statistical mechanics uses the Hamiltonian formulation of mechanics.
This introduces a new independent variable p = Mg (momentum). The
space R? x R? of pairs (g, p) is the phase space.

Newton’s second law is rewritten as the first-order system
¢=M"1tp, p=-VV(g),

l.e. in the symmetric form, due to Hamilton:
g = OH /0p, p = —0H/0q,

where H(q,p) = (1/2)p! M—1p+V(q) is the total energy of the system
expressed as a function of ¢ and p. (H defined up to an additive constant.)

e In a heat bath ¢(¢), p(t) evolve stochastically so as to preserve the cano-
nical probability measure: dy = (1/2) exp(—B8H (q,p)) dqdp, where Z is
the normalizing constant fRded exp(—pBH)dqdp (partition function).
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e In view of the product structure

exp(—BH(q,p)) = exp ( — 6(1/2)pTM_1p) X exp ( — BV(q)),

q and p are stochastically independent.

e The momenta have a Gaussian density

x exp(—B(1/2)p’ M~ 1p)

(Maxwell’s distribution). From here it follows that the average kinetic energy
is 1/(28) x d: the absolute temperature 1/ is twice the average kinetic
energy per degree of freedom.

e The positions ¢ have the Boltzmann density o« exp(—8V (¢)): minima
of the potential energy are modes of the probability. As the temperature
diminishes those minima carry more and more probability.



3. SYMMETRIES OF THE HAMILTONIAN DYNAMICS



e For the Hamiltonian system
 9H . 0H
T o g
with arbitrary H, denote by ¢, : R% x R% — R? x R9 the solution flow, i.e.

©¢(q, p) is the value at time ¢ of the solution with initial values (g, p) at the
initial time ¢t = 0.

e The flow has important geometric properties.
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e For each t the flow preserves volume in phase space (Liouville): V2 C
R x RY, 01 () has the same 2d-dimensional Lebesgue measure as <.
[In fact, the flow has a stronger property: symplecticness (Poincaré).]

e The flow preserves energy: H(pi(q,p)) = H(q,p).
e As a consequence, the flow preserves the canonical probability measure
[di o< exp(—BH(q,p)) dgdp]: i.e. VQ C RExR%, () carries the same

probability as €2.

[But note that the —deterministic— Hamiltonian dynamics does not de-
scribe the random motions of the system in the heat bath.]
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Time reversibility of classical mechanics.

e For the special form H(q,p) = (1/2)p! M~1p+ V' (q) we found above,
the flow is reversible: if +(q,p) = (¢*, p*), then ©:(¢*, —p*) = (q, —p).

e Another formulation: if S denotes the momentum flip (¢,p) — (g, —p)
(S oS = Id), then S o ¢ is an involution: (S o ¢;) o (S o ¢) = Id.

e And yet another: ¢_; = (¢) 1 =So¢;0S.

e Note S lets H invariant: H o S = H and leaves invariant the Lebesgue
measure in phase-space dqdp.
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e Double-well potential V' (¢) = (¢2 — 1)2 (bimodal distribution).
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e For simplicity I'll set hereafter 5 = 1, but using different temperatures
may of course be useful when sampling, because at higher temperatures
moving between different probability modes becomes easier (tempering).
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4. THE ALGORITHM
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A Markov chain that preserves exp(—V (q))dg:

In the phase space of the variable (g, p) consider the Hamiltonian system
with H = (1/2)p! M—1p +V (¢) and its solution flow ¢7. [T > 0, M are
parameters.]

e If ¢(") is an element of the chain, then ¢(* 1) is defined as follows.

+ Generate p(™) from pdf oc exp(—(1/2)p? M ~1p)), independent from
q(”) (and from past). (Momentum refreshment, needed for ergodicity.)

+ Define (¢t 1) 5(n+1)y = (S 0 ) (g™, p(™) [p(*+1) will be di-
scarded so S might have been omitted here].

e Proof: refreshment, Hamiltonian flow 7 and momentum flip S preserve
canonical probability measure du o« exp(—(1/2)p!p — V(q))dgdp and
hence the marginal on g (which is our target).
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e Good news: by suitably choosing 7', ¢{"*1) may be far away from ¢("")
(implications: low correlation, chain explores quickly R%) (cf. random walk
Metropolis).

e Bad news: 7 only known in trivial cases.

e Good idea: use a numerical approximation W to o, i.e. at each step
of the Markov chain, integrate numerically the Hamiltonian dynamics with
step-length A in the interval 0 <t < T'. If the integrator preserves exactly
volume and energy then everything will work.

e Additional bad news: No numerical integrator preserves volume and
energy (Ge and Mardsden 1988). Thus no W preserves the canonical
distribution . [An early result in Geometric Integration (SS 1995).]

e Additional good idea: Use an accept/reject mechanism to enforce con-
servation of p.
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ALGORITHM:
e Draw p(™) ~ A/ (0, M). (Momentum refreshment.)

e From the initial condition (¢{"),p("™)) integrate numerically (see next
slide) the Hamiltonian system of differential equations

d 1 d
— M 1p, = _VV(q), 0<t<T,
dtq p dtp (9) ST

to get (¢*, p*). Proposal is (¢*, —p*) = S(W (g™, p(")).
e Calculate a(™ = min (1, exp(H (¢(™,p(™) — H(g*, (—)p*))).

e Draw (™ ~ U(0,1). If ™) > 4" set ¢(n+1) = ¢* (acceptance);
otherwise set ¢("1t1) = ¢(") (rejection).
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e The numerical integration is performed by choosing and integer L, setting
h = T'/ L and performing L time-steps of length h:

(¢j+1,Pj+1) = ¥p(qj,pj)-
The approximation W to ¢ is the L-fold composition iy, o - - - o 1y,.

e |f this integrator is both volume-preserving and reversible, then, as | will
prove later, the algorithm above is correct, in the sense that it preserves the
target measure. [It would be possible to use more general integrators but
then the accept/reject mechanism would have to be changed and become
more complicated. See Fang, SS & Skeel, 2014.]

e | will not be concerned with the ergodicity/convergence to equilibrium of
the algorithm (see Bou-Rabee, Eberle & Zimmer 2019 and its references).
And I will not consider the many available variants.
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e The acceptance rate
o™ = min (1,exp(H (¢, p™) — H(q*,p")))
is a decreasing function of the change in energy over an integration leg
AH (¢, p™y = H(q*,p*) — H(¢"™, p™)

(recall that, conditional on (¢(™), p()), (¢*, p*) is deterministic).

e Since, for the true solution (¢(t), p(t)) starting at (q(”),p(”)),

H(q(T),p(T)) = H(¢'™,p(™),

we have (conservation of energy)

AH (g™, p™) = H(q*,p*) — H(g(T), p(T))
and A H is also the integration error in H at the end of the integration leg.
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e It follows that, for fixed 7" and (¢(™), p(™)), AH behaves as O(h") (r
is the order of the integrator): by reducing h we may get acceptance ra-
tes arbitrarily close to 1 (but reducing the step-size implies more work to
generate each proposal).

e By choosing 1" appropriately we expect to get proposals away from the
current state q(”) of the Markov chain.

e These facts are summarized in the slogan: HMC may give proposals that
are both away from the current state and accepted with high probability.

e But in practice things are not so simple: how to choose 7" and h, Hamil-
tonian dynamics may backtrack its progress, artifacts arise due to special
choices of T" and/or h—various remedies available.
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5. THE INTEGRATOR
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e At present the (second-order) Stormer/Verlet/leapfrog scheme is the in-
tegrator of choice. In its velocity form one time-step consists of three sub-
steps h

Pi+1/2 = DPi— EVVq(qi), (Kick)

gi+h M tpi o, (drift)

h :
Pi+1 — pi+1/2—§qu(q@'—|—1)- (Kick)

di+1

e Note that, over a single time-step, it is volume-preserving because each
sub-step is volume preserving. It follows that over L time-steps is also
volume-preserving. Hence the proposal map SoW also preserves volume.

e Time-reversibility of W follows from the palindromic structure.
e Cost: A gradient evaluation per time-step. The first kick at the present

time-step reuses the gradient at the second kick of the previous time-step.
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e A position version of the integrator also exists, with a drift/kick/drift stru-
cture. ..

e ...but the velocity form has some advantages (Bou-Rabee & SS 2018).
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6. CORRECTNESS OF THE ALGORITHM
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e Momentum refreshment obviously leaves exp(— H )dqdp invariant, so we
only have to deal with the Markov substep based on numerical integration.

e | will use a result, due to C. Andrieu and his coworkers (who claim that
the result covers the correctness of 99% MCMC algorithms).
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Theorem: Let u be a probability distribution on (=,9), 0 : = — = an
involution (62 = Id) and consider for &, £’ € = the kernel

P&, d¢") = a(€) 6,6 (dg)) + [1 — a ()] 5¢(deh),

(i.e. o provides proposals) with acceptance ratio

n(a(é))}
n(€)

where 7 is the density of 1 with respect to a o-invariant measure v.

a(€) = min{1,

Then for all measurable sets A and B:

/ r(d€)P(¢, B) = / r(d€)P(¢, A)
A

B
(P is p-reversible) and in particular has p as an invariant distribution.
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e Apply to HMC, with = the phase space of the variable £ = (q,p), v the
Lebesgue measure and p oc exp(—H (£))dgdp so thatn = exp(—H(&)).

e HMC kernel and acceptance probability formula are of the form conside-
red in the theorem with 0 = S o W.

e Two things remain to be checked:

e o hasto be an involution—but this is just the demand that the integrator
is reversible S o W o S o W = Id.

e dqdp has to be left invariant by o = S o W—Dbut this is just the demand
that the integrator preserves volume .
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e The proof of Andrieu’s result (inspired by a well-known 1998 paper by
Tierney) hinges on the fact that

min {1,exp (—H(SoWw(g)))/exp (— H(&))}
is the factor that when multiplying exp(—H (£))d¢ turns it into a measure
min { exp (— H(S 0 W(£))),exp (— H(&)) } d¢

that is invariant by the proposal map £ — SoW(&). (The map switches the
terms within the curly brackets —reversibility— and preserves d¢ —volume
preservation.)
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e Note that all proposals with A H < O are accepted.

e In addition, by using the arguments used to prove the reversibility of the
chain, we may prove that if P(AH) = 0, then, at stationarity:

E(a) = 2P(AH > 0) = P(AH > 0) + P(AH < 0).

More generally, even if P(AH) # 0,

P(AH >0) =P(AH < 0)
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7. OVERVIEW
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In the remaining two lectures | will study the interplay between the numeri-
cal integrator and the sampling properties of HMC. More precisely:

e | will show that the properties of volume-preservation and reversibility
have a big impact on the behaviour of the errors in the numerical integra-
tion. This has important implications on the acceptance rate and on the
sampling properties of HMC.

o | will study whether the leapfrog algorithms is the best one may use within
HMC.

| have aimed at a self-contained presentation that does not assume much
background.
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