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THE BEHAVIOR OF FINITE ELEMENT
SOLUTIONS OF SEMILINEAR PARABOLIC
PROBLEMS NEAR STATIONARY POINTS

S. LARSSON' anDp J.-M. SANZ-SERNA !

Abstract. We study the qualitative behavior of spatially semidiscrete finite element solutions
of a semilinear parabolic problem near an unstable hyperbolic equilibrium @. We show that any
continuous trajectory is approximated by an appropriate discrete trajectory, and vice versa, as long
as they remain in a sufficiently small neighborhood of @. Error bounds of optimal order in the Lo
and H' norms hold uniformly over arbitrarily long time intervals. In particular, the local stable and
unstable manifolds of the discrete problem converge to their continuous counterparts. Therefore, the
discretized dynamical system has the same qualitative behavior near @ as the continuous system.
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1. Introduction. Classical error estimates for approximate solutions of nonlin-
ear evolution problems on a time interval 7 < ¢ < T involve an error constant that
grows exponentially with the length T — 7 of the interval. In general this is the best
that can be expected, because trajectories of initial value problems may diverge from
each other at an exponential rate. On the other hand, exponentially growing bounds
become meaningless even for moderate values of T'— 7 in situations where trajectories
actually contract as time increases.

A typical instance of “contracting” trajectories occurs in the neighborhood of a
stable equilibrium, a case that has been considered for ordinary differential equations
by Stetter [12, Chapters 3.5 and 4.6] and for nonlinear parabolic partial differential
equations by Heywood and Rannacher [8], Larsson [9] and Sanz-Serna and Stuart
[11]. Tt turns out that, under suitable technical assumptions, the exponential growth
of the error predicted by the classical bounds does not materialize: numerical methods
provide approximations that are accurate uniformly in ¢ near a stable equilibrium.

Numerical methods cannot be expected to do very well in a neighborhood V'
of an unstable equilibrium u due to the divergence of trajectories. Figure 1 depicts
a situation, which is typical for an unstable hyperbolic equilibrium (cf. Section 2
below): there is a local stable manifold Mg composed of solutions that remain in V
for t > 0 and approach the equilibrium as ¢ — oo. The local unstable manifold My
is composed of solutions that are in V' for ¢ < 0 and approach the equilibrium as
t — —oo. Trajectories not contained in the stable or unstable manifolds remain in
V during a finite time interval 7 < ¢ < T'; the length of this interval depends on the
individual trajectory and may be arbitrarily large. By considering initial values on
opposite sides of Mg, it is easily seen that the distance between trajectories may grow
exponentially with ¢, even if they are close initially. Therefore we are in a situation,
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Fia. 1. Trajectories in the neighborhood of an unstable hyperbolic equilibrium.

where the exponential error growth predicted by classical bounds is not pessimistic
and numerical methods cannot be expected to approximate individual trajectories well
over long time intervals.

In a recent paper [3], restricted to ordinary differential equations, Beyn showed
that numerical methods can nevertheless be useful for long-time integration near an
unstable hyperbolic equilibrium: any continuous trajectory is approximated by an
appropriate discrete trajectory, and vice versa, to the correct order of approximation
and uniformly in ¢ as long as they remain in a sufficiently small neighborhood V' of
#. The conclusion is that, when a numerical method is used to simulate the phase
portrait in V' through the generation of a number of numerical trajectories, we can be
sure that the result is accurate: there are trajectories of the original problem that are
close, uniformly in ¢, to the computed trajectories. The difference with the case of a
stable equilibrium is that there the discrete trajectory approximates the continuous
trajectory starting from the same initial value, while here a given discrete trajectory
approximates a continuous trajectory with a different (and a priori unknown) initial
value.

The purpose of the present work is to extend Beyn’s result to the case of partial
differential equations. We consider a model situation, where a semilinear parabolic
problem is discretized in space by piecewise linear finite elements. Several general-
izations are possible but we have decided not to deal with them in order to gain
in clarity. Our main result, Theorem 1, i1s analogous to that of Beyn: there is an
Hl-neighborhood V' of the unstable hyperbolic stationary point @, such that for any
exact solution u(t) contained in V' for 7 < ¢t < T there is a numerical solution u”(t),
which approximates u(t) accurately for 7 < ¢t < T. We emphasize that the initial
value u?(7) is a priori unknown: a numerical solution starting from some a priori
prescribed approximation of u(7) (as in the standard error analysis) may deviate from
u(t) at an exponential rate as noted before. Conversely, for any numerical solution
uh(t) contained in V for 7 < ¢ < T there exists an exact solution u(t), which is close
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to it. The distance between u(t) and u?(t) is measured in the Lo and H! norms, and
we prove error bounds of optimal order with error constants that are independent of
T — 7. In a similar manner, we show in Theorem 2 that the discrete problem has local
stable and unstable manifolds which converge at an optimal rate to their continuous
counterparts. The conclusion is that the discretized dynamical system has the same
qualitative behavior near u as the continuous system.

Theorem 1 1s related to the concept of shadowing in dynamical systems theory,
but the classical shadowing lemma is not directly applicable in the present situation,
see, for example, [6] and [10].

Our work is in a sense complementary to that of Alouges and Debussche [1], which
deals with discretization in time but not in space. However it is not trivial to combine
our result with theirs to obtain a result for a completely discrete scheme. We plan to
study space and time discretization simultaneously in a future work.

Section 2 is devoted to the presentation and analysis of the partial differential
equation to be solved and Section 3 deals with the discretization in space. Our main
results, Theorems 1 and 2, are stated at the end of Section 3.

2. The continuous problem. Throughout this work € is a bounded convex
polygonal domain in R4, d = 1,2 or 3, and we let (-,-) and || - || denote the usual
inner product and norm in Ly = L2(€2). The norms in the standard Sobolev spaces
Hs = H3(Q), s > 0, are denoted by || - ||s. H} = H}() is the space of functions
v € H1 satisfying the Dirichlet boundary condition v|sn = 0, and H-1 = H-1(Q) is
the dual space of H} with norm [|v||—1 = SUP, ¢ f11 [(v, )I/||x]]1. For u € H} we let
B(p, u) denote the closed ball of radius p > 0 centered at u, i.e., B(p,u) = {ve H{ :
[|lv — ul]1 < p}. The symbols C' and C(p) are used to denote generic constants whose
values may change from one occurrence to the next.

We consider the model semilinear parabolic problem

(2.1) u— Au= f(u), =€ u=0, x€dQ,

where u = u(z,t), Au= Zle 9?u/0x?, and u; = du/0t. We assume that f € C2(R)

and, if d = 2 or 3, we assume in addition that
(2:2) PO < C(1+ulf=), =012 ueR,

withd = 3ifd =3, and 2 < § < oo if d = 2. It then follows that f is locally Lipschitz
from H} into Ly (cf. Lemma 2.2 below), which, by standard techniques (see, e.g.,
[7]), implies local existence and uniqueness of solutions to the initial value problem
for (2.1).

We further assume that (2.1) has a stationary solution « € Hi N H?, i.e., u is a
solution of

—Au= f(u), e u=0, =z

Let A = —A — al, where a(z) = f'(u(x)), denote the linearized operator with
domain D(A) = HYNH? and let {\;}$2, be its eigenvalues numbered in nondecreasing
order, with {¢;}52, the corresponding Ls-orthonormal eigenfunctions. Note that, by
standard embeddings, % and hence a are continuous functions in the closure Q. The
stationary point « is assumed to be hyperbolic (i.e., we assume that 0 is not one of
the eigenvalues A;) and unstable (i.e., there is at least one negative eigenvalue). Hence
there 1s a positive integer ¢ such that A; < 0for1 < ¢ < g,and A; > 0for g+1 < < .
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We then let Py denote the orthogonal projection of Ls onto X = span{q/)i}?:l and set
Py = [— P, Xo = Xi (orthogonal complement in Ls). Finally we define E(t) = e—t4
Aj = Alx;, Ej(t) =e i for j=1,2 e,

Ei(t)Pro =" ei(v,¢i)¢i, Ea(l)Pov= > e=i(v,¢i)¢i, v E L.

i=1 i=g+1

Thus F7 and Es, respectively, correspond to the unstable and stable parts of the
semigroup F generated by —A. The following lemma contains bounds for these op-
erators. Although the result is valid in greater generality, we state it with precisely
those assumptions that will be needed in the sequel.

LEMMA 2.1. There are positive numbers M and § such that

1B () Prelly < Meo]jol]o, (<0,

y—a

() Poolly < MU= 3520t folla, ¢ >0,

forve HY, a=0,1,y=0,1,2 with o < 4.
Proof. Let B = —A with domain D(B) = D(A) = Hi N H2. We first note the
equivalence of norms

(2.3) lolly & [[AY %0, v e XenD(B/2), y=0,1,2.
This is trivial when v = 0. Since B — A = a/ is bounded in Ly and ||Av|| = ||A2v|| >
Ag+1||v]] for v € Xo, we obtain

| Bof| <[I(B = A)oll + ||Av]| < Cl|Av]],  ve X2nD(B),
and also an analogous inequality with A and B interchanged. In view of the equiva-
lence of norms ||Bv|| = [|v||2 for v € D(B), this proves the case v = 2 of (2.3). The

remaining case ¥ = 1 follows by interpolation.
Since the spectrum of As is positive and bounded away from 0, we thus have

1Bo{t)Poolly < CE 5% =0t Pavlla, €0,
and the second bound in the lemma follows, if P> is bounded with respect to the H¢
norm. For o = 0 this is obvious. For a = 1 it follows from the orthogonality of P
with respect to the indefinite bilinear form
(2.4) A(u,v) = (Vu, Vo) — (au, v),
(following a standard practice we use the same letter A to denote both the linear
operator A and the corresponding bilinear form A(-, -)) by the following estimation:

| Pavl? < (1457 Pav|2 = A(Pov, Pov)
= A(Pav,v) < O|Poll]lvlls, v € Hy.
Finally, the bound for F1(t) is clear, since X is finite dimensional and A; is bounded
and negative definite. a
Using the linearized operator A we may now write equation (2.1) as
(2.5) ur + Au = F(u); F(u) = f(u) — au.
We are interested in the behavior of solutions of (2.5) in the neighborhood of @. Tt is
therefore convenient to introduce a dependent variable z(t) = u(t) — @, which satisfies
(2.6) 2+ Az = G(z); G(z) = F(u) — F(u).
We shall need the fact that the mappings F, G : H} — Ly are locally Lipschitz with a

constant that can be made arbitrarily small in a neighborhood of u and 0, respectively.
More precisely, we have the following result.
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LEMMA 2.2. If u; € B(p,u), and z,z; € B(p,0) fori=1,2, then for j = 0,1 we
have the bounds

(2.7) 1 (ur) = Fu2)l|-j < k(p)|lur — w2lli-;,

(2.8) 1G (1) = G(2)ll-5 < k()21 = 22—,

(2.9) 16 (2)oll-5 < k(p)lIvlli-j,

(2.10) 1G () < k(p)ll=]]2,

(2.11) 1G"(2)olle < k(p)llollz + Cl)lI=ll[lo]]1,

where k(p) = O(p), C(p) = O(1) as p = 0.

Proof. Since F(u1) — F(u2) = G(z1) — G(z2) (with z = u — @), it is sufficient
to show the bounds for G. The inequality (2.8) follows readily from (2.9). We prove
(2.9) for d = 3 only; the remaining cases can be proved in a similar way. We have, by
Holder’s and Sobolev’s inequalities,

1G"()oll < NG s llollze < CNG ()]s ol

(with a slight abuse of notation we let G/(z) denote both the linear operator G'(z) :
H} — Ly and the related function z — G’(z()) in L3(2)). Moreover, by (2.2) (recall
that 6 =3 if d = 3),

1 1
6@l = | [ o < [t ), de el
0 3 0
< C 1+l + lole) ol
< C (14 falls+ 201 lll < € (1+ gl

which proves the case j = 0 of (2.9). The case j = 1 is obtained in a similar way,
using the inequalities

ol = sup 122! llellzoga lxllze
vemy Xt~ yemy Ik

1
16" (=)0l S/O 177 (w 4+ t2)|ee dt[|2]| 2o [[0]] .-

< Cllellzays

The remaining bounds (2.10) and (2.11) are proved by the same techniques. a
Let —oo < 7 <t < T < 00. A solution of (2.5) defined for ¢ € [r, T] satisfies

u(t) = Bt — m)u(r) —1—/ E(t — s)F(u(s)) ds,

and hence

Pyu(t) = Ea(t — 7) Pau(r) —1—/ Ea(t — s)PaF(u(s)) ds.

Similarly,
Piu(T) = Ei(T — t) Pru(t) + / Ei(T — s)PLF (u(s)) ds,
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so that, by application of Ei(t — T), we get
T
Piu(t) = Ei(t = T)Piu(T) — / E1(t — s)PLF(u(s)) ds.
t
Substitution of these expressions into u(t) = Piu(t) + Pou(t) yields
T
(2.12) u(t) = El(t—T)v—/ Ei(t — s)PiF(u(s))ds
t
t
+ Ea(t— w4+ / Ea(t — s)PaF(u(s)) ds,

where v = Piu(T), w = Pau(r). Conversely, a solution of (2.12) (see, e.g., [7] for the
appropriate definition of solution) satisfies (2.5). The corresponding equation for a
solution z of (2.6) is

T
(213) Z(t) = El(t — Plz / E1 t—s PlG( ( )) S
—|—E2(t—TP22 —|—/E2t—SP2G(()) S.
Note also that u satisfies (2.12), i.e
T
(214) U= El(t—T)Plﬂ—/ El(t—S)PlF(ﬂ) ds
t
t
+ Ez(t — T)Pzﬂ + / Ez(t — S)PQF(Q) ds.

The representation in (2.12) holds for bounded time intervals [r,T]. If we let
7 =0and T = oo in (2.12) under the assumption that ||u(T)||1 remains bounded,
then we obtain the equation

(2.15)  u(t) = Ea(t)w — /too Ei(t—s)PiF(u(s))ds + /0 Ea(t — s)PaF(u(s)) ds,

which is satisfied by solutions of (2.5) defined in [0, 00). Solutions defined in (—o0, 0]
can also be accommodated by means of a similar device.

Consider now a solution v = wu(t) of (2.5), which enters a small ball B(p, u) at
time 7 and exits B(p, u) at time T. As pointed out in the introduction, the initial
value problem, where u(7) is prescribed, is ill posed due to the unstable character
of the stationary point 4. However, equation (2.12) shows that the boundary value
problem, where Pyu(7) and Piu(T) are prescribed, is well posed. This is the key idea
of the present work. We make this precise in the following lemma, where M is the
constant in Lemma 2.1.

LEMMA 2.3. There is a positive number p such that, for any real numbers 7, T
with T <T and any v € X1, w € X2 with

(2.16) lo = Prafl + [lw = Paaily < 55,
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equation (2.12) has a unique solution u such that u(t) € B(p,u) fort € [r,T].

Proof. We shall apply Banach’s fixed point theorem in the space C = C([r,T] :
H}) normed by |Jullc = sup,<;<7 |[u(t)|]i. Equation (2.12) can be written as u =
S(v,w) + T (u), where T

S(v,w)(t) = E1(t = T)v + Ex(t — 1)w,

2.17 T t
( ) T(u)(t) = —/t E1(t — s)PLF(u(s)) ds—i—/T Ea(t — s)PaF(u(s)) ds.

Let B={u € C:|lu—1llc <p}. We want to choose p such that the operator 7 is a
contraction in . For future reference we introduce

o° ¢
J(t) :/ eﬁ(t—s)(1+s_%)d5+/ (t_5)_%6_ﬁ(t_5)(1+5—%)d5’
¢ 0

K =sup J().
>0

(2.18)

It is easy to show that K 1s finite, so that we may choose p > 0 such that

(2.19) Mk(p)K <

=

For u, z € B we then have, by Lemma 2.1 and Lemma 2.2,
17 (w)(t) = T () D)x < /tT 1E1(t = s) PLLF (u(s)) = F(z(5))]l| ds
+ /: 1E2(t = s) P2[F(u(s)) — F(2(s))][1 ds
< M/tT P F(u(s)) = F(z(s))l| ds

FM [ (4= 0) b (u(e)) = L) ds

T ¢

< Mk(p) (/ eft=5) ds —1—/ (t — s)~ze=H(t=s) ds) [[u — z|c
t T

< Mk(p)J(t = 7)l|u— zlle < Mk(p)KlJu— zlle

S%HU_ZHC’ tE[TaT]a

so that 7 is a contraction. It remains to check that the operator v — S(v, w) + T (u)
maps B into itself. This will be achieved if ||S(v, w) — @+ T (a)]|c < %p, or

18(v, w) = S(Pra, Pru)lle < 5p,

since in view of (2.14) u = S(Piu, Pou)+ 7 (4). But, in view of Lemma 2.1 and (2.16),
we have

1S (v, w)(t) = S(Pra, Pou)(t)|l < |E2(t = T)(v — Pru)lls + || E2(t = 7)(w — Pau)lls
< M(|lv = Pralls + |Jw = Paallr) < 5p,

for t € [r,T]. Thus equation (2.12) has a unique solution u € B. a
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Note that the lemma also holds, with essentially the same proof, for solutions
on the semi-infinite time interval [0,00). More precisely, there is p > 0 such that
equation (2.15) has a unique solution u(t) € B(p, a) for t € [0, 00) for all w € X5 with
[|w — Paul|r < p/2M . This implies that the local stable manifold of @, defined by

(2.20) Ms(p) = {uo € H} :||P2(uo — u)|1 < ﬁ and u(t; ug) € B(p, u) for t > 0},

is homeomorphic to the ball B(p/2M, Psu) in X5. Here u(t; uo) denotes the solution
u(t) of (2.5) satisfying u(0) = ug. Moreover, one can show that Mg(p) is tangent to X
at u, and that u(¢;ug) — u exponentially in H} as t — oo for all ug € Mg (p). Similar
considerations hold for solutions defined in (—oc, 0], leading to the construction of the
local unstable manifold My (p). We refer to Henry [7, Theorem 5.2.1] for the details.

Our next lemma concerns the regularity of a solution u(t) € B(p, u) for t € [r, T].
In our error analysis below we will need bounds for certain derivatives of u. Since
T — 7 may be arbitrarily large, it 1s crucial that these bounds are independent of 7
and T

LEMMA 2.4. There are positive numbers p and C such that, for any 7, T with
T < T, and for any solution u of (2.12) with u(t) € B(p,a) fort € [r,T], we have the
bounds

(2.21) 1Dkt < C(14 (0= 7)), te(nT],

forl=0,1,m=1,2.

Proof. Let p be given by (2.19). Tt is convenient to estimate z(t) = u(¢) — @, which
satisfies (2.6) and (2.13). The desired bounds for u then follow, since w € H} N H2.
The reason why this is convenient is that G(z) € H}, so that we may employ Lemma
2.1 with v = G(#) and o = 1. This is not possible with F(u), which may be nonzero
on 0%.

Using Lemma 2.1, (2.10), (2.19) and equation (2.13) we get

12O < 1Bt = T) Prz(T)[2 + [[ B2 (t = 7) Paz(7)|2

+ [ 1B = 9P GG bt [ (= ) PG 2 ds
<MD+ Mt = )2 ()

w0t [ NGl ds 4 [ (¢ o) 2 GG ds
<Mp(1—|—(t—r)“)—|—Mk( )(/Ooe (i~ >(1+(5_T)——) ds
- / t(t—s>-%e—@<t—s>(1+<s—r>-%)ds) sup_(ip(s = 7)l1=(5)]|2)

7s<T

< Mp(14(t= 7)) + Mh(p)I(t =) sup (o5 = DlJ=(s)]e)

sup_ (ip(s = 7)l12(3)l2)

TL8<
<Mp(1+ =) 2) 45 swp (s = Dll)]),
TLs<

< Mp(1+(t=7)F) + Mk(p) K
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where ¢(s) = (14 s72)-1 < 1. Hence

plt == < Mo+ sup (s = =(3)lz).

so that
(2.22) =01l < C(p) (1+ (1= 7)73),
which implies the case | = 0, m = 2 of (2.21). The case [ =0, m = 1 is trivial.

We now estimate v = u; = z;. It can be shown by standard techniques that u is
differentiable with respect to ¢t and that v satisfies v; + Av = G’(2)v, and hence

o(t) = Ex(t — T)Pro(T) — /tT Ei(t — 5)P (G’(z(s))v(s)) ds
+ Ba(t — 1) Pyu(r) + /: Ea(t — 5) Py (G’(z(s))v(s)) ds.

We refer to Henry [7, Theorem 3.5.2] for the details. It remains to prove the required
bounds for v with a constant C'(p) independent of 7 and T'. (The bound given in [7] is
obtained by Gronwall’s lemma and therefore not applicable in the present situation,
where we require bounds that do not deteriorate as T — 7 — o0.) We already have,

by (2.10) and (2.22),
(223) (o] < 1A=+ IGEO) < CEIMI < C) (14— 1)73).
Using Lemma 2.1, (2.9) and (2.18), we obtain
o)l < 1Bt = T) Pro(T) s + ]| Baft — 7) Pov(r)
+ /tTHEl(t = 5P (G (:()0(s)) | ds
+ /: Ba(t — 5) P (G/(2(5))v(5)) H1 ds
< M{[o(T)|| + M(t =)~ [|o(7)]
stk ([ oo ds+ [0t as)
<M (14 (=178 (Il + ()

FMEEE sup (s = 7))

In view of (2.19) this shows that
p(t = Dllo@lls < 20 (Jlo(D)] + (o],
which together with (2.23) with 7 replaced by (¢t — 7)/2 implies

(2.24) (@)l < ) (14 (1= 7)),
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which is the case [ = 1, m = 1 of (2.21). Similarly we may show

(2.25) el < 23 (@)l + (Il ).

For the proof of the remaining bound (I = 1, m = 2) we use (2.11), (2.22) and (2.25)
in a similar way as above:

o)l < M (14 (= 7)75) (o)l + o)1)
+ ME(p)K sup (ip(s = 7)l[o(s)]]2)

7s<T

+M0(p)</t =z ()2 llv(s)[ ds

+/:(t‘5>‘%6 A=) 2(5)]2o <>||1ds)

<M1+ (=7 420 C()K) (lo(D)]]: + [[o(r)]n)
+4 sup(ls = Dlle(s)]l2).

TL8<

Together with (2.24) this leads to ||v(¢)|]2 < C(p) (1 +(t— T)_%) and the proof is

complete. a

3. The semidiscrete problem. We now proceed to discuss the spatially semi-
discrete approximation of equation (2.1) by the standard piecewise linear finite element
method. Thus we denote by S% the subspace of H{ that consists of piecewise polyno-
mials of degree < 1 with respect to a “triangulation” of the convex polygonal domain
1 with maximum mesh size h. The semidiscrete solutions u”(t) € S* satisfy

(3.1) (wh, )+ (Vuh, Vx) = (Fuh),x) Wy € 5%,

Before pursuing the discussion of u? further, we collect some basic results and
assumptions concerning the finite element method. Let o = maxyeq a(x), so that the
bilinear form

A, x) = (Y, VX) + (@ — ), X)
18 H&—elliptic. Then there is an operator G : Ls — H& such that
(3.2) AGrx) =(fix) Yx€EH], [ELs.
In other words G = (A + ol)~1. Tt is easy to see that G is a selfadjoint, positive

definite, compact, linear operator on Lz, and by the standard regularity theory for
elliptic problems, we have the inequality

(3.3) 1GF]l <CUAlL - f el

We also define an “elliptic projection” operator R" : Hi — Sh by

(3.4) ARy —v,x) =0  Vye S
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Under the usual regularity assumptions on the triangulation, and in view of (3.3), the
standard error analysis for elliptic problems yields

(3.5) [|RPv — o] + h||RPv — v]|1 < Ch™||v||m, ve HENnH™ m=1,2,

see for example [4, Chapter 3]. This error bound will form the basis for our error
analysis. For convenience of the presentation of our main result (cf. Remark 2 below)
we assume, 1n addition, that the triangulation is such that the orthogonal projection
Pk of Ly onto S* is bounded (uniformly in k) with respect to the H! norm. It is easy
to see that this is true under an inverse assumption. For a more general discussion of
the H! boundedness of P* the reader may consult [5].

We now resume our discussion of the semidiscrete problem (3.1). Tt is convenient
to linearize the equation around u. We thus introduce the operator A*» : Sh — Sh,
defined by

(Arv, x) = A(v, X) Yx € Sh,

where A(-, ) is the bilinear form corresponding to the operator A, see (2.4). Equation
(3.1) now becomes

(3.6) ul + Ahuh = PhF(uh); F(u) = f(u) — au.

Let {/\f}f\;hl be the eigenvalues of A* numbered in nondecreasing order, and let

{qbf}f\:l be the corresponding La-orthonormal eigenfunctions. It is well known [2] that
the eigenvalues of A converge to those of A as h — 0. Hence there is hg > 0 such
that, for h < hg, we have A} < 0for 1 <i<g¢,and \} >0forg+1<i< Ni. We
then set X} = span{¢l}?_,, Xt = span{quL}f\;hq_l_l, and denote by P]h the orthogonal

i=1»
projections of Lo onto X;L for 7 = 1,2. Note that P]h = Pthh and P} = Ph — P2
Next we define A;L = AM|x» and evolution operators E;L (t) = e_tA?, le.,
7
Nh
B PPo =) e~ (v, 0l)el, ER@)PIv= > e~ (v,¢l)¢k, v € Ly
i=1 i=g+1

The next result provides bounds for these operators. Note that there is no loss of
generality in assuming that the constants M and g in the following lemma are the
same as in Lemma 2.1.
LEmMMA 3.1. There are positive numbers hg, M and 3 such that for h < ho we
have
1E7 (@) Plolls < MePt|| Py, t<0,
1E2 () PPolly < Me=Pt||[PYvlly, >0,

and )
I1DFET () PPolly < MePt|v]|a, t<0,
ID{ B () PYolly < METI="5%e=Pt|ju]le, €0,
forve HY, j=0,1,a=—1,0,y=0,1.
Proof. We first establish the equivalence of norms (uniform in h)

(3.7) ol & [I(A)/20f], v e X
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Since /\Z+1 > Ag+1, we have
(3.8) A(v,v) > Agpallvll?,  veXP.
Hence
(3.9)  [lell? < ClIVel? = C(A(v,0) + (av,v)) < CA@,0) < Clelf,  ve XL,

which is the desired result, in view of the identity [|(A%)1/2v||2 = A(v,v).
Using (3.7) and (3.8) we may now prove

|ID] EL (1) Plol|y < Ct77=75% e8| (A5)o/2 Pl >0,

This implies the second bound in the lemma, because of the above equivalence of
norms, and also the fourth bound for o = 0, because of the boundedness of PJ in Ls.
For the case when o« = —1 we note that

(3.10) A((AB)-1Plv, x) = (v, X) Vx € X%,
which together with (3.9) implies

(v, x)

1
2

< C sup (v, ) < C sup (v, )
vexn Il vemy |IxIl

1(A3)=1/2Pw]| = sup

= Cvf|-1.
xext A(x, x)

This completes the proof of the bounds for E#(t). The bounds for E?(t) are easily

obtained by noting that X/ is finite dimensional with dimension ¢, and that the

spectrum of A% is negative and bounded away from 0 (uniformly in h). a
Equation (3.6) is now equivalent to

(3.11) uh(t) = EP(t — T)vh —/t Bt — s)PF (uh(s)) ds
+ EBR(t — r)wh + /t Bt — s)PhF (uh(s)) ds,

where vt = Pluh(T), wh = PRul(7), cf. (2.12). Again the cases T' = oo and 7 = —o0
can be catered for after minor changes, cf. (2.15).

In our next lemma we will show that equation (3.6) has a unique stationary
solution in a neighborhood of u. In other words, there is u? € S satisfying

(3.12) Ahgh = PhF(ah),

which 1s implies
T

(3.13) uh = B (t — T)PPuh —/ Bt — s)PIF(ah)ds
t

t
+ B (t — ) Phah +/ Bl (t — 5) PP F(ah) ds.
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LEMMA 3.2. There are positive numbers p, hg and C' such that, for h < hg,
equation (3.12) has a unique solution " € B(p,u) N S*. Moreover, ||uh — al|1 < Ch.

Proof. We first note that the operator A” is invertible and that there is a constant
(C'1 such that

[(A") =1 Pholly < Chlflol], v € Lo,

if h is sufficiently small. To see this we use (3.9) and (3.10) with x = (A%)-1Psv to
find

cll(A5) =1 Pgoll} < A((A5) =1 Plv, (AR)=LPv) = (v, (A5)=1P3v)
< [lull (AZ) =L P,

which shows ||(A%)=1Pfv||; < C||v]|. The inequality ||(A%)=1P{v||: < C||v|| holds by
finite dimensionality (uniform in k). This proves the desired bound.

In view of (3.12) we are seeking a fixed point of the operator Q" defined by
Qh(u) = (AM)=1P"F(u). For u,v € B(p, u) we have, in view of (2.7),

104 (u) = @ (W)l]s = [(AM) = PA(F (u) = F())ly < CllF () = F ()]
< Crk(p)l|u - ol

Hence Q" is a contraction on B(p, u), if we choose p so that C1k(p) < %. It remains
to show that Q" maps B(p, @) into itself, if h is sufficiently small. Using the identity

(3.14) ARRI = Ph(A — a(Rh — 1)),
which follows easily from the definitions of A?* and R", see (3.4), we get

AR (QM(u) — RPa) = PRF(u) — AMRba = P (F(u) = Au+ a(Rha - u))

= Pr(F(u) ~ P() + a(Rru — 1),

so that
Qh(u) — Rhu = Q" (u) — QM (u) + a(AM)-1 P (Rru — u).

In view of (3.5) we thus have
(3.15) 1@ (w) —alli < gllu—ally + (1 + |«|Cr)[|RPa — al|y < gllu —alls + Ch,

so that ||@"(u) — ali < %p + Ch < p for u € B(p,u), if h is sufficiently small.
Hence Q" maps B(p, @) into itself, and we conclude that Q" has a unique fixed point
uh € B(p,u). The fixed point belongs to S* because the range of Q" lies in S*. The
error bound follows immediately from (3.15). a

We can now prove an existence result for equation (3.11), analogous to Lemma
2.3 for the continuous problem.

LEMMA 3.3. There are positive numbers p and hg such that, for any h < hg, for
any real numbers T, T with 7 < T and for any vh € X, wh € XE with

(3.16) ot = Plarfl + [l - PRat|y < 2o
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equation (3.11) has a unique solution u such that uh(t) € B(p,u) fort € [7,T].

Proof. The argument is a slight modification of the proof of Lemma 2.3. Equation
(3.11) is written as a fixed point equation ub = Sh(vh wh) + T (uh), where the
operators on the right hand side are defined in the obvious way, cf. (2.17). We want
to solve this equation in the same ball B as in the proof of Lemma 2.3. Clearly 7" is
a contraction on B with the same choice of p. It remains to check that the operator
u = Sh(vh wh) + Th(u) maps B into itself for small A. In view of (3.13), (3.16) and
Lemma 3.2, this follows from

IS (0, wh) (0) + (@) = s
= ||Sh (o8, wh)(t) = SH(Pah, PRah)(t) +Th(a) - Th(ah) = (a— )l
<\BL(E = T)(oh = PRan)lu + | BA( = r)(wh = PRat)|l + 3t — iy
< M (Jjoh = Planlls + |t — Phat]ly) + Ch < Lo+ Ch < 4p,

for t € [r,T]. This completes the proof. O

A variant of Lemma 3.3 can be used to construct the local unstable and stable
manifolds M (p) and M2 (p) of u" in the same way as for the continuous problem. In
this context we define (cf. (2.20))

(3.07) ME(p) = {ul € 5% : |Ph(uf — a1 < 2o, wh(t) € Bp, ) for t > 0},

In our next result we estimate the difference between two solutions u”(t) and
u(t) that remain in a small ball B(p, ) for ¢t € [r,T]. Tt is important that the error
constant is independent of 7 and T, because T'— 7 may be arbitrarily large. In the
first error estimate there is a weak singularity at ¢ = 7 due to the possible lack of
regularity of u(r); note that we assume only that u(r) € H}. The second estimate
holds uniformly as ¢ — 7, but the rate of convergence is correspondingly lower.

LEMMA 3.4. There are positive numbers p, hy and C' such that, for any h < hg,
for any 7, T with T < T, for any solutions u of (3.6) and u of (2.5) with uh(t), u(t) €
B(p,u) fort €[r,T], and for j = 0,1, 1t € (r,T] we have

lut(t) = u(t)ll; < C(1+(t = 7)7%)
% (IPE (b (7) = () |+ [P (uh (7) = w(r)) | + b2,
and
lut(t) = u®)]] < C (1P (u(T) = w(D)]| + | P4 (w(7) = u(r)) | + h).

Proof. Choose p asin (2.19), so that the conclusion of Lemma 2.4 holds. Following
a standard practice we write

e(t) = ul(t) —u(t) = (uh(t) — Rru(t)) + (Rhu(t) — u(t)) = 04(t) + p" (1),

where R is the projection defined in (3.4), so that by (3.5) and Lemma 2.4, we have

(3.18) 1Dk (O]l < Chm=il| Du(t)lm < Chm=i (14 (1 = 7)~ "),
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forl,7 =0,1, m = 1,2. In particular, we have the required bounds for p(¢). In order
to estimate 07 () = u(t) — Rhu(t) we note that, in view of (3.14) and the equations
(3.6) and (2.5) satisfied by u" and wu,

0f + Angh = P (F(uh) = F(u) +aph — p}),
and hence that
0h(t) = EM(t — T)PMOM(T) + EB(t — 7)POR (1)
- / b (t = )PP (F(uh(s)) = F(u(s)) + aph(s) = pb(s)) ds

t
b [ B ) PE(Pur(s) = F(u(s)) + aph () = () ds.
It is convenient to divide this expression into two parts 6% = 6% + 02 where
0% (t) = Ef(t — T)PMoM(T) + Eb (t — 7)P2OM (1)
T t
+ [ Bt =Ptk ds = [ Bbu—s)Pol(s) ds
t T

and
0L (1) = — / " b )P} (F(u(s)) = F(u(s)) + aph(s)) ds

+ /: Eh(t — s)Ph (F(uh(s)) — F(u(s)) + aph(s)) ds.

We rewrite 67 by integration by parts,
01(t) = EY(t = T)PPe(T) + B3 (t — 7) Pe(r) — P ph(t)

— B - ) /2)PRoh((t - 7)/2) / DL E)(t - 5)Plph(s) ds

(t—7)/2
+ / DsEb(t — s)Phph(s)ds — / EL(t — s)Phpl(s) ds.
T (t—7)/2

Hence, by Lemma 3.1 and (3.18) with j =0, m =1,
108 @1 < M (1+ (e = 7)72) (IPET)| + [PEe(r) ] + 1o Ol + 1o (¢ = 7)/2)1)

T (t—7)/2

#M [l ia)ds 4 M [ (= s et (s) ds
t T
t

+M (1 = 5)~Fe=Pe=5) || ph(s)]] ds
(t—7)/2

< (14t =) E) (IPpe(T) + IPfe(rll + )
T (t=7)/2
+Ch (/ ePt=5) ds -1-/ (t— s)‘%e—@(t‘s) ds
t T

¢
—1—/ (t—s)_%e—@(t—s)(l—l—(5—7’)_1) ds)
(t—7)/2

1

< (14 (=) F) (UPEe(T)| + I PLe(r)]] + b).
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For the remaining term 6% we apply (2.7) with j = 0 to get

s @ < [ 0= (ko) + ) ds
cur - s>-%e—ﬁ<t—s>(k<p>||e<s>||1 U ) d

< Mk(p)K sup (gp(s—r)||9h(8)||1) + CKh,
7s<T

where o(s) = (14+s~2)~1 and K is defined in (2.18). Since Mk(p)K < +and p(s) <1,

we may conclude that
ot =)0 Ol < C(IPPe(T) + 1P| +5) + & sup_(io(s = )0 (s)]1 ).
7s<T

and the H! norm error estimate follows. For the L» norm estimates we first use (3.18)
with 7 =0, m =1,2 to get

10201 < 8 (|PL(T) + PRl + o O + [l (¢~ 7)/2)])
T (t—7)/2
L e R e IO L

t
+M e=PU=3)]|pp (5)|| ds
(t—7)/2

< (14 (=) ) (IPLe(T) | + || PEe(r)l] + )

-1

T
+ Chm (/ ePlt=s) (14 (s—7)" 2 )ds
¢

(t—7)/2
—1—/ (t—s)"le=Flt=5)(1+ (s —7)"

t —1
—1—/ e—ﬁ(t—s)(l—i—(s—r)_l_ z )ds)
(

t—7)/2
=) (IPpe(@) 1+ | Phe(r)l] + ).

§C’(1—|—(t—7')_

For the estimate of ||#%(t)|| we use (2.7) with j = 1 and obtain

104 ¢) ||<M/ 260 (k(p)lle(3)l] + Cllo ()1l ds
+M/ t =)~ e (k(p)l|e(s)l] + Clle (s)]I) ds

< ME(p)E sup_(p(s = 7)I|6"(s)]) + CEA™,
7s<T

m

where now ¢(s) = (1 + S_T_l)_l and K is defined in (2.18) as before. The proof can
now be completed in the same way as above. a
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We may also, with essentially the same argument, prove analogous error bounds
over the semi-infinite time interval [0, c0), that is, bounds of the difference between
solutions of (2.15) and its discrete version. For example, we have

(3819) NJur(t) = w(O)] < C(1+ 77 ) (P (uh(0) = w(O)| + hm), ¢ € [0,00),

for m = 1,2, whenever uh (), u(t) € B(p, u) for t € [0, 00). Error bounds over (—oo, 0]
are obtained in a similar way. In fact, we have

(3200 lur) —u(®) < C(IPE (h(0) = w(O)l| +h2), e (=00,0],

since there is no initial singularity in this case.

As a final preparation for the proof of our main result we give a bound for the
difference between the projections P{* and P;.

LEMMA 3.5. There are positive numbers hg and C' such that, for h < hgy, we have

(PP = POFI < CRAIfNl,  f € La.

Proof. The proof is a modification of a standard argument on abstract spectral
approximation that can be found for example in [2]. We let G = (A 4+ o)~! and R?
be the operators defined in (3.2) and (3.4), and define G» = R*G . i.e.,

AGhfX) = (f,x)  Yx€ESh, fE L,

or, equivalently, G» = (A" + al)~1Ph. Tt follows that G has positive eigenvalues
i = 1/(Ai + o) and the same eigenfunctions ¢; as A. Similarly, G" has eigenvalues
pt = 1/(A\! + a) and the same eigenfunctions ¢? as A". Applying the error bound
(3.5) for v = G f together with (3.3), we obtain

(3.21) IGh =G Il < CR2IfIl,  f € La
Let T' be a positively oriented circle in the complex plane such that {p;}7_,, but

no other eigenvalues of G, lie inside I'. Then for small h the eigenvalues {u?}!_, of
G", but no others, lie inside I' and we have the representations

— 1 — h 1 _ —
Pl—% F(Zl—g) 1dZ, Pl ——27” F(ZI gh) 1dZ.
Hence
1
Plh — P1 = % ((Zl—gh)_l — (Zf—g)_l) dz
r
1
—_ —_ Gh)— h _ _ -
=9 F(z[ Ghy-1(g G)(z] —G)~1dz,

and the required bound follows by (3.21), since clearly ||(2]—G")~|| and ||(s]—=G)~1|]
are bounded uniformly for z € I and small h. a
We can now state and prove our main result.
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THEOREM 1. There are positive numbers pg, h1 and C such that, for any h < hy,
and for any 7,7 with 7 < T, the following holds: if u is a solution of (2.5) with
u(t) € B(pa,u) fort € [r,T], then there is a solution u* of (3.6} such that

(3.22) lluh(t) — u(t)]]; < c(1+(t—r)—%)h2—j, te(nT], j=0,1.

Conversely, if uh is a solution of (3.6) with uh(t) € B(po,u) fort € [r,T], then there
is a solution u of (2.5) such that (3.22) holds.

Proof. Let p and hg be such that the conclusions of all the previous lemmas hold.
If w(t) € B(pa,u) for t € [r,T] and h < hi, then we choose

(3.23) vh = Phu(T), wh = Phu(r),

in equation (3.11). In order to apply Lemma 3.3 we must check condition (3.16). By
Lemma 3.2 we obtain

[[vh = Pub(]y + [Jwh — PRub(ly = | PP (w(T) = wh) || + | P (u(r) — ul) |l
< (u(T) = @l + llu(r) — @b,
< () = all + Ju(r) = alls + 2@ — a1
p
< 2C hi) < -
<20 (po+h) <
for pp and hj sufficiently small. Here we used the boundedness of Pih in H!, which
follows from the H! boundedness of the projections P* (by assumption) and P!|s»
(cf. the corresponding statement about P; in the proof of Lemma 2.1). Now Lemma
3.3 shows the existence of u”(t) € B(p,u) for t € [r,T], and Lemma 3.4 yields the
error bound (3.22), since P}(u(T) —u(T)) = 0, P2(uh(7) — u(r)) = 0.
Conversely, if u?(t) € B(po,u) for t € [r,T], then we choose v = Pyu(T) and

w = Poul(7) in equation (2.12). In order to apply Lemma 2.3 we must check condition
(2.16). Using the H! boundedness of P;, we obtain

lo = Praills + llw = Poalls = 1Py (uh(T) = @)l|s +[| P2 (7) = @) s
< (|l (T) = all + Jut(r) - allr)

p
<20py < —
S 2bpo s oo

for po sufficiently small. Lemma 2.3 now yields the existence of u(t) € B(p,u) for
t € [7,T]. In order to apply Lemma 3.4 we use the identities

PPy = PMI — P1) = P (P} — Py),
PlP, = (Ph — PP, = Ph(P, — Ph) Py,

and the boundedness of Pl»h, PP and P; in L2 together with Lemma 3.5, to get
|1 (u(T) — w(T))|| = || PP P2(u(T) — u(T))|| < Ch2||u(T) — u(T)|| < Cpoh?,

and, similarly, || P2 (uh(r) — u(T))H = ||PhPy (uh(r) — u(T))H < Cpoh?. a
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Remark 1. Tfu(r) € HXNH? (smooth initial data) in the first part of the theorem,
then the factor (t — T)_% is not needed in (3.22), as can be shown by the appropriate
modifications of Lemma 3.4 and Lemma 2.4.

Remark 2. The assumption that P* is bounded with respect to the H! norm
was used only in the first part of the previous proof. We made this assumption
only in order to streamline the formulation of our main result. In fact, if P* is not
bounded in H1, then we may choose vh = PrRMu(T), wh = P} RMu(r), instead of
(3.23), and condition (3.16) is checked in the same way as before, using now the H!
boundedness of P! Rh. (Both P and R" are bounded in H1: R is bounded because
it is the orthogonal projection with respect to the inner product fl(, -), see (3.4),
which is equivalent to the usual inner product in H{, and P! are bounded because
the eigenfunctions ¢ are orthogonal with respect to fl(, -)). Lemma 3.4 is applicable,
since

1Pf (uh(T) = w(T))|| = | P (R" = Du(D)|| < (B = Du(T)[| < Ch2[|u(T)]J2,

and similarly ||P2h(uh(7') — u(T))H < CR2||u(7)||2, if w(T),u(r) € HE N H?2.

Remark 3. Our analysis clearly applies also in the case of a stable hyperbolic
equilibrium, i.e., when ¢ = 0 and P! = 0, P? = Ph. Lemma 3.4 then gives long-time
error bounds similar to those of [8], [9] and [11].

Finally we show that the local stable and unstable manifolds of u? converge to
their continuous counterparts. More precisely, the following result shows that Mg(po)
(as defined in (3.17)) lies in an O(h)-neighborhood of Mg(p) (defined in (2.20)) with
respect to the Lo norm for some radii py < p, and vice versa. This rate of convergence
is the best that can be expected, because the stable manifold contains nonsmooth
elements of H}, cf. (3.5) with m = 1. The unstable manifold, on the other hand, is
smooth and the rate of convergence is O(h2).

It is convenient to express the result in terms of the semidistance §(A, B) =
SUp,e 4 infpep ||a—b|| between two subsets A, B of Lo. Thus d(A, B) < ¢ if and only if
A lies in an e-neighborhood of B in La. It would be desirable to have error bounds in
the Hausdorfl metric d(A, B) = max (sup,¢ 4 infoep ||a — b||, sup,cp infiea [|a — b)),
but we are not able to achieve this due to a lack of symmetry in our argument.

THEOREM 2. There are positive numbers pg, p, h1 and C' with py < p such that,
for any h < hi, the quantities §(Ms(po), ME(p)) and §(M%(po), Ms(p)) are bounded
by Ch, and §(My (po), ME(p)) and §(ME(po), My (p)) are bounded by Ch2.

Proof. Let po,p and hi be as in the proof of Theorem 1. If ug € Mg(po), then
there is a solution u(t) = u(t;u0) € B(po,u) of equation (2.5) for ¢ € [0,00) such
that u(0) = ug, see (2.20). Set wh = Plug. As in the previous proof we check that
||wh — Piuh||; < p/4M, and a variant of Lemma 3.3 with 7 = 0, T' = oo shows that the
discrete version of equation (2.15) has a solution u”(t) € B(p, u) for t € [0, 00) with
Phuh(0) = wh. 1t follows that u? = uh(0) € M2 (p), see (3.17). A variant of Lemma
3.4 with 7 = 0, T = oo, cf. (3.19), now yields [|[u(¢) — u(t)|| < Ch for t € [0,0). In
particular, using this result with ¢ = 0, we may conclude that

(M ML = sup inf ul — uol| < Ch.
(Ms{po), Ms(p)) ug€Ms(po) “E’EMé’(p)H ° oll <

Arguing as in the second part of Theorem 1 we obtain an analogous inequality with
Mg and M? interchanged, which proves the statements about the stable manifolds.
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The corresponding statements about the unstable manifolds are proved in a similar
way, see (3.20). a
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